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Abstract We construct the first known example of a strongly aperiodic set of tiles in the hyperbolic plane.
Such a set of tiles does admit a tiling, but admits no tiling with an infinite cyclic symmetry. This can also
be regarded as a “regular production system” [5] that does admit bi-infinite orbits, but admits no periodic
orbits.

1 Introduction

In any given fixed setting, such as tilings by polygonal tiles in the hyperbolic plane, we can examine
several related questions, discussed much more completely in [4]:

Is the “Completion Problem” undecidable? That is, is there an algorithm to decide, given a set
of tiles— a “protoset”— and some bounded configuration of copies of these tiles, whether the
configuration can be extended to a tiling of the entire space by copies of these tiles.

Is the “Domino Problem” undecidable? That is, is there an algorithm to decide, given a protoset,
whether the protoset admits a tiling of the space at all.

Is there a “weakly aperiodic” protoset? Such protosets do admit tilings, but no tiling with a compact
fundamental domain. However, they may admit tilings that have an infinite cyclic symmetry (a
period).

Is there a “strongly aperiodic” protoset? Such protosets admit tilings, but admit no tilings with even
an infinite cyclic symmetry. We can go further and ask for protosets admitting tilings but admitting
none with any non-trivial symmetry whatsoever.

A setting is “nice” if in any given tiling, there can be at most finitely many configurations of
any bounded size. So for example, requiring tiles to be combinatorial polygons in a metric space
is “nice”. In any given nice setting, if the Domino Problem is undecidable, then so too is the
Completion Problem, and there must exist a weakly aperiodic protoset.

However, weak aperiodicity is indeed weak; strong aperiodicity seems to fit many people’s im-
mediate sense of what aperiodicity should mean.

These problems were first studied in the Euclidean plane; Wang showed the Completion Problem
is undecidable in that setting [13], and Berger answered the other three problems affirmatively [1].
In that setting, weak and strong aperiodicity coincide, for any protoset admitting tiling with infinite
cyclic symmetry also admits a tiling with a compact fundamental domain (cf [6]). But in more
general settings this is not the case.

In the hyperbolic plane, R. Robinson showed the Completion Problem is undecidable in [12]. He
apparently spent some time attempting to show that the Domino Problem is undecidable, without
success. About the same time, Penrose gave a weakly aperiodic protosets in the hyperbolic plane
[10]; a very similar prototile is shown, in the upper half-plane model, in Figure 1. Note that the
tile does not admit a tiling with a compact fundamental domain; yet it does admit a tiling with a
period, an infinite cyclic symmetry. The tile is weakly but not strongly aperiodic.

As an aside, L. Sadun has pointed out that this example generalizes nicely; every symbolic
substitution system corresponds to a weakly aperiodic set of tiles; given such a system, the periodic
tilings admitted by the corresponding tiles precisely correspond to the periodic orbits in the space
of bi-infinite words with “floating decimal point”, under the substitution.

Since then, many further, but essentially similar, examples of weakly aperiodic protosets have
been found, by Block and Weinberger [2], Margulis and Mozes [8] and others. Mozes has given an
elegant construction of strongly aperiodic protosets in a large class of Lie groups [9].
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NSF award DMS-0072573 and by the Consejo Nacional de Ciencia y Tecnologia (Mexico).
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Figure 1: A tiling by a “weakly aperiodic” prototile in H2. Of the uncountable set of tilings admitted
by this prototile, countably many have an infinite cyclic symmetry, but no tiling by this prototile has a
symmetry with a compact fundamental domain [10].

However, the undecidability of the Domino Problem and the existence of a strongly aperiodic set
of tiles have remained open in the hyperbolic plane. Here we answer the latter; the former is still
unknown.

We can foliate Hn into parallel (meeting at the same point at infinity) horospherical leaves
isometric to En−1 and a transverse family of parallel geodesic leaves, each isometric to H2. As the
Domino Problem is undecidable in En≥2, it is not hard to show it is undecidable in Hn+1. Similarly,
once we have our construction of a strongly aperiodic protoset in H2, we can construct a strongly
aperiodic protoset in Hn≥3 .

