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Abstract

We give a set of only two tiles in E
n for each each n � 3; these sets

of tiles admit only non-periodic tilings in E
n . The construction is based

on similarities of the cubic lattice; a two dimensional analogue of the
construction can be found in [6].

Figure 1: A pair of aperiodic tiles in E3

We give a relatively simple construction of an aperiodic pair of tiles in En ,
n � 3. These tiles do tile En , but must recreate a certain non-periodic structure
based on similarities of the cubic lattice. These sets of tiles only admit non-
periodic tilings| that is tilings that are invariant under no in�nite-cyclic
group of isometries|, and thus we say these are aperiodic sets of tiles.

Additionally, the number of translation classes required is very small. The
I tile occurs in only n2n�1 orientations; the L tile in only 2n orientations.

A related aperiodic pair of two-dimensional tiles is given in [6]. The construc-
tions di�er in some key ways, however: the construction in Section 2 certainly
requires at least three coordinates. Here and in [6] the outlines of the proof of
aperiodicity are roughly similar, but the two-dimensional tiles allow many more
con�gurations than their more rigid higher dimensional analoogues. Strangely
then, the higher dimensional tiles are in some ways simpler to work with.

The tiles here and in [6] recreate a particular substitution tiling in En , a
generalization of the well known L-tiling or \chair" tiling, used to construct the
trilobite and cross.
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Thus in some ways this result is superceded by [5], in which we show every
substitution tiling in En , n � 2 can be enforced by a matching rule tiling.

However the following construction is vastly simpler than an application of
the algorithm in [5]. In particular we establish that as few as two tiles are
su�cient to force aperiodicity in En .

These aperiodic sets of tiles are among the �rst explicitly worked out ex-
amples in higher dimensions. Very recently collections of aperiodic tiles in E3
(which clearly generalize to En ) were given by K. Culik and J. Kari [2], and by
P. Schmitt [9], each by very di�erent methods. 2

We should add that the author has circulated di�erent versions of the fol-
lowing construction for several years. In the (completely superceded and never
to be published) \An aperiodic tiling in En for each n � 2" (1995), we gave a
set of roughly 4n tiles; in the revised and renamed \An aperiodic set of n tiles in
E
n for all n � 2"(1997), we were able to reduce the number of tiles drastically,

but the construction was still complex and hard to understand. (The original
tiles made wonderful illustrations; alas, these had to be discarded in the �nal
version!)

Some readers may object that one of our tiles has a disconnected interior.
In section 4 we discuss variations on the construction; in particular, in E3 , two
tiles with connected interior will su�ce. In En ; n > 3, we require three tiles with
connected interior, or two tiles with connected interior but an unusual type of
matching rule. In En , n > 3, n odd, we suspect that two tiles with connected
interiors and traditional matching rules will su�ce. All of this trouble is related
to Lemma 3.3. In any case, the author feels comfortable with the title of this
paper.

1 The n-dimensional L-tilings

Fix an integer n > 2; our setting is n-dimensional Euclidean space En with some
�xed orthonormal coordinate system. We will denote points as x = (x1; : : : ; xn)
or for c 2 R, c = (c; : : : ; c). Let H = [�1; 1]n be the n-dimensional hypercube.

Let R � Isom(En ) be the set of reections preserving the coordinate axes.
That is, we might denote the elements ofR as fr = (r1; r2; : : : ; rn) jrk 2 f+;�gg
and let R act by rx = (r1x1; r2x2; : : : ; rnxn) for x 2 En .

Let S be the symmetric group acting on f1; : : : ; ng. We can regard S as a
subset of Isom(En ) by taking, for � 2 S, �x = (x�(1); : : : ; x�(n)). Note that RS

2P. Schmitt has produced a single tile that produces only non-translational tilings of E3;
often it is said this is an aperiodic tile. However this example and others like it demonstrate
that non-periodicity really should be de�ned as not being invariant under any in�nite cyclic
group of isometries. We would prefer to call Schmitt's tile atranslational [1].
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is exactly the maximal subgroup of Isom(En ) that leaves H invariant.

Now we de�ne our n-dimensional L-tile L. Take

L :=
[
r2R

r 6=(+;+;::: ;+)

1

2
(H + r1)

A con�guration of L-tiles is expressed as
[
g2G

gL where G � Isom(En ) and

for any pair of g; g0 2 G, we have int(gL) \ int(g0L) = ; or gL = g0L. A tiling is
a con�guration covering all of En .

