Some Results on the Generalized Local Cohomology Modules

Yan Gu

Department of Mathematics, Suzhou University Suzhou 215006, P.R. China E-mail: guyan@suda.edu.cn

Abstract

Let (R, m) be a commutative Noetherian local ring, I and ideal of R, M and N finitely generated R-modules. Let $n_k = k$ -depth (I + Ann (M); N), $J_{nk} = \bigcap_{j < nk} Ann(Ext^j_R (M / I M, N))$. It is shown than $n_k = \inf\{i | \dim Supp(H^i_I (M, N)) \ge k\} = \{p \in Ass(Ext_R^{nk} (M / I M, N)) : \dim R/p \ge k\} = \{p \in Ass(N / (x_1, ..., x_{nk})N) : p \supseteq I + Ann(M), \dim R/p \ge k\}$ for any k-regular sequence $x_1, ..., x_{nk}$ of N in I + Ann(M). Let t be a positive integer, if $\dim Supp(H^i_I(M, N)) < k$ for all i < t, we prove that $\{p \in \bigcup_{i \in \mathbb{N}} Ass(Ext^i_R (M / I^i M, N)) : \dim R / p \ge k\}$ is a finit set.

AMS Subject Classification: 13D45, 13C15.

Keywords: Generalized local cohomology modules, associated priames, k-depth.

1. Introduction

Throughout this paper, let (R, m) be a commutative Noetherian local ring, I a proper ideal of R, M and N finitely generated R-modules. The generalized local cohomology module

$$H^i_I(M,N) = \varinjlim_{n \in \mathbb{N}} \operatorname{Ext}^i_R(M/I^nM,N).$$

was introduced by Herzog in [7] and studied further by Yassemi, Suzuki and so on. Since $H^{i}_{I}(R, N) = H^{i}_{I}(N)$, so the notion of generalized local cohomology module is an extension of the usual cohomology module.

For each integer $k \ge 0$, a sequence $x_1, ..., x_n \in m$ is called a k-regular sequence of

M (cf. [5]) if $x_i \notin p$ for all $p \in Ass$ ($M / (x_1, ..., x_{i-1})M$) satisfying dim $R/p \ge k$, for all i = 1, ..., n. The *k*-regular sequences of M in I (in [3] can be found that k-depth (I; M) is well defined). It is easy to see that 0-regular sequences are exactly regular sequences; 1-regular sequences are filter regular sequences introduced in [6]; and 2-regular sequences are generalized regular sequences introduced in [11].

There are some results about *k*-regular sequence and *k*-depth, which proofs can be seen in [3, 5].

Lemma 1.1. (cf. [5]) Let $k \ge 0$ be an integer, and $x_1, \ldots, x_n \in m$. Then we have

(i) If $x_1, ..., x_n$ is a k-regular sequence of M, then $x_1/1, ..., x_n/1$ is a regular sequence of M_p for all $p \in \text{Supp}M$ containing $x_1, ..., x_n$ satisfying dim $R/p \ge k$, where $x_i/1, i = 1, ..., n$, is the image of x_i in R_p .

(ii) $x_1, ..., x_n$ is a k-regular sequence of M if and only if $x_1^{t_1}, ..., x_n^{t_n}$ is a k-regular sequence of M for all positive integer $t_1, ..., t_n$.

(iii) Let $x \in m$. then x is a k-regular element of M if and only if dim $(0 : M^x) < k$. Then we have

(1) Every k-regular sequence of M in I is of finite length, all maximal k-regular sequences have the same length, and this common length is denoted to k-depth (I; M), and k-depth $(I; M) = \inf\{i \mid \text{dimSupp } (H^i_I(M)) \ge k\}$.

(2) If $x \in I$ is a *k*-regular of *M*, then k-depth (I; M) = k-depth (I; M / xM) + 1.