Finally, in [5] we discuss “regular production systems”; these are a generalization of symbolic
substitution dynamical systems to a model more suitable for discussing tilings in general. These
regular production systems appear to be quite subtle. The construction here can be viewed as giving
a regular production system on which there do exist (uncountably many) bi-infinite orbits but there
exist no periodic orbits. This is in sharp contrast to symbolic substitution systems.

1.1 Acknowledgements

I would like to thank John H. Conway for many hours of discussion leading to this work, the Princeton
Mathematics Department for its hospitality during Fall 2000, and the Instituto de Matematicas de
la Universidad Autonomia Nacional de México for its hospitality throughout 2001.

2 Preliminaries

The construction is related to a construction due to J. Kari in the Euclidean plane [7]. The essential
idea is to emulate a fixed-point free map f acting on an interval of real numbers. Our tiles will
be decorated relatives of the tile in Figure 1. Rows in the tiling will somehow correspond to real
numbers. A row corresponding to a real number α will be able to fit above a row corresponding to
real number β if and only if f(α) = β. Consequently, since f is fixed-point free, no row can ever be
repeated.

There are of course a few complications, but this gives the essential idea.
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Throughout, we’ll make particular choices, for f , for the interval on which f acts, etc. None
of these is particularly critical and the construction can be generalized to give an infinite family of
relatively distinct prototiles.

2.1 The underlying non-periodic map on S1

For any real a, b with a < b let [[a, b]] = [a, b]/(a ∼ b) ∼= S1. We first discuss an automorphism f on
[[1, 2]]. Let

f(α) :=
4
3
α for α ∈ [1,

3
2
]

f(α) :=
2
3
α for α ∈ [

3
2
, 2]

Note that f is a well-defined bijection on [[1, 2]]. If we regard f as a map on [1, 2], then f is one-to-one
with the exception that f(1) = f(2), and well-defined except that f(3/2) = 1 and f(3/2) = 2. Here
is a trivial but very important lemma:

Lemma 1. For any n = 1, 2 . . . and any α ∈ [[1, 2]], fk(α) 6= α; that is, the action of f on [[1, 2]]
has no finite orbits.

Proof fn(α) = 2m/3nα for some m, n ≤ m ≤ 2n. If 2m/3nα = α, then α = 0 or m = n = 0. �

Lemma 2. Every α ∈ [[1, 2]] has a unique orbit {f i(α), i ∈ Z}. For every α ∈ [[1, 2]], this orbit is
dense in [[1, 2]].

Proof Each α lies in a unique bi-infinite orbit since f is a bijection.
Let addition act on [[0, 1]]. Since log2 3 is irrational, for any β ∈ [[0, 1]], the set {(β−n log2 3) | n ∈

Z} is dense in [[0, 1]]. Now note that log2 : [[1, 2]] → [[0, 1]] is a well defined homeomorphism. Let
α ∈ [[1, 2]]. For any n ∈ Z, there exists m ∈ Z such that fn(α) = 2m/3n α. Since fn(α) ∈ [[1, 2]]:

log2 fn(α) = m + log2 α− n log2 3 = log2 α− n log2 3

Consequently, the set {log2 fn(α)} is dense in [[0, 1]] and so {fn(α)} is dense in [[1, 2]]. �

2.2 Balanced sequences

We will be encoding real numbers in the interval [1, 2] as doubly-infinite sequences of 1’s and 2’s,
and the action of f as certain productions on these sequences. These productions will have to be
“expansive”, in order to correspond to tilings of the hyperbolic plane, which will lead to complica-
tions.

Consider any finite sequence ω = {ω1, . . . , ωn} of integers. The average ω of ω is simply

ω :=
1
n

n∑
1

ωi

Doubly infinite sequences ω = {ωn}Z ⊂ ZZ of integers rarely have any sort of well-defined average.
However, we can define:

A doubly infinite sequence ω of integers has average α with maximum imbalance N ∈ N if
and only if (a) for every m ∈ Z, n ∈ N, the sequence |{ωm, . . . ωn+m} − α| < N/n and (b) N is
the smallest natural number for which (a) holds. An infinite sequence is imbalanced if it has no
average.

