

Available online at www.sciencedirect.com

JOURNAL OF Functional Analysis

Journal of Functional Analysis 199 (2003) 379-385

http://www.elsevier.com/locate/jfa

Multilinear interpolation between adjoint operators

Loukas Grafakos^{a,*,1} and Terence Tao^{b,2}

^a Department of Mathematics, University of Missouri, Columbia, MO 65211, USA ^b Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90024, USA

Received 12 November 2001; revised 8 April 2002; accepted 14 October 2002

Abstract

Multilinear interpolation is a powerful tool used in obtaining strong-type boundedness for a variety of operators assuming only a finite set of restricted weak-type estimates. A typical situation occurs when one knows that a multilinear operator satisfies a weak L^q estimate for a single index q (which may be less than one) and that all the adjoints of the multilinear operator are of similar nature, and thus they also satisfy the same weak L^q estimate. Under this assumption, in this note we give a general multilinear interpolation theorem which allows one to obtain strong-type boundedness for the operator (and all of its adjoints) for a large set of exponents. The key point in the applications we discuss is that the interpolation theorem can handle the case $q \leq 1$. When q > 1, weak L^q has a predual, and such strong-type boundedness can be easily obtained by duality and multilinear interpolation (cf. Interpolation Spaces, An Introduction, Springer, New York, 1976; Math. Ann. 319 (2001) 151; in: Function Spaces and Applications (Lund, 1986), Lecture Notes in Mathematics, Vol. 1302, Springer, Berlin, New York, 1988; J. Amer. Math. Soc. 15 (2002) 469; Proc. Amer. Math. Soc. 21 (1969) 441). \mathbb{C} 2002 Elsevier Science (USA). All rights reserved.

MSC: primary 46B70; secondary 46E30, 42B99

Keywords: Multilinear operators; Interpolation

^{*}Corresponding author.

E-mail addresses: loukas@math.missouri.edu (L. Grafakos), tao@math.ucla.edu (T. Tao). ¹Supported by the NSF.

² Is a Clay Prize Fellow and is supported by a grant from the Packard Foundation.

1. Multilinear operators

We begin by setting up some notation for multilinear operators. Let $m \ge 1$ be an integer. We suppose that for $0 \le j \le m$, (X_j, μ_j) are measure spaces endowed with positive measures μ_j . We assume that T is an m-linear operator of the form

$$T(f_1,\ldots,f_m)(x_0)\coloneqq\int\cdots\int K(x_0,\ldots,x_m)\prod_{i=1}^m f_i(x_i)\,d\mu_i(x_i),$$

where K is a complex-valued locally integrable function on $X_0 \times \cdots \times X_m$ and f_j are simple functions on X_j . We shall make the technical assumption that K is bounded and is supported on a product set $Y_0 \times \cdots \times Y_m$ where each $Y_j \subseteq X_j$ has finite measure. Of course, most interesting operators (e.g. multilinear singular integral operators) do not obey this condition, but in practice one can truncate and/or mollify the kernel of a singular integral to obey this condition, apply the multilinear interpolation theorem to the truncated operator, and use a standard limiting argument to recover estimates for the untruncated operator.

One can rewrite T more symmetrically as an (m+1)-linear form Λ defined by

$$\Lambda(f_0, f_1, \ldots, f_m) \coloneqq \int \cdots \int K(x_0, \ldots, x_m) \prod_{i=0}^m f_i(x_i) \, d\mu_i(x_i).$$

One can then define the *m* adjoints T^{*j} of *T* for $0 \le j \le m$ by duality as

$$\int f_j(x_j) T^{*j}(f_1, \dots, f_{j-1}, f_0, f_{j+1}, \dots, f_m)(x_j) \, d\mu_j(x_j) \coloneqq \Lambda(f_0, f_1, \dots, f_m).$$

Observe that $T = T^{*0}$.

We are interested in the mapping properties of T from the product of spaces $L^{p_1}(X_1, \mu_1) \times \cdots \times L^{p_m}(X_m, \mu_m)$ into $L^{p_0}(X_0, \mu_0)$ for various exponents p_j , and more generally for the adjoints T^{*j} of T. Actually, it will be more convenient to work with the (m + 1)-linear form Λ , and with the tuple of reciprocals $(1/p'_0, 1/p_1, \dots, 1/p_m)$ instead of the exponents p_j directly. (Here we adopt the usual convention that p' is defined by 1/p' + 1/p := 1 even when 0 ; this notation is taken from Hardy et al. [6].)

