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Abstract

Multilinear interpolation is a powerful tool used in obtaining strong-type boundedness for a

variety of operators assuming only a finite set of restricted weak-type estimates. A typical

situation occurs when one knows that a multilinear operator satisfies a weak Lq estimate for a

single index q (which may be less than one) and that all the adjoints of the multilinear operator

are of similar nature, and thus they also satisfy the same weak Lq estimate. Under this

assumption, in this note we give a general multilinear interpolation theorem which allows one

to obtain strong-type boundedness for the operator (and all of its adjoints) for a large set of

exponents. The key point in the applications we discuss is that the interpolation theorem can

handle the case qp1: When q > 1; weak Lq has a predual, and such strong-type boundedness

can be easily obtained by duality and multilinear interpolation (cf. Interpolation Spaces,

An Introduction, Springer, New York, 1976; Math. Ann. 319 (2001) 151; in: Function Spaces

and Applications (Lund, 1986), Lecture Notes in Mathematics, Vol. 1302, Springer, Berlin,

New York, 1988; J. Amer. Math. Soc. 15 (2002) 469; Proc. Amer. Math. Soc. 21 (1969) 441).
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1. Multilinear operators

We begin by setting up some notation for multilinear operators. Let mX1 be an
integer. We suppose that for 0pjpm; ðXj; mjÞ are measure spaces endowed with

positive measures mj : We assume that T is an m-linear operator of the form

Tðf1;y; fmÞðx0Þ :¼
Z

?
Z

Kðx0;y; xmÞ
Ym
i¼1

fiðxiÞ dmiðxiÞ;

where K is a complex-valued locally integrable function on X0 �?� Xm and fj are

simple functions on Xj: We shall make the technical assumption that K is bounded

and is supported on a product set Y0 �?� Ym where each YjDXj has finite

measure. Of course, most interesting operators (e.g. multilinear singular integral
operators) do not obey this condition, but in practice one can truncate and/or
mollify the kernel of a singular integral to obey this condition, apply the multilinear
interpolation theorem to the truncated operator, and use a standard limiting
argument to recover estimates for the untruncated operator.
One can rewrite T more symmetrically as an ðm þ 1Þ-linear form L defined by

Lðf0; f1;y; fmÞ :¼
Z

?
Z

Kðx0;y; xmÞ
Ym
i¼0

fiðxiÞ dmiðxiÞ:

One can then define the m adjoints T * j of T for 0pjpm by duality as

Z
fjðxjÞT * jðf1;y; fj�1; f0; fjþ1;y; fmÞðxjÞ dmjðxjÞ :¼ Lðf0; f1;y; fmÞ:

Observe that T ¼ T *0:
We are interested in the mapping properties of T from the product of spaces

Lp1ðX1; m1Þ �?� LpmðXm; mmÞ into Lp0ðX0; m0Þ for various exponents pj; and more

generally for the adjoints T * j of T : Actually, it will be more convenient to work with
the ðm þ 1Þ-linear form L; and with the tuple of reciprocals ð1=p0

0; 1=p1;y; 1=pmÞ
instead of the exponents pj directly. (Here we adopt the usual convention that p0 is
defined by 1=p0 þ 1=p :¼ 1 even when 0opo1; this notation is taken from Hardy
et al. [6].)
Recall the definition of the weak Lebesgue space Lp;NðXi; miÞ for 0opoN by

jj f jjLp;NðXi ;miÞ :¼ sup
l>0

lmiðfxiAXi : jf ðxiÞjXlgÞ1=p:
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We also define LN;N ¼ LN: If 1opoN; we define the restricted Lebesgue space

Lp;1ðXi; miÞ by duality as

jj f jjLp;1ðXi ;miÞ

:¼ sup

Z
f ðxiÞgðxiÞ dmiðxiÞ

����
���� : gALp;NðXi; miÞ; jjgjjLp;NðXi ;miÞp1

� �
:

We also define L1;1 ¼ L1: This definition is equivalent to the other standard

definitions of Lp;1ðXi; miÞ up to a constant depending on p:

Definition 1. Define a tuple to be a collection of m þ 1 numbers a ¼ ða0;y; amÞ such
that �Noaip1 for all 0pipm; such that a0 þ?þ am ¼ 1; and such that at most
one of the ai is non-positive. If for all jAf0; 1; 2;y;mg we have 0oajo1; we say that

the tuple a is good. Otherwise there is exactly one ai such that aip0 and we say that
the tuple a is bad. The smallest number j0 for which the min0pjpm aj is attained for a

tuple a is called the bad index of the tuple.