A doubly infinite sequence ω is balanced, with average α if and only if ω has average α with
maximum imbalance 1. Trivially:
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Lemma 3. If ω is balanced with average α ∈ R, then each ωn ∈ {bαc, dαe}

Of course if α ∈ Z, bαc = dαe = α. From time to time we can simplify discussion if we take, for
any given doubly infinite sequence ω = {ωn} of reals:

Σ0ω = 0
For n > 0, Σnω =

∑n
i=1 ωi

For n < 0, Σnω = −
∑0

i=n+1 ωi

Note that for any n, positive, negative or zero, Σn−Σn−1 = ωn We now define, given any α and a
parameter t ∈ R, a doubly infinite sequence ω(α, t) ∈ ZZ. We’ll then show that sequences described
in this fashion are exactly the balanced sequences, with average α. For each n ∈ Z, let

ωn = ω(α, t)n = bnα + tc − b(n− 1)α + tc

For any α ∈ R, t ∈ R and k ∈ Z, note also that

ω(α, t) = ω(α, t + k)

so we may, as convenient, assume t ∈ [0, 1). Note that for all n (positive, negative or zero)

Σnω = bnα + tc (1)

There is a simple interpretation of ω(α, t): Consider the line in the Cartesian plane with slope α
and y-intercept t. Then consider the “closest staircase” beneath this line, that is, the path of edges
on the integer lattice that most closely approximates this line without exceeding it. Then at each
x-value n, ωn is the height of the riser, ω is the sequence of these heights, and Σnω is the cumulative
height of the staircase.

Lemma 4. For any α, t ∈ R, the sequence ω(α, t) is balanced.

Proof First, consider any n consecutive digits in any ω(α, t). The average of these digits is, for
some index m:

1
n

m+n∑
i=m+1

ωi =
1
n

(b(m + n)α + tc − bmα + tc)

Using the identity r − s− 1 < brc − bsc < r − s + 1 for any real r, s,

nα− 1
n

<
1
n

(b(m + n)α + tc − bmα + tc) <
nα + 1

n

and ∣∣∣∣ 1
n

(b(m + n)α + tc − bmα + tc)− α

∣∣∣∣ <
1
n

Therefore, any finite subsequence of length n has average within 1/n of α and the sequence is
balanced. �

Lemma 5. Conversely, given any balanced word ω, with average α, there is some t ∈ [0, 1) with
ω = ω(α, t).

Proof Let ω be balanced with average α. We now pin down the possible values of t: for each
m ∈ Z, briefly define

Im = {t ∈ [0, 1) | bmα + tc = Σmω}

These are the values of t so that Σmω = Σmω(α, t). All we need is a point in the intersection of all
these Im’s. A little manipulating of notation yields that each

Im = [Σmω −mα, Σmω −mα + 1) ∩ [0, 1)
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and in particular is a half-open interval. Suppose ∩Im = ∅; then since the Im are half-open intervals,
there is a disjoint pair Ii, Ij , i < j. But then the average of the sequence {ωi+1, . . . , ωj} is at least
1/(j − i) from α. So ∩Im 6= ∅. Let t be any value in this intersection and one sees ω = ω(α, t). �

Again though, by far most sequences, even with digits restricted to two consecutive integers, are
not balanced.

2.3 A map on balanced sequences

Our basic strategy is to encode each α ∈ [[1, 2]] as a balanced sequence in S := {1, 2}Z; we would
then like to define an expansive substitution system taking balanced sequences, with average α say,
to balanced sequences with average f(α). Unfortunately this does not seem possible. (In [7], the
substitution was not expansive and there were no difficulties.)

Here we give one method of substituting that almost achieves our goal. In the next section, we
will modify this method and produce a “regular production system” that will satisfy our needs. Our
discussion here will be informal, since we’ll have to redefine everything soon anyway. Take two sets
of sequences in S:

S1 = {ω | ∀n ∈ Z, if ωn = 2, then ωn+1 6= 2} ⊂ S

S2 = {ω | ∀n ∈ Z, if ωn = 1, then ωn+1 6= 1} ⊂ S

Any finite subsequence of a doubly infinite sequence in S1, S2 has average in [1, 3
2 ], [ 32 , 2]. And though

not every sequence in S1 ∪ S2 is balanced, every balanced sequence in S is in S1 ∪ S2. Informally,
define a substitution σ taking S1 ∪ S2 to S by the rules:

1 → 112 12 → 222222 for ω ∈ S1

2 → 112 12 → 111111 for ω ∈ S2

As each sequence in S1, (S2) can be uniquely partitioned into subsequences 1 and 12 (12 and 1),
these rules describe well-defined maps from S1 ∪ S2 to S (at least on finite subsequences— we have
to set some conventions for a proper definition of the action on infinite sequences).