Lemma 1.3. (cf [5] Let $k \ge 0$ be an integer. Assume that dimM = d, dim(M / IM) = d - r. Then we have

(i) for all k = 0, ..., d - r, k-depth $(I; M) \le r$,

(ii) for all k > d - r, k-depth $(I; M) = +\infty$.

Proposition 1.4. (cf. [5]) Let $k \ge 0$ be an integer, suppose that $\dim(M / I M) \ge k$. Then

k-depth
$$(I; M)$$
 = min{depth $(IR_p; M_p) : p \in \text{Supp}(M/IM), \dim R/p \ge k$ }
= min{ $i : \dim \text{Ext}^i_B(R/I, M) \ge k$ }

The purpose of this paper is to use k-regular sequences and k-depth to give some results on generalized local cohomology modules. Our main aim in this paper is to establish the following theorem.

Theorem 1.5. Let $n_k = k = \text{depth } (I + \text{Ann } (M); N), J_{nk} = \bigcap_{j < nk} \text{Ann}(\text{Ext}^j_R(M / I M, N)).$

Then we have the following statements:

(1) dim $(R / J_{nk}) \le k - 1$, and $n_k = \inf\{i \mid \text{dimSupp}(H^i(M, N)) \ge k\} = \inf\{i \mid H^i(M, N) \neq H^i_{Jnk}(M, N)\}.$

(2) { $p \in \operatorname{Ass}(H^{nk}(M, N) : \dim R / p \ge k$ } $\ne \emptyset$, and { $p \in \operatorname{Ass}(H^{nk}(M, N)) : \dim R / p \ge k$ } $\ge k$ } = { $p \in \operatorname{Ass}(\operatorname{Ext}^{nk}(M / I M, N)) : \dim R / p \ge k$ } = ($p \in \operatorname{Ass}(N / (x_1, ..., x_{nk})N) : p \supseteq I + \operatorname{Ann}(M)$, dim $R / p \ge k$ } is a finite set, where $x_1, ..., x_{nk}$ is a k-regular sequence of N in $I + \operatorname{Ann}(M)$.

(3) Let *t* be a positive integer, if dimSupp($H^{i}(M, N) < k$ for all i < t, then { $p \in \bigcup_{i \in \mathbb{N}} Ass(Ext^{t}_{R}(M / I^{i} M, N)) : dimR / p \ge k$ } is a finite set.

Clearly, (1) extends a main result of [4], (2) generalize a main result of [5], (3) gives an impovement of Theorem 2.12 of [9].

2. Main results

Let $x_1, ..., x_n$ be an *N*-sequence in *I*, it has been proved that $Ass(H^n_I(N)) = Ass(H^0_I(N / (x_1, ..., x_n)N))$. We firstly generalize this result.

Lemma 2.1. Let $x_1, ..., x_n$ be an N-sequence in I + Ann(M). Then

$$Ass(H^{n}(M, N)) = Ass(H^{0}(M, N / (x_{1}, ..., x_{n})N))$$

Proof. We use induction on n. If n = 1, then we have the short exact sequence $0 \rightarrow N \xrightarrow{x_1} N \rightarrow N / x_1 N \rightarrow 0$, so we obtain the exact sequence $0 \rightarrow H_1^0(M, N / x_1 N) \rightarrow H_1^1(M, N) \xrightarrow{x_1} H_1^1(M, N)$. By applying the functor $\operatorname{Hom}_R(R / (I + \operatorname{Ann}(M)), -)$ to the above exact sequence, we have the exact sequence $0 \rightarrow \operatorname{Hom}_R(R / (I + \operatorname{Ann}(M)), H_1^0(M, N / x_1 N)) \rightarrow \operatorname{Hom}_R(R / (I + \operatorname{Ann}(M)), H_1^1(M, N) \xrightarrow{x_1} \operatorname{Hom}_R(R / (I + \operatorname{Ann}(M)), H_1^0(M, N))$. Since $x_1 \in I + \operatorname{Ann}(M)$, so

$$\operatorname{Hom}_{R}\left(R / (I + \operatorname{Ann}(M)), H^{U}(M, N / x_{1}N)\right) \cong \operatorname{Hom}_{R}\left(R / (I + \operatorname{Ann}(M)), H^{U}(M, N)\right).$$

