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Abstract

Multilinear interpolation is a powerful tool used in obtaining strong-type boundedness for a
variety of operators assuming only a finite set of restricted weak-type estimates. A typical
situation occurs when one knows that a multilinear operator satisfies a weak L? estimate for a
single index ¢ (which may be less than one) and that all the adjoints of the multilinear operator
are of similar nature, and thus they also satisfy the same weak L? estimate. Under this
assumption, in this note we give a general multilinear interpolation theorem which allows one
to obtain strong-type boundedness for the operator (and all of its adjoints) for a large set of
exponents. The key point in the applications we discuss is that the interpolation theorem can
handle the case ¢<1. When ¢ > 1, weak L? has a predual, and such strong-type boundedness
can be easily obtained by duality and multilinear interpolation (cf. Interpolation Spaces,
An Introduction, Springer, New York, 1976; Math. Ann. 319 (2001) 151; in: Function Spaces
and Applications (Lund, 1986), Lecture Notes in Mathematics, Vol. 1302, Springer, Berlin,
New York, 1988; J. Amer. Math. Soc. 15 (2002) 469; Proc. Amer. Math. Soc. 21 (1969) 441).
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1. Multilinear operators

We begin by setting up some notation for multilinear operators. Let m>1 be an
integer. We suppose that for 0<j<m, (X}, ;) are measure spaces endowed with
positive measures ;. We assume that 7' is an m-linear operator of the form

m

T(fi, ... fon)(x0) ZZ/"'/K(Xo,nqu)illfi(xi)d/li(xi)?

where K is a complex-valued locally integrable function on Xy x --- x X, and f; are
simple functions on JX;. We shall make the technical assumption that K is bounded
and is supported on a product set Yy x --- x Y,, where each Y;=JX; has finite
measure. Of course, most interesting operators (e.g. multilinear singular integral
operators) do not obey this condition, but in practice one can truncate and/or
mollify the kernel of a singular integral to obey this condition, apply the multilinear
interpolation theorem to the truncated operator, and use a standard limiting
argument to recover estimates for the untruncated operator.
One can rewrite 7 more symmetrically as an (m + 1)-linear form A defined by

A(fofis -oosfom) ::/-~/K(xo,...,x,,,)Hﬁ(xi)dui(x[).
0

i=l

One can then define the m adjoints T*/ of T for 0<j<m by duality as
/f/(xj)T*](f]7 "'7fj—1afb7fj+]a afm)(xl) d:uj(x/) = A(f()afh afm)

Observe that T = T*°,

We are interested in the mapping properties of 7 from the product of spaces
L2V (X, ) X oo X LP (X, ) into LP0( Xy, ) for various exponents p;, and more
generally for the adjoints 7* of T. Actually, it will be more convenient to work with
the (m+ 1)-linear form A, and with the tuple of reciprocals (1/pj, 1/p1, ..., 1/pm)
instead of the exponents p; directly. (Here we adopt the usual convention that p’ is
defined by 1/p’'+ 1/p =1 even when 0<p<1; this notation is taken from Hardy
et al. [6].)

Recall the definition of the weak Lebesgue space L”* (X;, u;) for 0<p< oo by

1 e i = sup g ({xie Xy |f (x)| =207
A>



L. Grafakos, T. Tao | Journal of Functional Analysis 199 (2003) 379-385 381

We also define L** = L*. If 1<p< oo, we define the restricted Lebesgue space
LPY(X;, ;) by duality as

||.f||l}'=l(Xi~#i)

- sup{ \ [ 700t d] 027 (0, il 1 <1}-

We also define L' = L!. This definition is equivalent to the other standard
definitions of L”!(X;, u;) up to a constant depending on p.

Definition 1. Define a tuple to be a collection of m + 1 numbers o = (o, ..., o) such
that — oo <o; <1 for all 0<i<m, such that o9 + --- + o, = 1, and such that at most
one of the «; is non-positive. If for all je {0, 1,2, ..., m} we have 0 <o; <1, we say that

the tuple o is good. Otherwise there is exactly one a; such that ¢;<0 and we say that
the tuple o is bad. The smallest number ji, for which the ming ;< «; is attained for a
tuple « is called the bad index of the tuple.

