Modern Euclidean Geometry (250261) – Philadelphia University – Dr. Amin Witno

AXIOMS OF EUCLIDEAN GEOMETRY

Based on the book *Euclidean and Non-Euclidean Geometries* by Marvin J. Greenberg, 1994

The Original Euclid's Postulates (5)

- 1. For every point *A* and for every point *B* not equal to *A* there exists a unique line that passes through *A* and *B*.
- 2. For every segment AB and for every segment CD there exists a unique point E such that B is between A and E and such that segment CD is congruent to segment BE.
- 3. For every point O and every point A not equal to O, there exists a circle with center O and radius OA.
- 4. All right angles are congruent to each other.
- 5. (Euclid's Parallel Postulate) For every line *I* and for every point *P* that does not lie on *I*, there exists a unique line *m* passing through *P* that is parallel to *I*.

Incidence Axioms (3)

- 1. Given 2 distinct points there is a unique line incident with them.
- 2. Given a line there exist at least 2 distinct points incidence with it.
- 3. There exist 3 distinct points not incident with the same line.

Incidence Propositions

- 1. If 2 distinct lines are not parallel then they have a unique common point.
- 2. There exist 3 distinct lines which are not concurrent.
- 3. For every line there is at least one point not incidence with it.
- 4. For every point there is at least one line not incidence with it.
- 5. For every point there exist at least 2 lines incidence with it.

Betweenness Axioms (4)

- 1. If A*B*C then also C*B*A and A, B, C are distinct collinear points.
- 2. Given 2 points *P* and *Q* there exist 3 points *A*, *B*, *C* such that *P**A*Q and *P**Q*B and *C***P**Q.
- 3. Given 3 collinear points, only one of them can be between the other two.
- 4. (Plane Separation) For every line I and for every 3 points A, B, C not on I,
 - (a) If *A*, *B* are on the same side of *I* and *B*, *C* are on the same side of *I*, then *A*, *C* are on the same side of *I*.
 - (b) If *A*, *B* are on the opposite sides of *I* and *B*, *C* are on the opposite sides of *I*, then *A*, *C* are on the same side of *I*. Corollary:
 - (c) If *A*, *B* are on the opposite sides of *I* and *B*, *C* are on the same side of *I*, then *A*, *C* are on the opposite sides of *I*.

Betweenness Propositions

- 1. $AB > \cap BA > = AB$ and $AB > \cup BA > = \langle AB \rangle$
- 2. Every line gives exactly two mutually exclusive half-planes.
- 3. (a) Given A^*B^*C and A^*C^*D then B^*C^*D and A^*B^*D
 - (b) Given A*B*C and B*C*D then A*B*D and A*C*D

- 4. Line Separation Property
- 5. Given A*B*C then
 - (a) $AB \cup BC = AC$
 - (b) $AB \cap BC = \{B\}$
 - (c) $BA > \cap BC > = \{B\}$
 - (d) *AB*> = *AC*>
- 6. Pasch's Theorem
- 7. Given $\angle CAB$ and a point *D* on the line *BC*, then *D* belongs to the interior of $\angle CAB$ if and only if B^*D^*C .
- 8. If *D* is in the interior of $\angle CAB$ then
 - (a) so is all of ray AD except A itself
 - (b) the opposite of ray AD is completely in the exterior
 - (c) if C^*A^*E then B is in the interior of $\angle DAE$
- 9. Crossbar Theorem

Congruence Axioms (6)

- 1. Given segment *AB* and any ray with vertex *C*, there is a unique point *D* on this ray such that $AB \approx CD$.
- 2. If $AB \approx CD$ and $AB \approx DF$ then $CD \approx DF$.
- 3. Given A^*B^*C and D^*E^*F , if $AB \approx DE$ and $BC \approx EF$ then $AC \approx DF$.
- 4. Given $\angle D$ and any ray *AB* there is a unique ray *AC* on each half-plane of the line *AB* such that $\angle BAC \approx \angle D$.
- 5. If $\angle A \approx \angle B$ and $\angle A \approx \angle C$ then $\angle B \approx \angle C$.
- 6. (SAS Criterion) If 2 sides and the included angle of a triangle are congruent to those of another triangle, respectively, then the two triangles are congruent.