We can now de�ne the substitution map S on con�gurations of L-tiles as
follows:

S(L) := L

[
0
BB@ [

r2R
r 6=(�;�;::: ;�)

r(L� 1)

1
CCA

Note that the support of S(L) is 2L. For g 2 Isom(En ), there is a unique
g0 2 Isom(En ) satisfying g0(2x) = 2(gx). We de�ne:

S(gL) := g0S(L)

S(
[
g2G

gL) :=
[
g2G

S(gL)

De�ne, for all k 2 f0; 1; : : :g, a k-level supertile to be any gSk(L); g 2
Isom(En ).

We should illustrate the the construction: The 2-dimensional L-tile can be
viewed as a quartered square with one quadrant removed [6]. We might see the
substitution map S on L as follows: each of the three remaining quadrants is
quartered and its own central quadrant removed, forming three smaller, outer
L-tiles. The three left over quarter quadrants form a fourth, central L-tile.

Figure 2: Constructing L3
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Consider the n-dimensional analogue to this substitution. The n-cube is
halved on each edge, producing 2n smaller n-cubes. We remove one and let the
n-dimensional L-tile simply consist of 2n � 1 of these smaller cubes.

To divide the n-dimensional L-tile into 2n� 1 outer L-tiles and one central
L-tile we halve each smaller cube on each of its edges to produce 2n still smaller
n-cubes. The 2n � 1 of these not incident to the center of the original cube are
fashioned into one outer L-tile.

This leaves one left over cube from each of the 2n � 1 cubes in the original
L-tile. Together these form one central L- tile. The three dimensional L-tile is
illustrated in �gure 2.

We now de�ne the species of L-substitution tilings �(L; S): a tiling � is

in �(L; S) if and only if for any bounded con�guration
[
g2G

gL in � there exists

a g0 2 Isom(En ),k 2 N such that g0(
[
g2G

gL) is a con�guration in Sk(L). Note

that �(L; S) is non-empty! (This is a consequence of existence theorems in [7],
[3] and elsewhere.)

A useful interpretation is that a tiling � is in �(L; S) if and only if it \looks"
like \S1(Ln)" (though this expression is not well-de�ned!).

Lemma 1.1 For any tiling � in �(L; S), for any isometry h 2 Isom(En ) such
that h generates an in�nite cyclic group of isometries, g� 6= � .

Proof First, since �(L; S) 6= ;, for every � 2 �(L; S), k 2 f0; 1; : : :g, there
exists G � Isom(En ) such that � =

[
g2G

gSk(L) and that for all g; g0 2 G,

int(gSk(L)) \ int(g0Sk(L)) = ;.
We will prove the following claim by induction on k. The lemma will follow

quickly.

Claim: For any tiling � 2 �(L; S), k 2 f0; 1; : : :g, the set GL is unique. That
is, if � = [g2G(gS

k(L)) = [h2H(hS
k(L)) then for all g 2 G there is an h 2 H

with gSk(L) = hSk(L).

Clearly the claim is holds for k = 0, since � is a tiling.
Assume the claim holds for n = k, and there exist G;H such that � =

[g2G(gSk+1(L)) = [h2H(hSk+1(L)). Suppose there exists g 2 G such that
there is no h 2 H with gSk+1(L) = hSk+1(L). There must be a h 2 H such that
int(gSk+1(L)) \ int(hSk+1(L)) 6= ;.

Let g0; h0 2 Isom(En ) satisfy, for all x 2 En ,2kg0x = g2kx.
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Then since the claim holds for n = k, we have that the con�gurations S(L)
and (g0)�1h0S(L) are not the same yet both contain some tile g0L. This is a
contradiction as can easily be veri�ed.

The claim proves the lemma: let � 2 �(L; S), let h 2 Isom(En ), < h >�Z.
Note that h has no �xed points; in particular, there is an r 2 R such that for
all x 2 En , jx� hxj � r and such that there is an x0 2 En with jx0 � hx0j = r.
Now there exists a k 2 N such that 2k

p
n > r.