Recall the definition of the weak Lebesgue space $L^{p,\infty}(X_i, \mu_i)$ for 0 by

$$||f||_{L^{p,\infty}(X_i,\mu_i)} \coloneqq \sup_{\lambda>0} \lambda \mu_i (\{x_i \in X_i : |f(x_i)| \ge \lambda\})^{1/p}.$$

We also define $L^{\infty,\infty} = L^{\infty}$. If $1 , we define the restricted Lebesgue space <math>L^{p,1}(X_i, \mu_i)$ by duality as

$$||f||_{L^{p,1}(X_i,\mu_i)} \approx \sup \left\{ \left| \int f(x_i)g(x_i) \, d\mu_i(x_i) \right| : g \in L^{p,\infty}(X_i,\mu_i), ||g||_{L^{p,\infty}(X_i,\mu_i)} \leq 1 \right\}.$$

We also define $L^{1,1} = L^1$. This definition is equivalent to the other standard definitions of $L^{p,1}(X_i, \mu_i)$ up to a constant depending on p.

Definition 1. Define a *tuple* to be a collection of m + 1 numbers $\alpha = (\alpha_0, ..., \alpha_m)$ such that $-\infty < \alpha_i \le 1$ for all $0 \le i \le m$, such that $\alpha_0 + \cdots + \alpha_m = 1$, and such that at most one of the α_i is non-positive. If for all $j \in \{0, 1, 2, ..., m\}$ we have $0 < \alpha_j < 1$, we say that the tuple α is *good*. Otherwise there is exactly one a_i such that $a_i \le 0$ and we say that the tuple α is *bad*. The smallest number j_0 for which the min $_{0 \le j \le m} \alpha_j$ is attained for a tuple α is called the *bad index of the tuple*.

If α is a good tuple and B > 0, we say that Λ is *of strong-type* α *with bound* B if we have the multilinear form estimate

$$|\Lambda(f_0,\ldots,f_m)| \leq B \prod_{i=0}^m ||f_i||_{L^{1/\alpha_i}(X_i,\mu_i)}$$

for all simple functions f_0, \ldots, f_m . By duality, this is equivalent to the multilinear operator estimate

$$||T(f_1,\ldots,f_m)||_{L^{1/(1-\alpha_0)}(X_0,\mu_0)} \leq B \prod_{i=1}^m ||f_i||_{L^{1/\alpha_i}(X_i,\mu_i)}$$

or more generally

$$||T^{*j}(f_1, f_{j-1}, f_0, f_{j+1}, \dots, f_m)||_{L^{1/(1-\alpha_j)}(X_j, \mu_j)} \leq B \prod_{\substack{0 \leq i \leq m \\ i \neq j}} ||f_i||_{L^{1/\alpha_i}(X_i, \mu_i)}$$

for $0 \leq j \leq m$.

If α is a tuple with bad index *j*, we say that Λ is *of restricted weak-type* α *with bound B* if we have the estimate

$$||T^{*j}(f_1, \dots, f_{j-1}, f_0, f_{j+1}, \dots, f_m)||_{L^{1/(1-\alpha_j),\infty}(X_j, \mu_j)} \leq B \prod_{\substack{0 \le i \le m \\ i \ne j}} ||f_i||_{L^{1/\alpha_i, 1}(X_i, \mu_i)}$$

for all simple functions f_i . In view of duality, if α is a good index, then the choice of the index *j* above is irrelevant.

2. The interpolation theorem

We have the following interpolation theorem for restricted weak-type estimates, inspired by [11]:

Theorem 1. Let $\alpha^{(1)}, \ldots, \alpha^{(N)}$ be tuples for some N > 1, and let α be a good tuple such that $\alpha = \theta_1 \alpha^{(1)} + \cdots + \theta_N \alpha^{(N)}$, where $0 \le \theta_s \le 1$ for all $1 \le s \le N$ and $\theta_1 + \cdots + \theta_N = 1$. Suppose that Λ is of restricted weak-type $\alpha^{(s)}$ with bound $B_s > 0$ for all $1 \le s \le N$.