In virture of $H^0_{I}(M, N / x_1 N) = H^0_{I+ANN(M)}(M, N / x_1 N)$ and $H^1_{I}(M, N) = H^1_{I+ANN(M)}(M, N)$, thus Ass $(H^0_{I}(M, N / x_1 N)) = Ass(H^1_{I}(M, N))$ by [1, 1.2.28].

Now let n > 1 and the case n - 1 is settled. Using the short exact sequence $0 \to N$ $x_1 \to N \to N / x_1 \to 0$, we get the short exact

$$0 \to H_I^{n-1}(M, N / x_1 N) \to H^n_I(M, N) x_1 H^n_I(M, N)$$

Using the similar arguments as above, we have $Ass(H_I^{n-1}(M, N / x_1N) = Ass(H_I^n(M, N))$. By the induction hypothesis, we have

$$\operatorname{Ass}(H_I^{n-1}(M, N/x_1N)) = \operatorname{Ass}(H_I^0(M, N/(x_1, \dots, x_n)N))$$

Now the proof is complete.

Suppose dim(N / (I + Ann(M))N) = s, for each k = 0, ..., s, we set $n_k = k$ -depth (I + Ann(M); N), then Ass $(H_I^{nk}(M, N))$ is not a finite set in general. In the following theorem, we will show some cases in which it is a finite set. Furthermore, we generalize the main result in [5] and Theorem 2.7 in [8].

Theorem 2.2. Let dim(N / (I + Ann(M))N) = s. For each k = 0, ..., s, we set $n_k = k$ depth (I + Ann(M): N), $H_k = \{p \in Ass(H_I^{nk}(M, N)) : \dim R / p \ge k\}$. Assume that x_1 , $..., x_{nk} \in I + Ann(M)$ is a k-regular sequence of N. Then for all k = 0, ..., s, $H_k \ne \emptyset$ and

$$H_k = \{ p \in \operatorname{Ass}(\operatorname{Ext}_R^{n_k}(M/IM, N)) : \dim R/p \ge k \}$$

= $\{ p \in \operatorname{Ass}(N/(x_1, \dots, x_{n_k})N) : p \supseteq I + \operatorname{Ann}(M), \dim R/p \ge k \}$

In particular, H_k is a finite set.

Proof. Let $k \in \{0, ..., s\}$, then $n_k < +\infty$ by Lemma 1.3(i). By Proposition 1.4, we have that

 $n_k = \min \{ \text{depth} ((I + \text{Ann}(M)) R_p, N_p) : p \in \text{Supp} (N / (I + \text{Ann}(M))N), \dim R / p \ge k \}$

Therefore there exists a prime ideal $p \in \text{Supp} (N / (I + \text{Ann}(M))N)$ such that dim $R / p \ge k$ and depth $(I + \text{Ann}(M) R_p, N_p = n_k$. Then we have $(H_I^{nk}(M, N))_p = H_{IRp}^{nk}(M_p, N_p)$

 $N_p \neq 0$, so $p \in \text{Supp}(H_I^{nk}(M, N))$. Let $p' \in \text{Min}(\text{Supp}(H_I^{nk}(M, N)))$ such that $p' \subseteq p$. Then $p' \in \text{Ass}(H_I^{nk}(M, N))$, dim $R / p' \geq \text{dim}R / p \geq k$, thus $p' \in H_k$, hence $H_k \neq \emptyset$.