Congruence Propositions

- 1. Segment Subtraction
- 2. Segment Ordering
- 3. Supplements of congruent angles are congruent.
- 4. All vertical angles are congruent to each other.
- 5. An angle congruent to a right angle is a right angle.
- 6. Given a line I and a point P there exists a line through P perpendicular to I.
- 7. ASA Criterion
- 8. Isosceles Triangle Theorem
- 9. Angle Addition
- 10. Angle Subtraction
- 11. Angle Ordering
- 12. SSS Criterion
- 13. All right angles are congruent to each other.

Continuity Axioms (2)

- 1. (Circular Continuity Principle) If a circle has one point inside and one point outside another circle, then the two circles intersect in two points.
- 2. (Archimedes' Axiom) Given segment *CD* and any ray *AB* there is a number *n* and a point *E* on this ray such that $n \ge AE \ge AB$.

Parallelism Axiom (1)

• (Hilbert's Parallel Axiom) Given a line *I* and a point *P* not on *I*, there is at most one line through *P* which is parallel to *I*.

Theorems in Neutral Geometry:

- 1. Alternate Interior Angle Theorem and its corollaries:
 - (a) Two lines perpendicular to another line are parallel.
 - (b) Given a line *I* and a point *P* not on *I*, there is a unique line through *P* which is perpendicular to *I*.
 - (c) Given a line *l* and a point *P* not on *l*, there exists a line through *P* which is parallel to *l*.
- 2. SAA Criterion
- 3. Every segment has a unique midpoint.
- 4. Every segment has a unique perpendicular bisector.
- 5. Every angle has a unique bisector.
- 6. Given $\triangle ABC$, AB > BC if and only if $\angle C > \angle A$.
- 7. Given $\triangle ABC$ and $\triangle DEF$ with $AB \approx DE$ and $BC \approx EF$, then AC < DF if and only if $\angle B < \angle E$.
- 8. Triangle Inequality Theorem
- 9. Saccheri-Legendre Theorem
- 10. If there is one triangle with angle sum = 180° then a rectangle exists.
- 11. If a rectangle exists then every triangle has angle sum = 180° .
- 12. If there is one triangle with angle sum $< 180^{\circ}$ then every triangle has angle sum $< 180^{\circ}$.

Note: Using Euclid's Parallel Postulate it can be proved that in Euclidean Geometry the angle sum of any triangle = 180° . In Hyperbolic Geometry angle sum of any triangle always < 180° whereas in Elliptic Geometry > 180° .

- 13. Euclid's Parallel Postulate is equivalent to each of the following statements:
 - (a) If two lines are cut by a transversal such that two interior angles of the same side have degree sum < 180° then the two lines intersect on this same side.
 - (b) Hilbert's Parallel Axiom
 - (c) If a line intersects / then it intersects any line which is parallel to /.
 - (d) The converse of the Alternate Interior Angle Theorem
 - (e) If $I_1 // I_2$ and $m \perp I_1$ then $m \perp I_2$.
 - (f) If $I_1 // I_2$ and $m_1 \perp I_1$ and $m_2 \perp I_2$ then either $m_1 = m_2$ or $m_1 // m_2$.

Hyperbolic Axiom (1)

• There exists a line *I* and a point *P* not on *I* such that there are at least two lines through *P* which are parallel to *I*.

Theorems in Hyperbolic Geometry:

- 1. There are no rectangles.
- 2. Universal Hyperbolic Theorem
- 3. For every line *l* and a point *P* not on *l*, there are infinitely many lines through *P* which are parallel to *l*.
- 4. The angle sum of any triangle $< 180^{\circ}$.
- 5. AAA Criterion

Note: It can be proved that, if Euclidean Geometry is consistent then

- (a) so is Hyperbolic Geometry
- (b) the Parallel Axiom is independent from the other axioms.