Then Λ is of restricted weak-type α with bound $C \prod_{s=1}^{N} B_s^{\theta_s}$, where C > 0 is a constant depending on $\alpha^{(1)}, \ldots, \alpha^{(N)}, \theta_1, \ldots, \theta_N$.

Proof. Since α is a good tuple, it suffices by duality to prove the multilinear form estimate

$$|\Lambda(f_0,\ldots,f_m)| \leq C \left(\prod_{s=1}^N B_s^{\theta_s}\right) \prod_{i=0}^m ||f_i||_{L^{1/\alpha_i,1}(X_i,\mu_i)}.$$

We will let the constant *C* vary from line to line. For $1 , the unit ball of <math>L^{p,1}(X_i, \mu_i)$ is contained in a constant multiple of the convex hull of the normalized characteristic functions $\mu_i(E)^{1/p}\chi_E$ (see e.g. [12]) it suffices to prove the above estimate for characteristic functions:

$$|\Lambda(\chi_{E_0},\ldots,\chi_{E_m})| \leq C \left(\prod_{s=1}^N B_s^{\theta_s}\right) \prod_{i=0}^m \mu_i (E_i)^{\alpha_i}.$$

We may of course assume that all the E_i have positive finite measure. Let A be the best constant such that

$$|\Lambda(\chi_{E_0}, \dots, \chi_{E_m})| \leq A\left(\prod_{s=1}^N B_s^{\theta_s}\right) \prod_{i=0}^m \mu_i(E_i)^{\alpha_i} \tag{1}$$

for all such E_j ; by our technical assumption on the kernel *K* we see that *A* is finite. Our task is to show that $A \leq C$.

Let $\varepsilon > 0$ be chosen later. We may find E_0, \ldots, E_m of positive finite measure such that

$$|\Lambda(\chi_{E_0}, \dots, \chi_{E_m})| \ge (A - \varepsilon)Q, \tag{2}$$

where we use $0 < Q < \infty$ to denote the quantity

$$\mathcal{Q} \coloneqq \left(\prod_{s=1}^{N} B_{s}^{\theta_{s}}\right) \prod_{i=0}^{m} \mu_{i}(E_{i})^{\alpha_{i}} = \prod_{s=1}^{N} \left(B_{s} \prod_{i=0}^{m} \mu_{i}(E_{i})^{\alpha_{i}^{(s)}}\right)^{\theta_{s}}.$$

Fix E_0, \ldots, E_m . From the definition of Q we see that there exists $1 \leq s_0 \leq N$ such that

$$B_{s_0} \prod_{i=0}^{m} \mu_i(E_i)^{\alpha_i^{(s_0)}} \leq Q.$$
(3)

Fix this s_0 , and let j be the bad index of $\alpha^{(s_0)}$. Let F be the function

$$F \coloneqq T^{*J}(\chi_{E_1}, \ldots, \chi_{E_{j-1}}, \chi_{E_0}, \chi_{E_{j+1}}, \ldots, \chi_{E_m}).$$

Since Λ is of restricted weak-type $\alpha^{(s_0)}$ with bound B_{s_0} , we have from (3) that

$$||F||_{L^{1/(1-\alpha_{j}^{(s_{0})}),\infty}(X_{j},\mu_{j})} \leq B_{s_{0}} \prod_{\substack{0 \leq i \leq m \\ i \neq j}} \mu_{i}(E_{i})^{\alpha_{i}^{(s_{0})}} \leq Q\mu_{j}(E_{j})^{-\alpha_{j}^{(s_{0})}}.$$
(4)

In particular, if we define the set

$$E'_{j} \coloneqq \{ x_{j} \in E_{j} : |F(x_{j})| \ge 2^{1-\alpha_{j}^{(s_{0})}} \mathcal{Q}\mu_{j}(E_{j})^{-1} \}$$
(5)

then (4) implies that

$$\mu_j(E'_j) \leqslant \frac{1}{2} \mu_j(E_j). \tag{6}$$

By construction of E'_i we have

$$\left|\int \chi_{E_j\setminus E_j'}(x_j)F(x_j)\,d\mu_j(x_j)\right| \leq 2^{1-\alpha_j^{(s_0)}}Q$$

or equivalently that

$$|\Lambda(\chi_{E_0},\ldots,\chi_{E_{j-1}},\chi_{E_j\setminus E_j'},\chi_{E_{j+1}},\ldots,\chi_{E_m})| \leq CQ.$$