Since $x_1, ..., x_{nk} \in I + Ann(M)$ is a *k*-regular sequence of *N*, then for every prime ideal *p* with $p \in \text{Supp}N$, $x_1, ..., x_{nk} \in p$ and dim $R / p \ge k$, $x_1/1, ..., x_{nk}/1$ is a regular sequence of N_p in $IR_p + Ann(M_p)$ by Lemma 1.1(i). Thus

$$Ass(H_{IR_{p}}^{n_{k}}(M_{p}, N_{p})) = Ass(H_{IR_{p}}^{0}(M_{p}, N_{p}/(x_{1}/1, \dots, x_{n_{k}}/1)N_{p}))$$

by Lemma 2.1. Set $L = N / (x_1, ..., x_{nk})N$ and let $a \in IR_p$, be a IR_p -filter regular element of L_p , then $H^0_{IRp}(L_p) \cong H^0_{(a)}(L_p)$ by [12, 3.4], so we have

$$H^0_{IR_p}(M_p, L_p) \cong H^0_{IR_p}(\operatorname{Hom}_{R_p}(M_p, L_p)) \cong \operatorname{Hom}_{R_p}(M_p, H^0_{IR_p}(L_p))$$
$$\cong \operatorname{Hom}_{R_p}(M_p, H^0_{(a)}(L_p)) \cong H^0_{(a)}(M_p, L_p)$$

Therefore, there exists an exact sequence

$$0 \to H^0_{IR_p}(M_p, L_p) \to \operatorname{Hom}_{R_p}(M_p, L_p) \to (\operatorname{Hom}_{R_p}(M_p, L_p))_a$$

by [2, Remark 2.2.17], which implies the exact sequence

$$0 \to \operatorname{Hom}_{R_p}(R_p/IR_p, H^0_{IR_p}(M_p, L_p)) \to \operatorname{Hom}_{R_p}(R_p/IR_p, \operatorname{Hom}_{R_p}(M_p, L_p)) \to \operatorname{Hom}_{R_p}(R_p/IR_p, (\operatorname{Hom}_{R_p}(M_p, L_p))_a) = 0$$

where for an *R*-module *P*, P_a denotes the module of fraction of *P* with respect to the multiplicatively closed subset $\{a^i : i \ge 0\}$ of *R*. So Hom R_p ($R_p / I R_p$, H^0_{IRp} (M_p , L_p) \cong Hom R_p ($R_p / I R_p$, Home R_p (M_p , $N_p / (x_1/1, ..., x_{nk}/1)N_p$)). Then

Ass $(H_{IRp}^{0}(M_{p}, L_{p}))$ = Ass $(\text{Hom}R_{p}(M_{p}, N_{p}/(x_{1}/1, ..., x_{nk}/1)N_{p}))) \cap V(IR_{p})$ by [1, 1,2,28]. Then we have

$$\operatorname{Ass}(H^{n_k}_{IRp}(M_p, N_p)) = \operatorname{Supp}(M_p/IM_p) \cap \operatorname{Ass}(N_p/(X_1/1, ..., x_{nk}/1)N_p)$$

Therefore $H_k = \{p \in Ass(N / (x_1, ..., x_{nk})N) : p \supseteq I + Ann(M), \dim R / p \ge k\}$ by [10, Theorem 6.2].

Since for every prime ideal p with $p \in \text{Supp}N$, $p \in V(I + \text{Ann}(M))$ and dim $R / p \ge k$, $x_1/1, \ldots, x_{nk}/1$ is a regular sequence of N_p in $(I + \text{Ann}(M))_p$ by Lemma 1.1(i), so we have the isomorphism:

$$\operatorname{Ext}_{R_p}^{n_k}(M_p/IM_p, N_p) \cong \operatorname{Hom}_{R_p}(M_p/IM_p, N_p/(x_1/1, \dots, x_{n_k}/1)N_p)$$

Then Ass $(\operatorname{Ext}^{nk}_{Rp}(M_p / IM_p, N_p)) = \operatorname{Supp}(M_p / IM_p) \cap \operatorname{Ass}(N_p / (x_1/1, ..., x_{nk}/1)N_p)$ by [1, 1.2.28]. By [10, Theorem 6.2] we get { $p \in \operatorname{Ass}(\operatorname{Ext}^{nk}(M / IM, N)) : \operatorname{dim}(P / p) \ge k$ } = { $p \in \operatorname{Ass}(N / (x_1, ..., x_{nk})N) : p \supseteq I + \operatorname{Ann}(M), \operatorname{dim}(P / p) \ge k$ }. the proof is complete.

