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ZERO-FREE POLYNOMIAL APPROXIMATION ON A

CHAIN OF JORDAN DOMAINS

P. M. GAUTHIER AND GREG KNESE

Abstract. Sur un compact du plan dont le complémentaire est
connexe, est-il possible d’approcher uniformément une fonction
continue, holomorphe et sans zéros à l’intérieur, par des polynômes
n’ayant aucun zéros sur le compact tout entier? Dans cette note
brève, nous rappelons le raport surprenant entre ce problème et
l’hypothèse de Riemann et donnons une réponse affirmative pour
une “chaine” de domaines de Jordan.

On a compact subset of the plane with connected complement,
is it possible to uniformly approximate a continuous function, holo-
morphic and non-vanishing on the interior, with polynomials non-
vanishing on the entire compact set? In this brief note, we recall the
surprising connection between this question and the Riemann hy-
pothesis and proceed to provide an affirmative answer for a “chain”
of Jordan domains.

1. introduction

For a compact set K ⊂ C, we denote by A(K) the family of contin-
uous functions on K, which are holomorphic on the interior Ko of K.
Mergelyan’s theorem asserts that every f ∈ A(K) is uniformly approx-
imable by polynomials if and only if C \K is connected.

Question 1.1. Let K be compact subset of C with connected comple-
ment. Suppose f ∈ A(K) has no zeros on Ko and ǫ > 0. Is there a
polynomial pǫ with no zeros on K such that maxz∈K |f(z)− pǫ(z)| < ǫ?

An affirmative answer has been given when K is strictly starlike [3],
a closed Jordan domain [1], or a disjoint union of such compacta [4].
In this note, we investigate the case when K is a union of finitely many
Jordan domains, not necessarily disjoint. Question 1.1 is related to
the following question regarding approximation by vertical translates
of the Riemann zeta-function.
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Question 1.2. Let K be a compact subset of the strip 1/2 < ℜ(z) < 1
with connected complement. Suppose f ∈ A(K) has no zeros on Ko

and ǫ > 0. Is the set of t > 0, such that maxx∈K |f(z)− ζ(z + it)| < ǫ,
of positive lower density?

Recently, Johan Andersson has made the remarkable observation [1]
that these two problems are equivalent. Under the stronger hypothesis
that f has no zeros on K (rather than on Ko), the answer to Question
1.1 is positive, as an obvious consequence of Mergelyan’s Theorem.
Under this stronger hypothesis, Question 1.2 also has a positive answer,
however this is far from obvious. It is a consequence of Voronin’s
spectacular universality theorem for the Riemann zeta-function, which
has been refined by Bhaskar Bagchi [2] and Steven Mark Gonek [5].
For a measurable set E of positive numbers, we denote by m(E) the

measure of E and by d(E) and d(E) respectively the lower and upper
densities of E

d(E) = lim inf
T→∞

m(E ∩ [0, T ])

T
d(E) = lim sup

T→∞

m(E ∩ [0, T ])

T
.

The following result of Bagchi suggests that these problems may be
related to the Riemann Hypothesis and therefore might be difficult to
solve in complete generality.

Theorem 1.3 (Bagchi). The following assertions are equivalent.
1) The Riemann hypothesis is true.
2)For each compact set K with connected complement lying in the

strip 1/2 < Re(z) < 1 and for each ǫ > 0,

d

(

{t > 0 : max
z∈K

|ζ(z + it)− ζ(z)| < ǫ}

)

> 0.

3) For each compact set K with connected complement lying in the
strip 1/2 < Re(z) < 1 and for each ǫ > 0,

d

(

{t > 0 : max
z∈K

|ζ(z + it)− ζ(z)| < ǫ}

)

> 0.

For a further discussion of this issue, we refer to [4].

2. Chain of Jordan domains

Our main theorem is the following.

Theorem 2.1. Let Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωn be a chain of Jordan
domains. That is, Ωi ∩ Ωj = ∅ if |i − j| > 1 and Ωi ∩ Ωj is a single

point if |i− j| = 1. Suppose f ∈ A(Ω) and f(z) 6= 0, for z ∈ Ω. Then,
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for each ǫ > 0, there is a polynomial pǫ such that |f − pǫ| < ǫ and
pǫ(z) 6= 0, for z ∈ Ω.

Let D1 = {z : |z + 1/2| < 1/2}, D2 = {z : |z − 1/2| < 1/2}.
We introduce three methods of approximation via three lemmas

(whose proofs are trivial). We frequently use f−1(0) in place of f−1({0}).

