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Abstract

Let f (z) be a normalized convex (starlike) function on the unit discD. Let Ω = {z ∈ Cn:
|z1|2 + |z2|p2 + · · · + |zn|pn < 1}, wherez = (z1, z2, . . . , zn), z1 ∈ D, (z2, . . . , zn) ∈ Cn−1, pi � 1,
i = 2, . . . , n, are real numbers. In this note, we prove thatΦ(f )(z) = (f (z1), f

′(z1)
1/p2z2, . . . ,

f ′(z1)
1/pnzn) is a normalized convex (starlike) mapping onΩ, where we choose the power functio

such that(f ′(z1))
1/pi |z1=0 = 1, i = 2, . . . , n. Some other related results are proved.

 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In 1995, Roper and Suffridge [1] introduced an extension operator. This opera
defined for normalized locally biholomorphic functionf on the unit discD in C by

Φn(f )(z)= F(z)= (
f (z1),

√
f ′(z1)z0

)
, (1)

wherez = (z1, z0) belongs to the unit ballBn in Cn, z1 ∈ D,z0 = (z2, . . . , zn) ∈ Cn−1, and
we choose the branch of the square root such that

√
f ′(0)= 1.

Roper–Suffridge extension operator has remarkable properties:
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(i) If f is a normalized convex function onD, thenF is a normalized convex mappin
onBn;

(ii) If f is a normalized starlike function onD, thenF is a normalized starlike mappin
onBn;

(iii) If f is a normalized Bloch function onD, thenF is a normalized Bloch mappin
onBn.

These results were proved by Roper and Suffridge [1], Graham and Kohr [2]. Until
we only know a few concrete examples about the convex mappings, starlike mappin
Bloch mappings onBn. By Roper–Suffridge extension operator, we may construct a
of concrete examples about these mappings onBn. This is one reason why people a
interested in this extension operator.

After that there are many papers to discuss this operator (for example, [3–6], etc.)
generalized the Roper–Suffridge extension operators and discussed their propertie

In [3], Graham et al. generalized the operator (1) as

Φn,α(f )(z)= Fα(z)= (
f (z1),

(
f ′(z1)

)α
z0
)
, (2)

whereα ∈ [0,1/2],f, z1, z0, z are defined as above, and we choose the branch of the p
function such that(f ′(z1))

α|z1=0 = 1. They proved that this operator maps the normali
starlike function onD to the normalized starlike mapping onBn, and maps the normalize
Bloch function onD to the normalized Bloch mapping onBn, but it does not preserv
convexity onBn whenα ∈ [0,1/2). In [2], Graham and Kohr proposed the following op
problem: consider the Reinhardt domain

Ω2,p = {
z = (z1, z2) ∈ C2: |z1|2 + |z2|p < 1

}
,

wherep � 1. Does the operator

Φ2,1/p(f )(z)= F1/p(z)= (
f (z1),

(
f ′(z1)

)1/p
z2
)

extend convex functions onD to the convex mappings onΩ2,p?
In [7], we defined theε starlike mappings on a domain inCn.

Definition 1. Let Ω be a domain inCn, and letf :Ω → Cn be a locally biholomorphic
mapping and 0∈ f (Ω). We sayf is ε starlike mapping onΩ if there exists a positive
numberε, 0� ε � 1, such thatf (Ω) is starlike with respect to every point inεf (Ω). All
ε starlike mappings onΩ form the family ofε starlike mappings onΩ .

Whenε = 0, it is exactly the family of starlike mappings, and whenε = 1, it is exactly
the family of convex mappings.

In [7], we proved the following result.

Theorem A. Letf (z1) be a normalized biholomorphicε starlike function on the unit dis
D = {z1 ∈ C: |z1|< 1} in C, 0 � ε � 1, then

Φn,1/p(f )(z)= F1/p(z)= (
f (z1),

(
f ′(z1)

)1/p
z0
)
, p � 1, (3)
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is a normalized biholomorphicε starlike mapping on

Ωn,p = {
z ∈ Cn: |z1|2 + ‖z0‖pp < 1

}
, (4)

wherez0 = (z2, . . . , zn) ∈ Cn−1, z = (z1, z0) ∈ Ωn,p , we choose the branch of the pow
function in(3) such that(f ′(z1))

1/p|z1=0 = 1, and

‖z‖p =
{(∑n

j=1 |zj |p
)1/p

, 1 � p <∞;
maxj=1,...,n |zj |, p = ∞.