For any gSk
L in � then hgSk

L does not coincide with with gSk
L but must

intersect the interior of gSk
L. By the claim, this con�guration hgSk

L cannot
lie in � and � is not invariant under h.

The following lemma will prove useful. We will sketch the inductive proof,
which is not hard to verify in detail.

Lemma 1.2 Let hgL; hL, h; g 2 Isom(En ) be a distinct pair of tiles in Sk(L).
Then if hgL and hL meet on some n � 1 dimensional set, gL = g0L where g0 is
one of the following forms:

(i) g0(x) = (�(�;+; : : : ;+))x+r�(2; 0; : : : ; 0) for some � 2 S, r 2 f+1;�1g;
(that is g0 is a reection across one of the planes xi = r).

(ii) g0(x) = (�(+;�; : : : ;�))x + �(2; 0; : : : ; 0) (or is the inverse of such a
map).

(iii) g0(x) = rx+1 for some r 2 R�f(�; : : : ;�)g (or is the inverse of such
a map).

The pairs of tiles in �gure 3 are all of the form hL, hg0L where g0 is of type
(i), (ii) or (iii) as indicated.

Figure 3: Typical pairs of adjacent L3-tiles in Sk(L3).

Proof We show this by induction. If hgL; hL are distinct tiles in S(L) it is
easy to verify that g0 is of forms (i) or (iii). In the inductive step, let hgL; hL
be distinct tiles in Sk(L). If there exists h0 2 Isom(En ) such that hgL; hL are
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distinct tiles in h0Sk�1(L) � Sk(L), we are done. If hgL; hL do not intersect
on an n � 1 dimensional set, then we are done. The only remaining case is
that there exist h1; h2 such that h1S(L); h(L) are distinct supertiles in (distinct
k � 1-level supertiles in) Sk(L) that intersect on an n � 1 dimensional set with
hgL a tile in h1S(L) and gL a tile in h2S(L).

Then by the inductive hypotheses, there exists a g00 of one of the forms given
in the lemma such that h�11 h2S(L) = g00S(L). It is not hard to verify then that
composing the possible g00 with the maps given in the de�nition of S(L) again
produces a map of the appropriate form, and we are done. (More speci�cally,
if g00 is of type (i), g

0 will be of type (i); if g00 is of type (iii), g
0 will be of type

(ii) or (iii); and if g00 is of type (ii), g
0 will be of type (i).

2 The aperiodic tiles

We now contruct new tiles and markings that only admit tilings that replicate
the structure of �(L; S).

We �rst (�gure 5) let

I := fx 2 En j jx1j � 1; jxi6=1j � 1

4
; x1g

.

Let X be the support of

X :=
[
�2x

�I

(that is, X is not a con�guration of I-tiles but simply a set of points. See �gure
8)

And let (�gure 6)

L := X [ L � int

 [
r2R

(X+ r1)

!

On any image gL, g 2 Isom(En ), we'll denote the points gr1; r 2 R; r 6=
(+; : : : ;+) as outside corners of gL, and the point g0 as the inside corner

of gL. (Note that the outside corners of L are not actually points in L! Moreover,
the inside corner of L is actually in the interior of L.)

We must mark or otherwise modify the tiles to allow only certain local
con�gurations. It is not di�cult, modify our construction to use \bumps" and
\nicks" instead of markings (and do not have any matching rule beyond being
required to �t together). But markings make better pictures and so we will
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Figure 4: Constructing the markings on I and L

describe a method for coloring certain points on the boundary of the tiles; in
any tiling with these marked tiles, we will require that the colors match.

In the interest of precision, we will describe these markings through a series
of maps � from tiles and con�gurations to the colors black and white.

Let H0 = f0g� [�1; 1]n�1 = fx j x1 = 0; jxi6=1j � 1g be the n�1 dimensional
hypercube in En .

Let �H0 : H0 ! fwhite; blackg be any map such that (1) �H0 : @H0 = white;
(2) for any isometry g leaving H

0 invarient, �H0(H0) = �H0(gH0) if and only if
g(1) = 1. Thus, by (2), the marking is symmetrical around the diagonal of H0.
In �gure 4 the marking is drawn as an arrow.

We now mark I; we de�ne �I : I ! fwhite; blackg as follows: Let x 2 I.
If x =2 (14H

0
n�1 + v), v = (0; : : : ; 0;�1) let �I(x) := white. Otherwise let

�I(x) := �I(4(x� v)). (See �gure 4).