For $k = 0, ..., \dim(N / (I + \operatorname{Ann}(M))N)$, we set $n_k = k$ -depth $(I + \operatorname{Ann}(M);N)$. Then we have the following two corollaries.

Corollary 2.3. Ass $(H_I^{no}(M, N))$ = Ass $(Ext^{no}_R(M / I M, N))$. In particular, Ass $(H_I^{no}(M, N))$ is a finite set.

Corollary 2.4. If dim (N / (I + Ann(M))N) > 0, then $Ass(H_I^{nl}(M, N)) \cap \{m\} = Ass$

 $(\operatorname{Ext}^{n_{R}}(M / IM, N)) \cup \{m\}$. In particular, $\operatorname{Ass}(H_{I}^{n_{I}}(M, N))$ is a finite set.

Remark 2.5. Note that $n_0 = 0$ -depth (I + Ann(M); N) = depth (I + Ann(M); N) and n1 = 1-depth (I + Ann(M); N) = f-depth (I + Ann(M); N) whenever $\dim(N / (I + \text{Ann}(M))N) > 0$, so corollary 2.3 and 2.4 generalize the known results about the finiteness of Ass $(H_I^{no}(M, N))$ and $\text{Ass}(H_I^{n1}(M, N))$.

Definition 2.6. Let $i \ge 0$ be integer. Set dimSupp $(H^i_I(M, N)) = \max \{\dim R / p | p \in \text{Supp}(H_{il}(M, N))\}$.

If $H_{I}^{i}(M, N)$ is finitely generated, then dimSupp $(H_{I}^{i}(M, N)) = \dim(R / \operatorname{Ann}(H_{I}^{i}(M, N)))$; if $H_{I}^{i}(M, N)$ is Artinian, then Supp $(H_{I}^{i}(M, N)) \subseteq \{m\}$, thus dimSupp $(H_{I}^{i}(M, N)) \leq 0$.

Lemma 2.7. (cf. [4] Let \mathbb{N} be the set of all positive integers and $i \in \mathbb{N} \cup \{+\infty\}$. Set $J_i = \bigcap_{j < i} \operatorname{Ann}(\operatorname{Ext}^{j_R}(M / IM, N))$. Then $H^{j_I}(M, N) \cong H^{j_{J_i}}(M, N)$ for all j < i. **Lemma 2.8.** (cf. [4]) Let $i \in \mathbb{N} \cup \{+\infty\}$. Then we have

$$\bigcup_{j < i} \operatorname{Supp}(H^i_I(M, N)) = \bigcup_{j < i} \operatorname{Supp}(\operatorname{Ext}^j_R(M/IM, N)).$$

Theorem 2.9. Set $n_k = k$ -depth (I + Ann (M), N) $J_{nk} = \bigcap_{j < nk} Ann (Ext^j_R (M / IM, N))$. Then $\dim(R / J_{nk}) \le k - 1$, $n_k = \inf\{i \mid \dim \operatorname{Supp}(H^i_I(M, N)) \ge k\} = \inf\{i \mid H^i_I(M, N)) \ge H^i_{Jnk}(M, N)\}$.

Proof. If dim $(N / (I + \text{Ann}(M))N) \le k - 1$, then $n_k = +\infty$ by Lemma 1.3, dim $(R / J_{nk}) \le k - 1$, and dimSupp $(H^i_I(M, N)) \le k - 1$ for all $j \ge 0$, so inf{ $i \mid \text{dimSupp}(H^i_I(M, N)) \ge k$ } = $+\infty$. By Lemma 2.7, we have $H^i_I(M, N) \cong H^i_{Jr}(M, N)$ for all $i \ge 0$, then inf{ $i \mid H^i_I(M, N) \cong H^i_{Jnk}(M, N)$ } = $+\infty$. The result is true in this case.