If o is a good tuple and B > 0, we say that A is of strong-type o with bound B if we
have the multilinear form estimate

m

Ao, e S| < BT Nl
i=0

for all simple functions fy, ..., f,,. By duality, this is equivalent to the multilinear
operator estimate

m

HT(flv ""fm)”Ll/(l_“O)(Xo,yO) <B ||ﬁ||L'/“i(X,-,yl~)

i=1

or more generally

||T*j(.f1 7];—1 aﬁ)7f}+]a aﬁ71)| ‘Ll/(l—“j)(xj.#j) <B H Hfl'”Ll/“i(X,-”ui)

0<is<m
i#j
for 0<j<m.
If o is a tuple with bad index j, we say that A is of restricted weak-type o with bound
B if we have the estimate

||T*j(fl7 -"7./;'717]((.)7./;417 ’f;”)||L]/(]7“f)’w(Xj,yj) <B H ||ﬁ||L|/“i‘l(Xi“ui)
0<i<m
i#]
for all simple functions f;. In view of duality, if o is a good index, then the choice of
the index j above is irrelevant.
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2. The interpolation theorem

We have the following interpolation theorem for restricted weak-type estimates,
inspired by [11]:

Theorem 1. Let o'V, ..., aN) be tuples for some N > 1, and let o be a good tuple such
that o= 010V + - 4+ Oyo™) | where 0<0,<1 for all 1<s<N and 0; + --- + 0y = 1.

Suppose that A is of restricted weak-type o) with bound By > 0 for all 1<s<N.
Then A is of restricted weak-type o with bound C H?]:] B where C > 0 is a constant
depending on oV, ... .a™ 0, ..., 0y.

Proof. Since o is a good tuple, it suffices by duality to prove the multilinear form
estimate

N m
G, ...,fm>|<C(H Bf‘) | § .

s=1 i=0

We will let the constant C vary from line to line. For 1 <p< oo, the unit ball of
L' (X;, ;) is contained in a constant multiple of the convex hull of the normalized

characteristic functions ,u,-(E)l/”xE (see e.g. [12]) it suffices to prove the above
estimate for characteristic functions:

N m
|A(XE07 --~aXEm)|<C<H B%) H/Ji(Ez‘)ai-
s=1 i=0

We may of course assume that all the E; have positive finite measure. Let 4 be the
best constant such that

m

N
A2y ""XEm)KA(HB?S) [T ()™ (1)
pult py

for all such E;; by our technical assumption on the kernel K we see that A4 is finite.
Our task is to show that A< C.

Let ¢ > 0 be chosen later. We may find Ey, ..., E,, of positive finite measure such
that

|A(XE0a --~,XEm)‘>(A_8)Q7 (2)

where we use 0 < Q< oo to denote the quantity

N m N m s Os
0~ (H st) [T w(Ey = H(BSH ui<Ei>“5’>) .
1 i=0 i

§= s=1
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Fix Ey, ..., E,. From the definition of Q we see that there exists 1 <sy< N such that

m ¢
{0

B, [ w(E)™" <0 G)
i=0

Fix this s, and let j be the bad index of a(®). Let F be the function

— T, , , ,
F=T (/CEla"'7/CEJ-717XE07/(EJ-+1’"'a/{Em)'

Since A is of restricted weak-type o) with bound By,, we have from (3) that

(s0) _y0)
IFN oo, <Biy [T mE)"" <Om(E)™ @
L 7T (Xuy) 0<i<m
i#j

In particular, if we define the set

lfa(.‘yo) —
Ej = {xeE: [F(x)|>2'" o (E)™'} )

then (4) implies that

By construction of E; we have
l—oc(fv“)
15 () F ;) dpy (x7)| <275

or equivalently that

|A(XE07 ---aXEj,pXE,\E]’.aXEjH, ---7XE,,,)‘<CQ~

On the other hand, from (1) and (6) we have

|A(XE07 -'~7XE]-_1uXEj’,7XE]-+17 aXEm)|<27a/AQ

Adding the two estimates and using (2) we obtain CQ + 2% A0 < (A4 — ¢)Q. Since o
is good, we have «; > 0. The claim 4 <C then follows by choosing ¢ sufficiently
small. O

From the multilinear Marcinkiewicz interpolation theorem (see e¢.g. Theorem 4.6
of [4]) we can obtain strong-type estimates at a good tuple « if we know restricted
weak-type estimates for all tuples in a neighborhood of .. From this and the previous
theorem we obtain