If a is a good tuple and B > 0; we say that L is of strong-type a with bound B if we
have the multilinear form estimate

jLðf0;y; fmÞjpB
Ym
i¼0

jj fijjL1=ai ðXi ;miÞ

for all simple functions f0;y; fm: By duality, this is equivalent to the multilinear
operator estimate

jjTðf1;y; fmÞjjL1=ð1�a0ÞðX0;m0ÞpB
Ym
i¼1

jj fijjL1=ai ðXi ;miÞ

or more generally

jjT * jðf1; fj�1; f0; fjþ1;y; fmÞjjL1=ð1�aj ÞðXj ;mjÞ
pB

Y
0pipm

iaj

jj fijjL1=ai ðXi ;miÞ

for 0pjpm:
If a is a tuple with bad index j; we say that L is of restricted weak-type a with bound

B if we have the estimate

jjT * jðf1;y; fj�1; f0; fjþ1;y; fmÞjjL1=ð1�aj Þ;NðXj ;mjÞ
pB

Y
0pipm

iaj

jj fijjL1=ai ;1ðXi ;miÞ

for all simple functions fi: In view of duality, if a is a good index, then the choice of
the index j above is irrelevant.

L. Grafakos, T. Tao / Journal of Functional Analysis 199 (2003) 379–385 381



2. The interpolation theorem

We have the following interpolation theorem for restricted weak-type estimates,
inspired by [11]:

Theorem 1. Let að1Þ;y; aðNÞ be tuples for some N > 1; and let a be a good tuple such

that a ¼ y1að1Þ þ?þ yNaðNÞ; where 0pysp1 for all 1pspN and y1 þ?þ yN ¼ 1:

Suppose that L is of restricted weak-type aðsÞ with bound Bs > 0 for all 1pspN:

Then L is of restricted weak-type a with bound C
QN

s¼1 Bys
s ; where C > 0 is a constant

depending on að1Þ;y; aðNÞ; y1;y; yN :

Proof. Since a is a good tuple, it suffices by duality to prove the multilinear form
estimate

jLðf0;y; fmÞjpC
YN
s¼1

Bys
s

 !Ym
i¼0

jj fijjL1=ai ;1ðXi ;miÞ:

We will let the constant C vary from line to line. For 1opoN; the unit ball of

Lp;1ðXi; miÞ is contained in a constant multiple of the convex hull of the normalized

characteristic functions miðEÞ1=pwE (see e.g. [12]) it suffices to prove the above
estimate for characteristic functions:

jLðwE0
;y; wEm

ÞjpC
YN
s¼1

Bys
s

 !Ym
i¼0

miðEiÞai :

We may of course assume that all the Ei have positive finite measure. Let A be the
best constant such that

jLðwE0
;y; wEm

ÞjpA
YN
s¼1

Bys
s

 !Ym
i¼0

miðEiÞai ð1Þ

for all such Ej ; by our technical assumption on the kernel K we see that A is finite.

Our task is to show that ApC:
Let e > 0 be chosen later. We may find E0;y;Em of positive finite measure such

that

jLðwE0
;y; wEm

ÞjXðA � eÞQ; ð2Þ

where we use 0oQoN to denote the quantity

Q :¼
YN
s¼1

Bys
s

 !Ym
i¼0

miðEiÞai ¼
YN
s¼1

Bs

Ym
i¼0

miðEiÞa
ðsÞ
i

 !ys

:
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Fix E0;y;Em: From the definition of Q we see that there exists 1ps0pN such that

Bs0

Ym
i¼0

miðEiÞa
ðs0Þ
i pQ: ð3Þ

Fix this s0; and let j be the bad index of aðs0Þ: Let F be the function

F :¼ T * jðwE1
;y; wEj�1 ; wE0

; wEjþ1 ;y; wEm
Þ:

Since L is of restricted weak-type aðs0Þ with bound Bs0 ; we have from (3) that

jjF jj
L
1=ð1�a

ðs0Þ
j

Þ;NðXj ;mjÞ
pBs0

Y
0pipm

iaj

miðEiÞa
ðs0Þ
i pQmjðEjÞ�aðs0Þ

j : ð4Þ

In particular, if we define the set

E0
j :¼ fxjAEj : jFðxjÞjX2

1�aðs0Þ
j QmjðEjÞ�1g ð5Þ

then (4) implies that

mjðE0
jÞp1

2
mjðEjÞ: ð6Þ

By construction of E0
j we haveZ

wEj \E
0
j
ðxjÞFðxjÞ dmjðxjÞ

����
����p2

1�aðs0Þ
j Q

or equivalently that

jLðwE0
;y; wEj�1 ; wEj \E

0
j
; wEjþ1 ;y; wEm

ÞjpCQ:

On the other hand, from (1) and (6) we have

jLðwE0
;y; wEj�1 ; wE0

j
; wEjþ1 ;y; wEm

Þjp2�aj AQ:

Adding the two estimates and using (2) we obtain CQ þ 2�aj AQpðA � eÞQ: Since a
is good, we have aj > 0: The claim AoC then follows by choosing e sufficiently

small. &

From the multilinear Marcinkiewicz interpolation theorem (see e.g. Theorem 4.6
of [4]) we can obtain strong-type estimates at a good tuple a if we know restricted
weak-type estimates for all tuples in a neighborhood of a: From this and the previous
theorem we obtain