And next, we de�ne �L : L! fwhite; blackg: Let x 2 L. If x =2 RS(14H0n�1 +
(0; ::; 0; 1)), let �L(x) := white. Otherwise, we have x 2 g(14H

0
n�1 + (0; ::; 0; 1))

with g 2 S or g = (�;�; : : : ;�)h, h 2 S (Note we are using the symmetry of
H
0
n�1). Then �L(x) := �L(4(g

�1x� (0; : : : ; 0; 1))). Note that �L is well de�ned.
(See �gure 4).

Let T = fI; Lg, with markings de�ned by � as above. The marked tiles, for
n = 3, are illustrated in �gures 4, 5, and 6.

For any tile gA, g 2 Isom(En ), A 2 T , de�ne �gA(gA) :! fwhite; blackg as
follows: for any gx 2 gA, �gA(gx) := �A(x).

We can now phrase our matching rule M in precise set-theoretic terms:
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A tiling � of En by T satis�es M if and only if for all tiles gA; hB � � ,
g; h 2 Isom(En ), A;B 2 T , we have for all x 2 gA \ hB,

�gA(x) = �hB(x)

More simply, then, a tiling satis�esM if the colors match. Let �(T ;M) be the
set of all tilings by images of the tiles in T under Isom(En ), that satisfyM. Note
that for tilings and con�gurations satisfyingM, we can drop the subscripts and
simply discuss the coloring � : � ! fwhite; blackg.

We will assume tiles are always marked; thus when we say gA = hB, we
mean that the tiles not only coincide but that �gA = �hB.

Figure 5: Several views of I, two typical X-tiles

Lemma 2.1 In any tiling � 2 �(T ;M), every tile gI, g 2 Isom(En ) is in a
unique con�guration in � with support gX.

That is, the I-tiles can only �t together to form X-shaped con�gurations.
However, note that there are lots of ways these con�gurations can be marked|
this is why we don't simply take a marked X to be one of our tiles instead
of I. An X-tile will be any con�guration of I-tiles with support gX for some
g 2 Isom(En ), and the lemma thus states that every tiling in �(T ;M) can be
uniquely viewed as a tiling by X and L-tiles. We omit the proof.

Lemma 2.2 A con�guration hgL [ hL, h; g 2 Isom(En ), satis�es M if and
only if hgL and hL do not coincide on some black point or gL = g0L where
g0 2 Isom(En ) is one of:

(i) g0(x) = (�(�;+; : : : ;+))x+ �(1; 0; : : : ; 0) for some � 2 S; (that is g0 is
a reection across one of the planes xi = 1)

or (ii) g0(x) = (�(+;�; : : : ;�))x + �(2; 0; : : : ; 0).

In other words, if two L-tiles meet at a black point, they can only meet in
one of the two ways (up to Isom(En )) described in the lemma. Note that these
two forms of g0 are the forms (i) and (ii) of Lemma 1.2. The lemma can be
easily veri�ed and proof is omitted.
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Figure 6: Several views of L

Lemma 2.3 A con�guration hgL[hL, h; g 2 Isom(En ), satis�es M if and only
if h1

4
=2 hgL \ hL or gL = g0L where g0 2 Isom(En ) is:

(iii) g0(x) = rx+ 1 for some r 2 R � f(�; : : : ;�)g.
Moreover, for any g; h 2 Isom(En ), h1

4
=2 hgX \ hL

Note that the form of g0 is the form (iii) of Lemma 1.2. In other words, if one
L-tile meets the inside corner of another, it can only meet in one of 2n�1 ways.
Moreover, the inside corner of an L-tile cannot meet an X-tile. In particular,
the inside corner of any L-tile can only be incident to the outside corner of
some other L-tile. Again, the lemma can be easily veri�ed and proof is omitted.
Finally,

Lemma 2.4 A tiling hgL[ hL, h; g 2 Isom(En ), satis�es M if and only if hgL
and hL do not coincide on any point or they coincide at some black point or an
outside corner of one coincides with the inside corner of the other.

This is tedious and trivial to show; if the reader wishes, it is not hard to add
additional markings to guarantee this lemma holds.

3 Aperiodicity

We now state and prove the theorem.