Note that on finite sequences, these substitutions expand the length of the sequence by a factor
of 3 and if the average of the finite sequence is α, the average of the new sequence will be f(α).
For example 121112 → 222222 112 112 222222. The average of 121112 is 4

3 and the average of
222222112112222222 is 16

9 = f( 4
3 ).

The construction would be simpler if this map took balanced sequences to balanced sequences
(and even better, if balanced words themselves formed a regular language; see below). But alas this
is not the case. Consider, for example, an extreme example: . . . (1)122 . . . which is taken to the quite
imbalanced . . . (112)12222222 . . ..

Happily, however, balanced sequences are almost taken to balanced sequences, and this is enough
to make our construction work. In the example above, if we can just interchange a few 1’s and 2’s,
we can get the balanced sequence . . . (1212112)6 . . ., as shown in Figure 2. We will continue this
example below.

Figure 2: Rebalancing σ(11212))

This figure actually illustrates just about the worst possible case, an instance in which the
greatest number of pairs must be exchanged across a given spot. It turns out that if we are allowed
to interchange 1’s and 2’s across arbitrary distances, and as many pairs as we please, but at most
four pairs are interchanged across any given spot, we can balance the image under this map of any
balanced sequence ω.
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3 The Construction

In order to make our ideas precise, we define a “regular production system” that correctly encodes
the action of f on balanced sequences. We first pause for general definitions; in Section 3.2 we define
our system. In Section 3.3 we obtain the key Theorem 9. In Section 4 we then construct a set of
tiles in H2 that encode the regular production system and show that these are strongly aperiodic.

3.1 Regular production systems

We use [3] for standard definitions regarding languages. The following is taken from [5]. Let A be
any finite alphabet and L ⊂ A∗ be any regular language on A. Generally L will be regular; here we
take this to mean that L corresponds to the set of paths in some directed graph.

For any word W, let ||W|| be the length of W. We define the language L∞ ⊂ AZ of infinite words
to be sequences W ∈ AZ such that every finite subsequence W(i) . . . W(j) is a subword of some word
in L. In general, L∞ may be empty. However, if L is an infinite regular language, by the Pumping
Lemma (cf. any standard reference), then L∞ 6= ∅. Let ζ : AZ → AZ be the usual shift map,
(ζ(W))(i) = W(i− 1).

Given an infinite set {Vn}n∈Z ⊂ A∗ a word W ∈ AZ is the infinite concatonation . . . V−1V0V1 . . .
iff for all n W(an) . . . W(an+1 − 1) = Vn where an = Σn||Vi||. This definition coincides with what one
might expect.

A production relation R ⊂ (L × L) ∪ (L∞ × L∞) satisfies:

1. There is a finite set R0 ⊂ (A× L) of “replacement rules”, and R0 ⊂ R.

2. For any W, V ∈ L, (W, V) ∈ R if and only if there exists {Vi}||W|| ⊂ L with (W(i), Vi) ∈ R0 and
V = V1 . . . V||W||.

3. For any W, V ∈ L∞, (W, V) ∈ R if and only if there exist {Vi}Z ⊂ L and natural j, 0 ≤ j < ||V0||
such that for all i ∈ Z, (W(i), Vi) ∈ R0 and ζj(V) = . . . V−1V0V1 . . ..

For (W, V) ∈ R, we will write W→ V and say “W produces V”. Though the notation suggests that
the relation is a function, it is not: a given word may be related to one, several, or no other words.
A regular production system (A,L,R) is specfied by an alphabet A, regular language L on A
and production relation R on L ∪ L∞.

An orbit in a production system (A,L,R) is any set {(Wi, ji)}i∈Z ⊂ L∞ × N such that for all
i ∈ Z, (Wi, Wi+1) ∈ R, with shift ζji . An orbit is periodic if and only if there is some n ≥ 1 with
Wi = Wi+n, ji = ji+n for all i, and the period of such an orbit is the minimal such n.