Lemma 2.2. Let D be a disk, p ∈ ∂D, f ∈ A(D), and f−1(0) ⊂ ∂D.
Then, for each ǫ > 0, there exists fǫ ∈ A(D) with |f−fǫ| < ǫ, f−1(0) ⊂
{p}, fǫ(p) = f(p). We say that fǫ is an approximation via shrinking
toward p.

Proof. We may assume D = D2 and p = 0. Set fǫ(z) = f(rz), for
0 < r < 1, and r sufficiently near 1. �

Lemma 2.3. Let f ∈ A(D2), f
−1(0) ⊂ ∂D2. Then, for each ǫ > 0,

there exists fǫ ∈ A(D2) such that |f − fǫ| < ǫ, f−1(0) ⊂ {0, 1}, fǫ(0) =
f(0), fǫ(1) = f(1).

Proof. For 0 < r < 1 the mapping Lr : D2 → D2

Lr(z) =

(

z
1−z

)r

1 +
(

z
1−z

)r

maps the disk D2 onto a lens shaped region with corners at the points
0 and 1 of angle πr. Here the r-th root is chosen so that 1r = 1.
Set fǫ = f ◦ Lr with r sufficiently close to 1. �

Lemma 2.4. Let f ∈ A(D2) and ǫ > 0. For δ = δ(ǫ) > 0, set

fǫ(z) = f(w), where w =

(

1−
z − 1

z
− iδ

)

−1

.

Then, fǫ(0) = f(0) and for sufficiently small δ, we have |fǫ − f | < ǫ.
We call such an fǫ an approximation of f on D2 parabolic at 0.

Proof. Notice that for δ = 0, we have fǫ = f . It is then clear that
fǫ → f uniformly as δ → 0. �

Removing a zero at a point of contact between two disks is the most
technical part of our proof.

Lemma 2.5. Let D = D1 ∪D2. Let f ∈ A(D), f−1(0) ⊂ {0, 1}. Then,
there exists fǫ ∈ A(D) such that |f − fǫ| < ǫ, f−1

ǫ (0) ⊂ {1}, fǫ(±1) =
f(±1).

Proof. If f(0) 6= 0, there is nothing to prove. Set fǫ = f.
Suppose f(0) = 0. Then, f is constant on neither D1 nor D2, for

otherwise f would have interior zeros, contrary to the hypothesis. Set
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fj = f | Dj, j = 1, 2. As in the proof of Lemma 2.2, let g1 be an ap-
proximation of f1 by shrinking D1 towards −1 and let g2 be an approx-
imation of f2 by shrinking D2 towards +1. We choose the approxima-
tion so that |fj − gj | < ǫ/3 on Dj . We note that gj ∈ A(Dj), g

−1
1 (0) =

∅, g−1
2 (0) ⊂ {+1}, g1(−1) = f1(−1), g2(+1) = f2(+1). If g1(0) = g2(0),

we may set fǫ = gj on Dj, for j = 1, 2 and the proof is complete.
Suppose g1(0) 6= g2(0). Let hǫ be an approximation of g1 on D1

parabolic at −1 in the sense of Lemma 2.4. Note that hǫ(D1) = g1(D1),
so hǫ omits zero on D1. We claim that there are arbitrarily close such
approximations such that hǫ(0) is not on the line determined by 0 and
g2(0). If not, it follows from the construction of hǫ that g1(z) is on this
line, for all z ∈ ∂D1 near 0. Therefore, g1(∂D1) is in this line. This can
be proved via conformal mapping using the fact that a function analytic
on a neighborhood of the closed upper half plane and real valued on
an interval of the real line must be real valued on the entire real line.
Consequently, g1(D1) is also in this line. But g1 is non-constant and
hence open on D1, which is a contradiction. Thus, we may choose hǫ

such that |hǫ− g1| < ǫ/3 on D1 and hǫ(0) is not on the line determined
by 0 and g2(0).
Note that |g2(0)− hǫ(0)| ≤ |g2(0)− f(0)|+ |f(0)− g1(0)|+ |g1(0)−

hǫ(0)| < ǫ. Let us write g2(0)− hǫ(0) in polar coordinates:

g2(0)− hǫ(0) = reiα,

where r < ǫ. We note that 0 is not on the line segment

hǫ(0) + teiα, 0 ≤ t ≤ r

by choice of hǫ. Consider the pie piece:

P = {tei(α+ϕ) : 0 ≤ t ≤ r, |ϕ| ≤ δ1}.