Corollary 1. Let o'V, ..., a™) be tuples for some N > 1, and let « be a good tuple in the
interior of the convex hull of oV, ..., a™N). Suppose that A is of restricted weak-type %)
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with bound B > 0 for all 1 <s<N. Then A is of strong-type o. with bound CB, where
C > 0 is a constant depending on o,V ... o™,

By interpolating this result with the restricted weak-type estimates on the
individual T+, one can obtain some strong-type estimates for 7* mapping onto
spaces L”(Xj, i;) where p is possibly less than or equal to 1. By duality one can thus
get some estimates where some of the functions are in L*. However, it is still an
open question whether one can get the entire interior of the convex hull of
oD o) this way.?

3. Applications

We now pass to three applications. The first application is to reprove an old result
of Wolff [14]: if T is a linear operator such that 7 and its adjoint 7% both map L' to
L“*, then T is bounded on L” for all 1<p< oo (assuming that 7 can be
approximated by truncated kernels as mentioned in the introduction). Indeed, in this
case A is of restricted weak-type (1,0) and (0, 1), and hence of strong-type (1/p, 1/p)
for all 1 <p< oo by Corollary 1.

The next application involves the multilinear Calderon—-Zygmund singular integral
operators on R” x --- x R" = (R")" defined by

e—0

T(fi, ... fm)(x0) == lim Zj.k — /K(xo,xl, ey Xm)
X f1(x1) oo fon (X)) dxy ... dXpy,

where |K(¥)] < C(X0k_o v — /)™, [VK()| < C(0y v — )™ and % =
(x0, X1, ..., Xm). These integrals have been extensively studied by Coifman and Meyer
[1-3] and recently by Grafakos and Torres [5]. It was shown in [5] and also in Kenig
and Stein [7] (who considered the case n = 1, m = 2) that if such operators map

LN x ... x LI into L?* for only one m-tuple of indices, then they must map
L' x .- x L' into L'™> Since the adjoints of these operators satisfy similar
boundedness properties, we see that the corresponding form A is of restricted weak-
type (1 —m, 1, ..., 1), and similarly for permutations. It then follows* from Corollary
1 that T maps L' x --- x LP» into L” for all m-tuples of indices with’ l<pi<o©

3In [11] this was achieved, but only after strengthening the hypothesis of restricted weak-type to that of
“positive type”. Essentially, this requires the set Ej’ defined in (5) to be stable if one replaces the
characteristic functions yg, with arbitrary bounded functions on E;.

4Strictly speaking, we have to first fix ¢, and truncate the kernel K to a compact set, before applying the
theorem, and then take limits at the end. We leave the details of this standard argument to the reader. A
similar approximation technique can be applied for the bilinear Hilbert transform below.

>The convex hull of the permutations of (1 — 1,1, ..., 1) is the tetrahedron of points (xy, ..., X,,) with
X0+ - +x, =1 and x; <1 for all 0<i<m, so in particular the points (1/py, ..., 1/pn) described above
fall into this category.
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with pil—i— +[%m = % and p > 1. The condition p > 1 can be removed by further

interpolation with the L' x --- x L' > L'/™ estimate. This argument simplifies the
interpolation proof used in [3].
Our third application involves the bilinear Hilbert transform H, s defined by

H,3(f,g9)(x) =lim f(x—at)g(x — pr) ?, xeR. (7)

e—0 ES

The proof of boundedness of H,; from L? x L? into L"* (for example, see [8]) is
technically simpler than that of L1 x L?2 into L” when 2<py, p>,p’ < oo given in [9].

Since the adjoints of the operators H, s are H;[]; =H_,5,and H;; = H,_p_p which

are “‘essentially” the same operators, we can use the single estimate L? x L?— L1®
for all of these operators to obtain the results in [9], since the corresponding form A
is then of restricted weak-type (0,1/2,1/2), (1/2,0,1/2), and (1/2,1/2,0). (See also
the similar argument in [11] as well as the earlier argument in [13].)

The operator in (7) is in fact bounded in the larger range 1 <p;,pa< o0, p > 2/3
and similarly for adjoints, see [10]. The interpolation theorem given here allows for a
slight simplification in the arguments in that paper (cf. [11]), although one cannot
deduce all these estimates solely from the L? x L?— L® estimate.
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