Whenn= 2, ε = 1, Theorem A solved the open problem of Graham and Kohr [2].
answer is affirmative, and it holds true for anyn� 2. Whenp = 2, ε = 1, Theorem A is the
result of Roper and Suffridge [1]. Whenp = 2, ε = 0, Theorem A is the result of Graha
and Kohr [2].

Theorem A told how to construct concrete examples of convex mappings and s
mappings on a class of Reinhardt domains (4). No doubt, it is an important
of Reinhardt domains in several complex variables, especially, it is a class of
pseudoconvex domains whenp > 2.

In Section 2, we will introduce some generalized Roper–Suffridge extension op
in purpose to construct the concrete convex mappings and starlike mappings on som
of more general Reinhardt domains. In Section 3, we will extend the Roper–Suf
extension operator from on complex variable to several complex variables.

2. Generalized Roper–Suffridge operator on a class of Reinhardt domain

We have already known that for the class of Reinhardt domains (4), we may gene
the Roper–Suffridge extension operator as (3) such that we can use it to constr
convex mappings and the starlike mappings on (4). Now we consider the more g
class of Reinhardt domains. Let

Ω = {
z ∈ Cn: |z1|p1 + · · · + |zn|pn < 1

}
, (5)

wherepi � 1, i = 1,2, . . . , n, z = (z1, . . . , zn). How to generalize the Roper–Suffridg
extension operator such that we can use it to construct the convex mappings and the
mappings on it? In general, we do not know how to do it. But we have the following re

Theorem 1. Let f (z1) be a normalized biholomorphicε starlike function on the unit dis
D in C, 0� ε � 1. Then

Φn,1/p2,...,1/pn(f )(z)= F1/p2,...,1/pn(z)

= (
f (z1),

(
f ′(z1)

)1/p2z2, . . . ,
(
f ′(z1)

)1/pnzn) (6)

is a normalized biholomorphicε starlike mapping on the Reinhardt domain

Ωn,p2,...,pn = {
z ∈ Cn: |z1|2 + |z2|p2 + · · · + |zn|pn < 1

}
, (7)

where z = (z1, . . . , zn), pi � 1, i = 2, . . . , n, and we choose the branch of the pow
functions in(6) such that(f ′(z1))

1/pi |z1=0 = 1, i = 2, . . . , n.
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Theorem 1 is a special case of the following result.

Theorem 2. Let ‖ · ‖i be the Banach norms ofCni , i = 1,2, . . . , k, whereni are positive
integers. Let

ΩN = {
(z1, z, . . . ,w) ∈ C × Cn1 × · · · × Cnk : |z1|2 + ‖z‖p1

1 + · · · + ‖w‖pkk < 1
}
,

(8)

wherepi � 1, i = 1,2, . . . , k, N = 1+ n1 + · · · + nk , z1 ∈ C, z ∈ Cn1 , . . . , w ∈ Cnk .
If f (z1) is a normalized biholomorphicε starlike function on the unit diskD in C then

ΦN,1/p1,...,1/pk (f )(z)= F1/p1,...,1/pk(z)

= (
f (z1),

(
f ′(z1)

)1/p1z, . . . ,
(
f ′(z1)

)1/pkw) (9)

is a normalized biholomorphicε starlike mapping onΩN , where we choose the branch
the power function in(9) such that(f ′(z1))

1/pi |z1=0 = 1, i = 1, . . . , k.

Whenk = 1, ‖ · ‖1 is thep-norm, it is Theorem A. Whenni = 1, ‖ · ‖i is p-norm,
i = 1, . . . , k, it is Theorem 1.