Proposition 3.1 Every tiling in �(T ;M) is non-periodic, and �(T ;M) 6= ;.
That is, the marked tiles I and L are a pair of aperiodic tiles in En ; n � 3.
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We will prove the proposition in a series of lemmas. We �rst de�ne a map
f from congurations of L-tiles to con�gurations of L tiles as follows.

f(L) := L

8g 2 Isom(En ); f(gL) := gL

8G � Isom(En ); f(
[
g2G

gL) :=
[
g2G

gL

Figure 7: f(S1(L))

Lemma 3.2 For all k 2 N, f(Sk(L)) satis�es M

Proof This follows immediately from Lemmas 1.2,2.2,2.3.

Lemma 3.3 For all k 2 N, there is a con�guration of T satisfying M that is
a topological ball and contains f(Sk (L)) and has support contained in 2kL [ X

That is, we can �ll in the \holes" in f(Sk(L)) (using X-tiles). Note that
the last condition forces us to add all the images of X to the \inside" of the
con�guration.

Proof From the de�nitions of the tiles X and L it should be clear that unmarked
X-tiles can be inserted into f(Sk(L)) (in particular, note that the \holes" in
f(Sk (L)) lie on a subset of the vertices and edges of the cubic lattice). We must
only show that we can arrange for the markings of the X to match.
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But this is not much of a problem! It is not hard to verify that every edge
e of the cubic lattice, parallel to the vector �e(1; 0; : : : ; 0), in f(Sk(L)) satis�es
one of the following conditions:

(a) Either e lies on a straight chain of edges that begins and ends at markings
on a pair of L-tiles of the form hL+ x, (�e(�;+; : : : ;+))hL+ x+ �(k; 0; : : : ; 0)
where h 2 Isom(En ), x 2 En and k 2Z,

(b) or e lies on a chain of edges that begin at markings on some L-tile but
continues to the boundary of f(Sk(L)).

(c) e lies on a chain of edges that has both ends on the boundary of f(Sk (L))
(and, for n � 4, may or may not cut through the interior of f(Sk(L)))

In the �rst two cases, we say e is determined.
Now along the chains of determined edges, we are free to place I tiles. The

markings of these tiles are �xed by the marked centers of the L-tiles at the ends
of these chains.

We then �ll in the remaining edges with chains of I tiles with markings in
whatever orientation we please (along a chain the markings must be consistent).

Corollary 3.4 �(T ;M) is non-empty.

Proof The above lemma points out that every Sk(L) corresponds to a con�g-
uration of tiles in T satisfying M. It follows that for every � 2 �(L; S), f(� )
is a tiling by T satisfying M. And so since �(L; S) is non-empty, �(T ;M) is
non-empty.

Lemma 3.5 For any tiling � 2 �(T ;M), there exists an image of L in �

This can be veri�ed immediately, since X cannot tile by itself.

Theorem 3.6 For any � 2 �(T ;M), for any tile gL (g 2 Isom(En )) in � , for
any k 2 N there is a g0 2 Isom(En ) such that gL � g0f(Sk(L) � � . Moreover,
g0f(Sk (L) is unique.

Proof Let � 2 �(T ;M) and let gL be any tile in � . We will induct on k. When
k = 0, there is nothing to show! By the de�nition of f the statement holds.

So assume the statement is true for �xed k; that is, each L-tile lies in a
unique image of f(Sk(L). Now it can be veri�ed (consider Lemma 3.3) that if
two hf(Sk)(L) hgf(Sk)(L) intersect on a n � 1 dimensional set, they can only
meet in the following way:

Let g0 2 Isom(En ) be such that 2kg0(x) = g2k(x). Then g0 must be a type
(i), type (ii) or type (iii) isometry (cf Lemmas 2.2,2.3 and 2.4).

Thus, by \deation", it is really su�cient to show that if the theorem holds
for k = 0 then it holds for k = 1. But this is not too hard:
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Let us de�ne a central L-tile to be an L-tile that meets the inside corners
of 2n� 1 other L-tiles, one at each of its outside corners. Now we will show that
every L-tile is either a central L-tile, or meets the outside corner of a central
L-tile, and that moreover, the inside corner of a central L-tile cannot meet the
outside corner of some other central L-tile. Once we show this, we are done,
since every central L-tile thus lies in the center of some image of f(S(L)), and
every L-tile therefore lies in a unique image of f(S(L)).