On the other hand, from (1) and (6) we have

$$|\Lambda(\chi_{E_0}, \ldots, \chi_{E_{j-1}}, \chi_{E'_j}, \chi_{E_{j+1}}, \ldots, \chi_{E_m})| \leq 2^{-\alpha_j} A Q.$$

Adding the two estimates and using (2) we obtain $CQ + 2^{-\alpha_j}AQ \leq (A - \varepsilon)Q$. Since α is good, we have $\alpha_j > 0$. The claim A < C then follows by choosing ε sufficiently small. \Box

From the multilinear Marcinkiewicz interpolation theorem (see e.g. Theorem 4.6 of [4]) we can obtain strong-type estimates at a good tuple α if we know restricted weak-type estimates for all tuples in a neighborhood of α . From this and the previous theorem we obtain

Corollary 1. Let $\alpha^{(1)}, \ldots, \alpha^{(N)}$ be tuples for some N > 1, and let α be a good tuple in the interior of the convex hull of $\alpha^{(1)}, \ldots, \alpha^{(N)}$. Suppose that Λ is of restricted weak-type $\alpha^{(s)}$

383

with bound B > 0 for all $1 \le s \le N$. Then Λ is of strong-type α with bound CB, where C > 0 is a constant depending on $\alpha, \alpha^{(1)}, \dots, \alpha^{(N)}$.

By interpolating this result with the restricted weak-type estimates on the individual T^{*j} , one can obtain some strong-type estimates for T^{*j} mapping onto spaces $L^p(X_j, \mu_j)$ where p is possibly less than or equal to 1. By duality one can thus get some estimates where some of the functions are in L^{∞} . However, it is still an open question whether one can get the entire interior of the convex hull of $\alpha^{(1)}, \dots, \alpha^{(N)}$ this way.³

3. Applications

We now pass to three applications. The first application is to reprove an old result of Wolff [14]: if T is a linear operator such that T and its adjoint T^* both map L^1 to $L^{1,\infty}$, then T is bounded on L^p for all 1 (assuming that T can beapproximated by truncated kernels as mentioned in the introduction). Indeed, in this $case <math>\Lambda$ is of restricted weak-type (1,0) and (0,1), and hence of strong-type (1/p, 1/p')for all 1 by Corollary 1.

The next application involves the multilinear Calderón–Zygmund singular integral operators on $\mathbf{R}^n \times \cdots \times \mathbf{R}^n = (\mathbf{R}^n)^m$ defined by

$$T(f_1, \dots, f_m)(x_0) \coloneqq \lim_{\varepsilon \to 0} \int_{\sum_{j,k} |x_k - x_j| \ge \varepsilon} \dots \int K(x_0, x_1, \dots, x_m)$$
$$\times f_1(x_1) \dots f_m(x_m) \, dx_1 \dots dx_m,$$

where $|K(\vec{x})| \leq C(\sum_{j,k=0}^{m} |x_k - x_j|)^{-nm}, |\nabla K(\vec{x})| \leq C(\sum_{j,k=0}^{m} |x_k - x_j|)^{-nm-1}$, and $\vec{x} = (x_0, x_1, ..., x_m)$. These integrals have been extensively studied by Coifman and Meyer [1–3] and recently by Grafakos and Torres [5]. It was shown in [5] and also in Kenig and Stein [7] (who considered the case n = 1, m = 2) that if such operators map $L^{q_1} \times \cdots \times L^{q_m}$ into $L^{q,\infty}$ for only one *m*-tuple of indices, then they must map $L^1 \times \cdots \times L^1$ into $L^{1/m,\infty}$. Since the adjoints of these operators satisfy similar boundedness properties, we see that the corresponding form Λ is of restricted weak-type (1 - m, 1, ..., 1), and similarly for permutations. It then follows⁴ from Corollary 1 that T maps $L^{p_1} \times \cdots \times L^{p_m}$ into L^p for all *m*-tuples of indices with ${}^5 1 < p_j < \infty$

³ In [11] this was achieved, but only after strengthening the hypothesis of restricted weak-type to that of "positive type". Essentially, this requires the set E'_j defined in (5) to be stable if one replaces the characteristic functions χ_{E_i} with arbitrary bounded functions on E_i .