If dim $(N / (I + \operatorname{Ann}(M))N) \ge k$, then $n_k < +\infty$. Suppose that x_1, \ldots, x_{nk} is a maximal k-regular sequence of N in $I + \operatorname{Ann}(M)$. If $p \in \operatorname{Supp}(N / (I + \operatorname{Ann}(M)))$ such that dim $R / p \ge k$, then x_1, \ldots, x_{nk} is a N_p sequence in $(I + \operatorname{Ann}(M))_p$. Then $\operatorname{Ext}^{i_R}(M / IM, N)_p = 0$ for all $j < n_k$, so dim $(\operatorname{Ext}^{i_R}(M / IM, N)) \le k - 1$ for all $j < n_k$, thus dim $R / J_{nk} \le k - 1$. Since $\bigcup_{j < n_k}$ Supp $(\operatorname{Ext}^{i_R}(M / IM, N)) = \bigcup_{j < n_k}$ Supp $(\operatorname{H}^{j_I}(M, N))$ by Lemma 2.8, so dimSupp $(\operatorname{H}^{i_I}(M, N)) \le k - 1$ for all $j < n_k$.

Since $n_k = \inf\{\operatorname{depth}((I + \operatorname{Ann}(M))p, Np) \mid p \in \operatorname{Supp}(N / (I + \operatorname{Ann}(M))N), \operatorname{dim}R / p \ge k\}$, so there exists some $p \in \operatorname{Supp}(N / (I + \operatorname{Ann}(M))N), \operatorname{dim}R / p \ge k$ such that $n_k = \operatorname{depth}((I + \operatorname{Ann}(M))p, Np)$. Thus $\operatorname{Ext}^{n_k}(M / I M, N)_p \ne 0$. Hence we have $p \in \bigcup_{j=0}^{n_k} \operatorname{Supp}(H^j(M, N))$ by Lemma 2.8. In virtue of dimSupp $(H^j(M, N)) \le k - 1$ for all $j < n_k$, so $p \notin \bigcup_{j < n_k} \operatorname{Supp}(H^j(M, N))$, thus $p \in \operatorname{Supp}(H_I^{n_k}(M, N))$, hence dimSupp $(H_I^{n_k}(M, N)) \ge k$. Therefore $n_k = \inf\{i \mid \operatorname{dimSupp}(H^i(M, N)) \ge k\}$.

Since dim $R / J_{nk} \le k - 1$, so dimSupp $(H^{nk}_{Jnk}(M, N) \le k - 1$. By the above equality we know that dimSupp $(H_I^{nk}(M, N)) \ge k$, so $H^{I}_{nk}(M, N) \cong H^{nk}_{Jnk}(M, N)$. As $H^{i}_{I}(M, N) \cong H^{i}_{Jnk}(M, N)$ for all $j < n_k$ by Lemma 2.7. Then $n_k = \inf\{i \mid H^{i}_{I}(M, N) \cong H^{i}_{Jnk}(M, N) \cong H^{i}_{Jnk}(M, N)\}$.

Corollary 2.10. Let r = gdepth (I + Ann (M), N) and $J_r = \bigcap_{j < r} \text{Ann}(\text{Ext}^{i}_{R}(M / IM, N))$, in [4] Cuong and Hoang proved that dim $(R / J_r) \le 1$, $r = \inf\{i \mid \text{Supp} (\text{H}^{i}_{I}(M, N))$ is not finite $\} = \inf\{i \mid \text{H}^{i}_{I}(M, N) \cong H^{i}_{J_r}(M, N)\}$.