So consider a particular tile gL in � .
First, if any outside corner gr1, r 6= �(+; : : : ;+) is incident to the inside

corner of an L-tile, we claim that gL must be a central L-tile. Note �rst that the
matching rules force every outside vertex on the same n�1-plane containing r1
to be incident to the inside corner of an L-tile (since the tile with inside corner at
gr1 precludes the positioning of a tile ghL with h a type (i) or type (ii) isometry
such that ghL meets gL on this n�1-plane.) Walking around outside vertices of
gL we then have that all other outside vertices of gL are incident to the inside
vertices of L-tiles, and in this case our original gL is central.3

So now we suppose that no outside corner gr1, r 6= �(+; : : : ;+) is incident
to the inside corner of an L-tile. We will show that the inside corner of gL is
incident to the outside corner of a central tile. The inside corner of gL is incident
to the outside corner of some tile hL; if this outside corner is not h(�1; : : : ;�1)
then we are done by the above paragraph. So suppose this outside corner is
h(�1; : : : ;�1) and thus hL = h0L where h0(x) = g((x) + 1). Now consider
any outside corner h0r1, r 6= �(+; : : : ;+); suppose h0h2L meets h0L on n � 1
dimensional set in the n�1-plane containing both h0(�1;�1; : : : ;�1) and h0r1.
Then h2 cannot be a type (i) or (ii) isometry and so the inside vertex of h2L
must meet an outside vertex of h0L. In this way, we can �nd that hL is a central
L-tile.

Finally, note that there is simply not enough room for the inside vertex of
one central L-tile to meet the outside corner of another central L-tile.

Proof of Proposition 3.1 The Proposition follows almost immediately from
the the above theorem. In particular, let � 2 �(T ;M). Then the theorem
implies that there exists a unique tiling � 0 2 �(L) such that f(� 0) � � (this
follows from the de�nition of �(L) and f). Since no isometry leaves � 0 invarient
and � 0 is unique, for all x 2 En , � + x cannot be equivalent to � . (For if so,
f(� 0 + x) is also a con�guration in � , but since � 0 is unique, � 0 + x = � 0, a
contradiction.)

4 Variations

We gave an aperiodic pair of tiles in En , n � 3, one of which had a disconnected
interior. In the interest of upholding tradition, we should see what we can

3Curiously, this is one way this proof fails when n = 2. See [6]
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accomplish if we require tiles to have connected interior. Our primary goal is to
keep the number of kinds of tiles as low as possible.

The problem stems from Lemma 3.3, in which we must �ll in the determined
chains of edges with I tiles. It can be noted that in fact, at every vertex of the
cubic lattice in an f(Sk(L)), at most one chain of edges is determined, and when
n = 3, exactly one chain is determined at each vertex.

Figure 8: Two marked X tiles

Thus, our �rst option is to de�ne two kinds of marked X tiles:
Let X1 be the X-tile left completely white. Let X2 be the X-tile marked through

the map �X : X! fblack;whiteg de�ned as:
for any x 2 X, if x =2 (14H

0
n�1 + v), v = (0; : : : ; 0;�1) let �I(x) := white.

Otherwise let �I(x) := �I(4(x � v)).
For n > 3 can take as our tiles T := fX1; X2; Lg, and for n = 3 take T :=

fX2; Lg. Then these will be aperiodic sets of tiles.

It would appear that another option is to mark every face of the X tile;
that is, perhaps there is a way to use a single marked con�guration of I tiles.
However, even in E3 is is easy to verify this cannot su�ce.

So our second option is to have the marked tile I0 de�ned as the portion of
I with �rst coordinate non-negative. A matching rule is then de�ned that these
I0-tiles must form marked I tiles. This author �nds this sort of matching rule
to be mathematically acceptable but esthetically unappealing.

Finally, it seems plausible to the author that for odd dimension n, certain
undetermined edges can be marked so that every vertex in f(Sk(L)) meets
exactly one marked chain of edges. If this is true then T := fX2; Lg is an
aperiodic set of tiles in En , n odd and greater than 2.

We would also like to repeat that our markings de�ned by � can be replaced
with simple bumps and nicks, in which case our only matching rule would be
that the tiles �t together.
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