Corollary 1. Let að1Þ;y; aðNÞ be tuples for some N > 1; and let a be a good tuple in the

interior of the convex hull of að1Þ;y; aðNÞ: Suppose that L is of restricted weak-type aðsÞ
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with bound B > 0 for all 1pspN: Then L is of strong-type a with bound CB; where

C > 0 is a constant depending on a; að1Þ;y; aðNÞ:

By interpolating this result with the restricted weak-type estimates on the

individual T * j; one can obtain some strong-type estimates for T * j mapping onto
spaces LpðXj; mjÞ where p is possibly less than or equal to 1. By duality one can thus

get some estimates where some of the functions are in LN: However, it is still an
open question whether one can get the entire interior of the convex hull of

að1Þ;y; aðNÞ this way.3

3. Applications

We now pass to three applications. The first application is to reprove an old result

of Wolff [14]: if T is a linear operator such that T and its adjoint Tn both map L1 to

L1;N; then T is bounded on Lp for all 1opoN (assuming that T can be
approximated by truncated kernels as mentioned in the introduction). Indeed, in this
case L is of restricted weak-type ð1; 0Þ and ð0; 1Þ; and hence of strong-type ð1=p; 1=p0Þ
for all 1opoN by Corollary 1.
The next application involves the multilinear Calderón–Zygmund singular integral

operators on Rn �?� Rn ¼ ðRnÞm defined by

Tðf1;y; fmÞðx0Þ :¼ lim
e-0

Z
P

j;k
jxk�xj jXe

?
Z

Kðx0; x1;y; xmÞ

� f1ðx1ÞyfmðxmÞ dx1ydxm;

where jKð~xxÞjpCð
Pm

j;k¼0 jxk � xjjÞ�nm; jrKð~xxÞjpCð
Pm

j;k¼0 jxk � xjjÞ�nm�1; and ~xx ¼
ðx0; x1;y; xmÞ: These integrals have been extensively studied by Coifman and Meyer
[1–3] and recently by Grafakos and Torres [5]. It was shown in [5] and also in Kenig
and Stein [7] (who considered the case n ¼ 1; m ¼ 2) that if such operators map
Lq1 �?� Lqm into Lq;N for only one m-tuple of indices, then they must map

L1 �?� L1 into L1=m;N: Since the adjoints of these operators satisfy similar
boundedness properties, we see that the corresponding form L is of restricted weak-
type ð1� m; 1;y; 1Þ; and similarly for permutations. It then follows4 from Corollary
1 that T maps Lp1 �?� Lpm into Lp for all m-tuples of indices with5 1opjoN

3 In [11] this was achieved, but only after strengthening the hypothesis of restricted weak-type to that of

‘‘positive type’’. Essentially, this requires the set E0
j defined in (5) to be stable if one replaces the

characteristic functions wEi
with arbitrary bounded functions on Ei :

4Strictly speaking, we have to first fix e; and truncate the kernel K to a compact set, before applying the

theorem, and then take limits at the end. We leave the details of this standard argument to the reader. A

similar approximation technique can be applied for the bilinear Hilbert transform below.
5The convex hull of the permutations of ð1� m; 1;y; 1Þ is the tetrahedron of points ðx0;y;xmÞ with

x0 þ?þ xm ¼ 1 and xip1 for all 0pipm; so in particular the points ð1=p1;y; 1=pmÞ described above

fall into this category.
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with 1
p1
þ?þ 1

pm
¼ 1

p
and p > 1: The condition p > 1 can be removed by further

interpolation with the L1 �?� L1-L1=m estimate. This argument simplifies the
interpolation proof used in [5].
Our third application involves the bilinear Hilbert transform Ha;b defined by

Ha;bðf ; gÞðxÞ ¼ lim
e-0

Z
jtjXe

f ðx � atÞgðx � btÞ dt

t
; xAR: ð7Þ

The proof of boundedness of Ha;b from L2 � L2 into L1;N (for example, see [8]) is

technically simpler than that of Lp1 � Lp2 into Lp when 2op1; p2; p0oN given in [9].

Since the adjoints of the operators Ha;b are H *1

a;b ¼ H�a;b�a and H *2

a;b ¼ Ha�b;�b which

are ‘‘essentially’’ the same operators, we can use the single estimate L2 � L2-L1;N

for all of these operators to obtain the results in [9], since the corresponding form L
is then of restricted weak-type ð0; 1=2; 1=2Þ; ð1=2; 0; 1=2Þ; and ð1=2; 1=2; 0Þ: (See also
the similar argument in [11] as well as the earlier argument in [13].)
The operator in (7) is in fact bounded in the larger range 1op1; p2oN; p > 2=3

and similarly for adjoints, see [10]. The interpolation theorem given here allows for a
slight simplification in the arguments in that paper (cf. [11]), although one cannot

deduce all these estimates solely from the L2 � L2-L1;N estimate.
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