3.2 A regular production system

We now consider the following regular production system. Let A = {a, b, c, . . . , x, y, z}. The lan-
guage L is given by the graphs

Note that L is the disjoint union of the sublanguages L1,L2,L3,L4 given by the left, left-middle,
right-middle and right components of the graph, respectively. So, for example, L1 = L∩{a, b, c, d}∗.
Let L12 = L1 ∪ L2. The labels 0, 1, . . . , 9 on the vertices will be used later.
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The 78 productions are

a, d→ ggh b, c→ hhh e, f→ ggg

g→ i, j, k, l, m, s, t, u, v i, j, k, l, m, w, x, y, z→ a, b, e

h→ m, o, p, q, r, w, x, y, z n, o, p, q, r, s, t, u, v→ c, d, f

Note that words in L12 produce only words in L3, which produce only words in L4, which in
turn produce only words in L12.

We define numerical values for words in L12 ∪ L3 by a map ∗; we set a = b = e = g = 1 and
c = d = f = h = 2. For a word W ∈ L12 ∪ L3, take W = {Wi} = ΣWi/||W||. We say word W is
balanced/imbalanced, etc., if and only if the sequence {Wi} is as well. Note words in L1, L2 have
averages in [1, 3/2], [3/2, 2] respectively.

A few examples would be helpful: The word abc, with average 4
3 produces only the word g2h7

with average 16
9 = f( 4

3 ). The word is produces bd and ef, but iso produces only efd. There is
tremendous flexibility in the productions of words in L3: gh already produces seventeen words. To
continue the example of Section 2.3:

The word W := a12bc, with average 15
14 , produces W1 := (ggh)12h6 with average 60

42 = f( 15
14 ). In

turn W1 produces 558,717,003,837 words! But among these we have

W2 := iswsjwsjojtxjtxtkpkkpkuyulyulqlvzlvzqypxwn (2)

which produces only W3 := (bcbcabc)6 which is balanced, with average 10
7 .

One should think of words in L∞1 as (hopefully) balanced words with average in [1, 3/2], words
in L∞2 as (hopefully) balanced words with average in [3/2, 2], words in L∞3 as the result of applying
the substitutions S1 and S2 described in Section 2.3, and words in L∞4 as somehow accounting for
the rebalancing that is required after applying the substitutions.

The proof of the following is trivial, but worth the reader’s verifying:

Lemma 6. Let W ∈ L12 have average α. If W produces W1 (in L3), W1 has average f(α). If in turn
W1 ∈ L3 produces W2 (in L4) which produces ω3 (in L12) with average α′, then |α′ − f(α)| ≤ 4/||W1||.

Finally, define a relation R3 ⊂ L∞12 × L∞12 as: (W, W′) ∈ R3 if and only if there are words W1 ∈
L3 ∪ L∞3 , W2 ∈ L∞4 with W producing W1 producing W2 producing W′.

3.3 Orbits in our production system

We now set out to show that there do exist orbits in our regular production system, but that there
exist no periodic orbits. In Section 4 we will then convert the system into a set of strongly aperiodic
tiles in H.

Lemma 7. For any ω(α, t), α ∈ [1, 2], there exists W ∈ L∞12 with {Wi} = ω; this W is unique unless
α = 3

2 .

Denote this W by W(α, t).

Proof If α ∈ [1, 3
2 ], the sequence ω(α, t) can be uniquely partitioned into sub-sequences {1} and

{1, 2}. Replace these with {a}, {b, c} to obtain the sequence of letters in W ∈ L∞1 . Similarly, if
α ∈ [ 32 , 2] we obtain a word W ∈ L∞2 . �

Lemma 8. For any α, t, we have (W(α, t), W(f(α), st)) ∈ R3, where s = 3f(α)/α = 2, 4.