⁴ Strictly speaking, we have to first fix ε , and truncate the kernel *K* to a compact set, before applying the theorem, and then take limits at the end. We leave the details of this standard argument to the reader. A similar approximation technique can be applied for the bilinear Hilbert transform below.

⁵The convex hull of the permutations of (1 - m, 1, ..., 1) is the tetrahedron of points $(x_0, ..., x_m)$ with $x_0 + \cdots + x_m = 1$ and $x_i \le 1$ for all $0 \le i \le m$, so in particular the points $(1/p_1, ..., 1/p_m)$ described above fall into this category.

with $\frac{1}{p_1} + \cdots + \frac{1}{p_m} = \frac{1}{p}$ and p > 1. The condition p > 1 can be removed by further interpolation with the $L^1 \times \cdots \times L^1 \to L^{1/m}$ estimate. This argument simplifies the interpolation proof used in [5].

Our third application involves the bilinear Hilbert transform $H_{\alpha,\beta}$ defined by

$$H_{\alpha,\beta}(f,g)(x) = \lim_{\varepsilon \to 0} \int_{|t| \ge \varepsilon} f(x - \alpha t)g(x - \beta t)\frac{dt}{t}, \quad x \in \mathbf{R}.$$
 (7)

The proof of boundedness of $H_{\alpha,\beta}$ from $L^2 \times L^2$ into $L^{1,\infty}$ (for example, see [8]) is technically simpler than that of $L^{p_1} \times L^{p_2}$ into L^p when $2 < p_1, p_2, p' < \infty$ given in [9]. Since the adjoints of the operators $H_{\alpha,\beta}$ are $H_{\alpha,\beta}^{*1} = H_{-\alpha,\beta-\alpha}$ and $H_{\alpha,\beta}^{*2} = H_{\alpha-\beta,-\beta}$ which are "essentially" the same operators, we can use the single estimate $L^2 \times L^2 \to L^{1,\infty}$ for all of these operators to obtain the results in [9], since the corresponding form Λ is then of restricted weak-type (0, 1/2, 1/2), (1/2, 0, 1/2), and (1/2, 1/2, 0). (See also the similar argument in [11] as well as the earlier argument in [13].)

The operator in (7) is in fact bounded in the larger range $1 < p_1, p_2 < \infty, p > 2/3$ and similarly for adjoints, see [10]. The interpolation theorem given here allows for a slight simplification in the arguments in that paper (cf. [11]), although one cannot deduce all these estimates solely from the $L^2 \times L^2 \rightarrow L^{1,\infty}$ estimate.

References

- R.R. Coifman, Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc. 212 (1975) 315–331.
- [2] R.R. Coifman, Y. Meyer, Commutateurs d' intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier, Grenoble 28 (1978) 177–202.
- [3] R.R. Coifman, Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978).
- [4] L. Grafakos, N. Kalton, Some remarks on multilinear maps and interpolation, Math. Ann. 319 (2001) 151–180.
- [5] L. Grafakos, R. Torres, Multilinear Calderón-Zygmund theory, Adv. in Math. 165 (2002) 124-164.
- [6] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, 2nd Edition, Cambridge University Press, Cambridge, 1952.
- [7] C. Kenig, E.M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999) 1–15.
- [8] M.T. Lacey, On the bilinear Hilbert transform, Doc. Math. II (1998) 647-656.
- [9] M.T. Lacey, C.M. Thiele, L^p bounds for the bilinear Hilbert transform, 2 , Ann. Math. 146 (1997) 693–724.
- [10] M.T. Lacey, C.M. Thiele, On Calderón's conjecture, Ann. Math. 149 (1999) 475-496.
- [11] C. Muscalu, C. Thiele, T. Tao, Multi-linear operators given by singular multipliers, J. Amer. Math. Soc. 15 (2002) 469–496.
- [12] C. Sadosky, Interpolation of Operators and Singular Integrals, Marcel Dekker, New York, 1976.
- [13] C.M. Thiele, On the Bilinear Hilbert Transform, Habilitationsschrift, Universität Kiel, 1998.
- [14] T.H. Wolff, A note on interpolation spaces, in: Harmonic Analysis (Minneapolis, MI, 1981), Lecture Notes in Mathematics, Vol. 908, Springer, Berlin, New York, 1982, pp. 199–204.