Theorem 2.11. Let *t* be an in non-negative integer such that dimSupp($H^{i}(M, N)$) < *k* for all *i* < *t*, then { $p \in \bigcup_{i \in \mathbb{N}} Ass(Ext^{i}_{R}(M / I^{i}M, N))$: dim $R / p \ge k$ } is a finite set.

Proof. Suppose that $i \in \mathbb{N}$, $p \in Ass(Ext_R^t(M | I^i(M, N)))$ such that dim $R | p \ge k$, then $pR_p \in Ass(Ext_R^t(M | I^i(M, N))_p)$. Since $n_k = k$ -depth $(I + Ann(M)) \ge t$, so there exists an k-regular sequence $x_1, ..., x_t$ in I + Ann(M) of N. Thus there exist $n_1, ..., n_t$ $\in \mathbb{N}$ such that $x_1^{n1}, ..., x_t^{nt}$ is a k-regular sequence of N in $I^i + Ann(M)$ for all $i \in \mathbb{N}$, so $x_1^{n1}/1, ..., x_t^{nt}/1$ is a N_p-regular sequence, thus $Ext_R^t(M | I^i(M, N)_p) \cong Hom(M | I^i(M, N)_p)$ $M, N | (x_1^{n1}, ..., x_t^{nt})N)_p$, thus $pR_p \in Ass(Hom(M | I^i(M, N | (x_1^{n1}, ..., x_t^{nt})N))_p, pR_p \in$ $\vee (IR_p) \cap Ass(N | (x_1^{n1}, ..., x_t^{nt})N)_p$. As $x_1^{n1}/1, ..., x_t^{nt}/1$ is a N_p-regular sequence, $Ass(N | (x_1, ..., x^t)N)_p$, therefore $p \in Ass(N | (x_1, ..., x_t)N)$, the proof is complete.

Corollary 2.12. If $\text{Supp}(H^i(N))$ is a finite set for all i < t, then the set $\{p \in \bigcup_{i \in \mathbb{N}} \text{Ass}(\text{Ext}^t_R(M / I^i M, N)) : \dim R / p\}$ is finite.

References

- [1] Bruns, W. and Herzog, J., Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathe-matics, 39. Cambridge University Press. 1993.
- [2] Brodmann, M, P. and Sharp, R.Y., Local cohomology-An algebraic introduction with geometric applications. Cambridge Studies in Advanced Mathematics, 60. Cambridge University Press. 1998.
- [3] Brodmann, M.P. and Nhan, L.T., A finite nesresult for associated primes of certain EXT-modules, to appear in Comm. Algebra.
- [4] Coung, N.T. and Hoang, N.V., On the vanishing and the finiteness of supports of generalized local cohomology modules, to appear in Manuscript a Math.
- [5] Chinh, N.Q. and Nhan, L.T., On the associated primes and the support of local cohomology modules, to appear in Algebra. Colloq.
- [6] Cuong, N.T., Schenzel, P. and Trung, N.V., Verallgemeinerte Cohen-Macaulay Moduln, Math. Nachr. 85, pp. 57-73, 1978.
- [7] Herzog, J., Komplex Auflösungen und Dualitä in der lokalen Algebra. Habilitationsschrift, Universität Regensburg, 1974.
- [8] Khashyarmanesh, K., On the finiteness properties of $\bigcap_i AssExt^n_R(R / a^i, M)$, Comm. Algebra 34, pp. 779-784, 2006.
- [9] Mafi, A., On the finiteness results of the generalized local cohomology modules, to appear in Algebra. Colloq.
- [10] Matsumura, H., Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, 8. Cambridge : Cambridge University Press, 1986.
- [11] Nhan, L.T., On generalized regular sequence and the finiteness for associated primes of local cohomology modules, Comm. Algebra 33, pp. 793-806, 2005.
- [12] Nagel, U. and Schenzel, P., Cohomological annihilators and Castelnuovo Mumford regularity. Commutative Algebra : Syzygies, Multiplicities, and Birational Algebra (Southe Hadley, Ma, 1992). Providence, RI, pp. 307-328, 1994.