Proof Let W3 = W(f(α), st). Now W0 = W(α, t) produces exactly one word W1 (up to choice of shift,
which we take to be trivial); W1 is in L∞3 . Let ωj = {Wj

i}, j = 0, 1, 3. We will show that ω1 is “close
to” ω3 by defining:

bn = Σnω3 − Σnω1

7



Claim: bn = 0, 1, 2, 3 or 4. Proof: Let N = bn/3c. From the definitions note that

sbαN + tc = Σ(3N)ω
1

and that
sbα(N + 1) + tc = Σ(3N+3)ω

1

For any x, a, b we have xbac+ (1−x)bbc ≤ xa + (1−x)b < xbac+ (1−x)bbc+ 1 since bac ≤ a <
bac+ 1. Consequently for any x:

(1− x)bαN + tc+ xbα(N + 1) + tc ≤ α(N + x) + t < (1− x)bαN + tc+ xbα(N + 1) + tc+ 1

Multiplying through by s we have

(1− x)Σ(3N)ω
1 + xΣ(3N+3)ω

1 ≤ sα(N + x) + st < (1− x)Σ(3N)ω
1 + xΣ(3N+3)ω

1 + 1

Observing that for x = 0, 1
3 , 2

3

Σ(3N+3x)ω
3 = bf(α)(3N + 3x) + stc = bsα(N + x) + stc

that
Σ(3N+3x)ω

1 = b(1− x)Σ(3N)ω
1 + xΣ(3N+3)ω

1c

and that if a ≤ b < a + n where n ∈ Z; then bac ≤ bbc ≤ bac+ n we now have:

0 ≤ bn = Σ(3N+3x)ω
3 − Σ(3N+3x)ω

1 ≤ s ≤ 4

and the claim is proven.

Claim: |bn − bn−1| ≤ 1. Proof: Recalling that ω3
n, ω1

n ∈ {1, 2}:

bn − b(n−1) = Σnω3 − Σnω1 − Σ(n−1)ω
3 + Σ(n−1)ω

1

= ω3
n − ω1

n

= −1, 0, 1

Now consider W2, defined by taking W2
n to be the unique letter in A produced by W1

n, producing
W3

n, describing the transition from state b(n−1) to bn. Such a letter exists by Claim 1, and W2 ∈ L∞4
by Claim 2. We now have that W0 → W1 → W2 → W3, or (W0, W3) ∈ R3. �

In particular, then:

Theorem 9. There exist (uncountably many) distinct orbits in L∞ under R. However, there exist
no periodic orbits in L∞ under R.

Proof Let {αn} be any orbit in S under f (There are uncountably many such orbits, even modulo
reindexing). Then {(W(αn, 0), 0)} is an orbit under R3 and consequently there exists a orbit in L∞
under R. (We have even more choices for {(W(αn, tn), kn)} parametrized by the choice of t0 ∈ [0, 1)
and the sequence of shifts {kn}.)

Now suppose there exists a periodic orbit {(Wn, kn)}; from the definition of the production, the
period must be a multiple of 3, say 3M . We may reindex so that W3n ∈ L∞12 for all n.

Consider {ωn} where ωn = {W3n
i }, and the sequence {∆n} where ∆n = 4

3 if W3n ∈ L∞1 and
∆n = 2

3 if W3n ∈ L∞2 . It follows that ∆n is periodic with period M . Let τ =
∏M−1

0 ∆n; of course
τ 6= 1. There is some L ∈ N so that τL < 1

2 or τL > 2.
Note that for any n, m, |∆n(ωn

0 . . . ωn
m)− (ωn+1

0 . . . ωn+1
3m )| ≤ 4/(3m) (as in Lemma 6). In partic-

ular, for any ε > 0, there is an N such that |τL(ω0
0 . . . ω0

N )−(ωLM
0 . . . ωLM

3LM N
)| < ε But then choosing

sufficiently small ε, we have ωLM
0 . . . ωLM

3LM N
/∈ [1, 2]. This is a contradiction. �
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The following stronger theorems shed some light on the structure of the tilings we will ultimately
produce, but are not needed for Proposition 12 and so we omit the proofs.

Theorem 10. In any orbit {Wn} ⊂ L∞12 under R3, the words Wn have well-defined averages Wn with
maximum local imbalance 8. Moreover Wn = f(Wn−1)

Also, nicely: for an orbit O = {Wn} ⊂ L∞12 under R3, define the sequence δ = δ(O) ∈ {1, 2}Z by
δn = i if and only if Wn ∈ L∞i . Then

Theorem 11. For any orbit {Wn} ⊂ L∞ under R, δ(O) is balanced with average log2 3. In particular,
δ(O) = ω(log2 3, W0).