Proof of Theorem 2. For anyλ ∈ [0,1], (z1, z, . . . ,w) ∈ ΩN and (a1, a, . . . , b) ∈ ΩN ,
wherez1 ∈ D, a1 ∈ D, z ∈ Cn1, a ∈ Cn1, . . . , andw ∈ Cnk , b ∈ Cnk , if we can find
(u1, u, . . . , v) ∈ΩN , whereu1 ∈ D, u ∈ Cn1, . . . , v ∈ Cnk , such that(

f (u1),
(
f ′(u1)

)1/p1u, . . . ,
(
f ′(u1)

)1/pkv)
= (1− λ)

(
f (z1),

(
f ′(z1)

)1/p1z, . . . ,
(
f ′(z1)

)1/pkw)
+ λε

(
f (a1),

(
f ′(a1)

)1/p1a, . . . ,
(
f ′(a1)

)1/pkb), (10)

then Theorem 2 has been proved.
Sincef is a ε starlike function onD, for anyλ, λ ∈ [0,1], andz1 ∈ D, a1 ∈ D, there

existsu1 ∈ D, such that

f (u1) = (1− λ)f (z1)+ λεf (a1). (11)

Thus the right hand side of (10) is(
f (u1), (1− λ)

(
f ′(z1)

)1/p1z+ λε
(
f ′(a1)

)1/p1a, . . . ,

(1− λ)
(
f ′(z1)

)1/pkw + λε
(
f ′(a1)

)1/pkb).
Let

(u, . . . , v) =
(
(1− λ)(f ′(z1))

1/p1z+ λε(f ′(a1))
1/p1a

(f ′(u1))1/p1
, . . . ,

(1− λ)(f ′(z1))
1/pkw + λε(f ′(a1))

1/pkb

′ 1/pk

)
. (12)
(f (u1))
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‖u‖p1
1 + · · · + ‖v‖pkk < 1− |u1|2 (13)

holds. From (11), we have

u1(z1, a1)= f−1[(1− λ)f (z1)+ λεf (a1)
]
. (14)

Regarding (14) as a mapping fromD ×D to D, we have already proved [7] that∣∣ ∂u1
∂z1

∣∣|ξ | + ∣∣ ∂u1
∂a1

∣∣|η|
1− |u1|2 � max

( |ξ |
1− |z1|2 ,

|η|
1− |a1|2

)
, (15)

whereξ, η are any two arbitrary complex numbers. Moreover, by (14) we know that

∂u1

∂z1
= 1

f ′(u1)
(1− λ)f ′(z1),

∂u1

∂a1
= 1

f ′(u1)
λεf ′(a1).

Substituting it into (12), we have

(u, . . . , v) =
(
(1− λ)1/q1

(
∂u1

∂z1

)1/p1

z+ (λε)1/q1

(
∂u1

∂a1

)1/p1

a, . . . ,

(1− λ)1/qk
(
∂u1

∂z1

)1/pk
w + (λε)1/qk

(
∂u1

∂a1

)1/pk
b

)
,

where 1/p1 + 1/q1 = 1, . . . , 1/pk + 1/qk = 1. By the triangle inequality of Banach nor
and Hölder inequality, we have

‖u‖1 � (1− λ)1/q1

∣∣∣∣∂u1

∂z1

∣∣∣∣
1/p1

‖z‖1 + (λε)1/q1

∣∣∣∣∂u1

∂a1

∣∣∣∣
1/p1

‖a‖1

� (1− λ+ λε)1/q1

(∣∣∣∣∂u1

∂z1

∣∣∣∣‖z‖p1
1 +

∣∣∣∣∂u1

∂a1

∣∣∣∣‖a‖p1
1

)1/p1

.

Thus

‖u‖p1
1 �

∣∣∣∣∂u1

∂z1

∣∣∣∣‖z‖p1
1 +

∣∣∣∣∂u1

∂a1

∣∣∣∣‖a‖p1
1 .

Using the same process, we may obtain the estimations of the other terms, for exam
estimations of the last term is the following inequality:

‖v‖pkk �
∣∣∣∣∂u1

∂z1

∣∣∣∣‖w‖pkk +
∣∣∣∣∂u1

∂a1

∣∣∣∣‖b‖pkk .

Thus,

‖u‖p1
1 + · · · + ‖v‖pkk �

∣∣∣∣∂u1

∂z1

∣∣∣∣(‖z‖p1
1 + · · · + ‖w‖pkk

)
+
∣∣∣∣∂u1

∂a1

∣∣∣∣(‖a‖p1
1 + · · · + ‖b‖pkk

)
. (16)

Let ξ = ‖z‖p1 + · · · + ‖w‖pk , η = ‖a‖p1 + · · · + ‖b‖pk in (15); then
1 k 1 k
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‖u‖p1
1 + · · · + ‖v‖pkk

�
(
1− |u1|2

)
max

(‖z‖p1
1 + · · · + ‖w‖pkk

1− |z1|2 ,
‖a‖p1

1 + · · · + ‖b‖pkk
1− |a1|2

)
< 1− |u1|2

by (16).
We have proved (13), and hence we have proved Theorem 2.✷

3. Roper–Suffridge extension operator for several complex variables

The Roper–Suffridge extension operator and its generalizations which we men
above start from a locally biholomorphic functionf of one complex variable on the un
disk in C, by the Roper–Suffridge extension operator or its generalizationsΦ, we get a
locally biholomorphic mappingΦ(f ) = F on some domain inCn, then we discussed th
properties ofF . Now we try to extend the Roper–Suffridge extension operator an
generalizations from one variable to several complex variables.

We start with a locally biholomorphic mappingf :R → Cn, whereR is a domain inCn

and

f =

f1

...

fn


 ,

then we construct a generalized Roper–Suffridge extension operator, using it we ma
locally biholomorphic mappings on some domain inCm (m > n). In this section, we give
one example of such kind generalized Roper–Suffridge extension operator.

Let

Dn =

z =


 z1

...

zn


 ∈ Cn: |zi |< 1, i = 1, . . . , n




be the unit polydisk inCn. Let f :Dn → Cn be a normalized biholomorphic conve
mapping onDn; then by Suffridge theorem [8],

f (z)=

 f1(z1)

...

fn(zn)


 ,

so

Jf (z)=

f ′

1(z1) 0
. . .

0 f ′
n(zn)


 ,

Jf (z) is the Jacobi matrix off at z, where fi(zi), i = 1,2, . . . , n, are normalized
biholomorphic convex functions on the unit disk. Let

Ωn
2,p =

{(
z
)

∈ C2n: |zi |2 + |wi |p < 1, i = 1,2, . . . , n

}
, p � 1, (17)
w
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t

where

w =

w1

...

wn


 ∈ Cn.

As a consequence of Theorem A, we have the following result.

Corollary 1. Let f (z) be a normalized biholomorphic convex mapping onDn, where
f (z) :Dn → Cn is a column vector. Then

Φ2,1/p(f )(z,w)=
(

f (z)

(Jf (z))
1/pw

)
(18)

is a normalized biholomorphic convex mapping onΩn
2,p, where

w =

w1

...

wn


 ∈ Cn,

(
Jf (z)

)1/p =

 (f ′

1(z1))
1/p O

. . .

O (f ′
n(zn))

1/p


 ,

and we choose the branch of the power functions in(18) such that(f ′
i (zi))

1/p|zi=0 = 1,
i = 1,2, . . . , n.

Proof. From Theorem A,(
fi(zi)

(f ′
i (zi))

1/pwi

)
(i = 1,2, . . . , n)

is a normalized biholomorphic convex mapping onΩ2,p, so

(
f (z)

(Jf (z))
1/pw

)
=




f1(z1)
...

fn(zn)

(f ′
1(z1))

1/pw1
...

(f ′
n(zn))

1/pwn




is a normalized biholomorphic convex mapping onΩn
2,p. ✷

Whenε �= 1, we cannot define(Jf (z))1/p becauseJf (z) is not a diagonal matrix. Bu
we have the following result.

Theorem 3. Let f (z) :Dn → Cn be a normalized biholomorphicε starlike mapping
onDn. ThenΦ2,1(f )(z,w) is a normalized biholomorphicε starlike mapping onΩn

2,1.

In purpose to prove Theorem 3, we need the following lemma.