4 The Tiles

Now consider the following set T twenty-six tiles, one for each letter of A, drawn in the upper-half
plane model of H2. All the tiles are bounded by horocycles above and below, and geodesics on the
sides, and so are drawn as Euclidean rectangles in the upper half-plane model. Our tiles will have
labeled edges and the matching rules will simply be the requirements that tiles sharing an edge have
matching labels on that edge. (Such rules can be encoded geometrically, as bumps-and-nicks, if the
reader chooses.) In Figure 3 we illustrate tiles corresponding to the example of Section 2.3 and
Equation 2.

Figure 3: A portion of a tiling, corresponding to the right end of the example of Section 2.3 and
Equation 2, by copies of tiles in T .

Let u, v, w be real parameters, u > 0, 1 < v < w < 3. Define “templates”— tiles T12, T3, T4

which we will soon decorate. Let T12 have vertices with complex coordinates wi, wi+u, wi+2u, wi+
3u, 3i + 3u, 3i; let T3 have vertices vi, vi + u, wi + u, wi; let T4 have vertices i, i + u, vi + u, vi.

Note that the geometry of these tiles forces any tiling consisting of copies of T12, T3, T4 to consist
of successive horocyclic layers of T12 tiles, then T3 tiles, then T4, then T12 again, etc.

We next label these templates: The tiles Ta, . . . , Tf will be decorated copies of T12; the tiles Tg, Th

will be decorated copies of T3; the tiles Ti, . . . , Tz will be decorated copies of T4.
The labels 0, 1, . . . , 9 will be used for the “vertical” edges of the tiles; these labels correspond to

the ten vertices of the graph describing L (Only the labels 0, . . . , 4 have numerical meaning): Each
letter λ ∈ A runs from a vertex i to a vertex j. Accordingly, the left edge Tλ is decorated with the
label i and the right edge with the label j.

The labels 1, 2 will be used for the “horizontal” edges of the tiles: For λ ∈ {a, . . . , f} label the
top edge λ and the bottom three edges with the labels W1, W2, W3 where λ → W1W2W3.

For λ = g, h, label both top and bottom edges of Tλ with the label λ.
For λ = i, . . . z, λ is produced by a unique letter, µ = g, h. Label the top edge of Tλ by µ. λ may

produce several letters ν but all have the same numerical value, with which we label the bottom
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edge.

All of this ensures that given any finite (infinite) horizontal strip S = {Tλn
} of tiles we may

define a corresponding word W(S) = {λn} ∈ A∗, (AZ). The construction assures that if S satisfies
the matching rules, W ∈ L(L∞), and conversely, for all W ∈ L, (L∞) there is a finite (infinite) strip
S with W = W(S). Moreover, a strip S1 and S2 can be fitted together, S1 “above” S2 if and only if
W(S1) produces W(S2). It follows that

Proposition 12. The set T = {Ta, . . . , Tz} is strongly aperiodic.

Proof From the construction, any tiling by T corresponds to an orbit (perhaps with some choice
in indexing) in (A,L,R), and conversely, any orbit corresponds to a tiling. Consequently, as there
exist orbits, there exists a tiling by T .

Consider any tiling X by tiles in T. No parabolic transformation ρ can leave X invariant since
for any ε > 0, there is a point x with 0 < |x − ρx| < ε. No hyperbolic transformation τ can
leave X invariant: Suppose not. Then τ must take horocyclic layers to horocyclic layers and leave
some geodesic invariant. Indexing our horocyclic strips so that the 0th tile in each strip meets this
geodesic, we thus produce a periodic orbit in (A,L,R), which cannot occur. �

As a final note, one may reduce the number of tiles in several ways. For example, the tiles Tb, Tc

always occur together and can be joined to form one tile. Similarly one might join Te and Tf, and
subsume Tg, Th into the other tiles. Less evidently, one may do away with Tr— that is, there are
orbits that make no use of the letters r (though every orbit does make use of each of the other
letters).
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