Lemma 1. The infinitesimal form of the Carathéodory metric ofDn is

FDn

C (z, ζ )= max

( |ζ1|
2
, . . . ,

|ζn|
2

)
,

1− |z1| 1− |zn|
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c of
where

z =

 z1

...

zn


 ∈Dn, ζ =


 ζ1

...

ζn


 ∈ Cn.

Proof. Fix

z =

 z1

...

zn


 ∈Dn.

Let

s =

 s1

...

sn


 ∈Dn, ϕ(s)=




z1−s1
1−z̄1s1

...
zn−sn
1−z̄nsn


 ;

thenϕ(s) ∈ Aut(Dn), ϕ(z)= 0,

Jϕ(z)=



−1
1−|z1|2 O

.. .

O −1
1−|zn|2


 and Jϕ(z)ζ =




−ζ1
1−|z1|2

...
−ζn

1−|zn|2


 .

Let FDn

C (· , ·) be the infinitesimal form of Carathéodory metric, thenFDn

C (z, ζ ) =
FDn

C (0, Jϕ(z)ζ ). SinceDn is a bounded convex circular domain,FDn

C (0, ζ ) = ρ(ζ ) [9,
10], whereρ(ζ ) is the Minkowski functional ofDn. We already know that the Minkowsk
functional ofDn is max1�i�n |zi |. Hence

FDn

C

(
0, Jϕ(z)ζ

)= max

( |ζ1|
1− |z1|2 , . . . ,

|ζn|
1− |zn|2

)
.

We have proved Lemma 1.✷
By Lempert theorem [11], we know the infinitesimal form of Carathéodory metri

Dn and the infinitesimal form of Kobayashi metric ofDn are the same.

Proof of Theorem 3. For anyλ ∈ [0,1], ( z
w

) ∈Ωn
2,1,

(
ξ
η

) ∈Ωn
2,1, if we can fine

(
u
v

) ∈ Ωn
2,1

such that(
f (u)

Jf (u)v

)
= (1− λ)

(
f (z)

Jf (z)w

)
+ λε

(
f (ξ)

Jf (ξ)η

)
,

then Theorem 3 have been proved.
Sincef is a ε starlike mapping onDn, for anyλ ∈ [0,1] andz ∈ Dn, ξ ∈ Dn, there

existsu ∈Dn, such that

f (u)= (1− λ)f (z)+ λεf (ξ). (19)

Let

v = (1− λ)J−1(u)Jf (z)w + λεJ−1(u)Jf (ξ)η. (20)
f f
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We need to prove
(
u
v

) ∈ Ωn
2,1, i.e., the following inequality

max

( |v1|
1− |u1|2 , . . . ,

|vn|
1− |un|2

)
< 1 (21)

holds. From (19), we have

u(z, ξ) = f−1[(1− λ)f (z)+ λεf (ξ)
]
. (22)

We regard it as a mapping fromDn × Dn to Dn, then by the contraction property
Carathéodory metric, the following inequality

FDn

C

(
u(z, ξ), Ju(z, ξ)

(
w

η

))
� FDn×Dn

C

((
z

ξ

)
,

(
w

η

))
(23)

holds for any column vector
(
w
η

) ∈ C2n, whereJu is the Jacobi matrix ofu. From (22),

Ju(z, ξ) = (
(1− λ)J−1

f (u)Jf (z), λεJ
−1
f (u)Jf (ξ)

)
.

Hence

Ju(z, ξ)

(
w

η

)
= (1− λ)J−1

f (u)Jf (z)w + λεJ−1
f (u)Jf (ξ)η = v

by (20). Thus (23) becomes

FDn

C (u, v) � FDn×Dn

C

((
z

ξ

)
,

(
w

η

))
.

By Lemma 1, it is exactly the following inequality

max

( |v1|
1− |u1|2 , . . . ,

|vn|
1− |un|2

)

� max

( |w1|
1− |z1|2 , . . . ,

|wn|
1− |zn|2 ,

|η1|
1− |ξ1|2 , . . . ,

|ηn|
1− |ξn|2

)
< 1.

Hence (21) holds true. We have proved the Theorem 3.✷
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