Choose δ1 > 0 so small that 0 is not on the translated closed pie piece
given by

hǫ(0) + P.

By the continuity of hǫ, there is a δ2 > 0 such that 0 is not in the set

(2.1) hǫ(z) + P, |z| ≤ δ2, z ∈ D1.
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Let us define a mapping w = η(z) on D1 via a series of transforma-
tions

z 7→ z1 = −
z + 1

z
, (D1 → RHP := right half plane)

z1 7→ z2 = z
2δ1/π
1 , z2(1) = 1, (RHP → sector with angle 2δ1)

z2 7→ z3 = δ3z2, δ3 > 0, (contraction of the sector)

z3 7→ z4 = r
z3

z3 + 1
, (sector → lens)

z4 7→ w = eiαz4. (rotation of the lens)

Thus, η ∈ A(D̄1) maps D1 to a “lens” of angular opening 2δ1, whose
end points are η(−1) = 0 and η(0) = reiα. The parameter δ3 will be
chosen momentarily.
Define fǫ(z) = hǫ(z)+η(z), for z ∈ D1 and fǫ(z) = g2(z), for z ∈ D2.

Then, fǫ(z) ∈ A(D) since η(0) = g2(0)− hǫ(0). Also, |f − fǫ| < 2ǫ. On
D2 this is because fǫ = g2. On D1, this follows since |f−g1|, |g1−hǫ| <
ǫ/3 and |η| < ǫ. Since ǫ is an arbitrary positive number, there remains
only to show that f−1

ǫ (0) ⊂ {+1} and since we already know that
g−1
2 (0) ⊂ {+1}, it is sufficient to show that fǫ(z) 6= 0 for z ∈ D1. We
break into cases |z| ≥ δ2 and |z| ≤ δ2.
Let m = min{|hǫ(z)| : z ∈ D1}. We now choose δ3 so small that η

maps the region {z ∈ D1 : |z| ≥ δ2} into the set {w : |w| < m}. Then,
for z ∈ D1, |z| ≥ δ2,

|fǫ(z)| ≥ |hǫ(z)| − |η(z)| > m−m = 0.

Now, suppose z ∈ D1, |z| ≤ δ2. Then

fǫ(z) = hǫ(z) + η(z) = hǫ(z) + tei(α+ϕ),

with |ϕ| ≤ δ1 and t ≤ r, because the lens η(D1) lies in the pie piece
|w| ≤ r, | argw − α| ≤ δ1. Thus, by (2.1), fǫ(z) 6= 0.
We have shown that f−1

ǫ (0) ⊂ {+1}. Since η(−1) = 0, we also have
that fǫ(−1) = f(−1) and moreover fǫ(+1) = g2(+1) = f(+1). This
concludes the proof. �

Lemma 2.6. Let D = D1 ∪ D2 ∪ · · · ∪ Dn, where the Dj are discs of
radius 1/2 whose respective centers are the points 1/2, 3/2, · · · , (2n −
1)/2 and whose points of tangency are 1, 2, · · · , n−1. Suppose f ∈ A(D)
and f(z) 6= 0, for z ∈ D. Then, for each ǫ > 0, there is an fǫ ∈ A(D)
such that |f − fǫ| < ǫ and fǫ(z) 6= 0, for z ∈ D.
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Proof. Set fj = f | Dj. By Lemma 2.2, we may assume that f−1
1 (0) ⊂

{1} (by “shrinking toward 1”) and f−1
n (0) ⊂ {n − 1} (by “shrinking

toward n− 1”).
By Lemma 2.3, we may assume that, for j = 2, 3, · · · , n−1, we have

f−1
j (0) ⊂ {j − 1, j}.
Now, we proceed by finite induction to eliminate the only possible

remaining zeros 1, 2, · · · , n−1. Applying Lemma 2.5 toD1∪D2, we may
get rid of the the possible zero 1. Then, applying Lemma 2.5 toD2∪D3,
we get rid of the possible zero 2. After n− 1 steps, we have eliminated
all possible zeros. This concludes the proof of the lemma. �

Proof of Theorem. It is sufficient to approximate f uniformly by a func-
tion fǫ ∈ A(Ω) such that fǫ(z) 6= 0, for z ∈ Ω, since such an fǫ can in
turn be uniformly approximated by polynomials which are zero-free on
Ω by Mergelyan’s theorem.
For each j = 1, 2, · · · , n, let φj(w) = z be a conformal mapping of the

disc Dj from the previous lemma onto the Jordan domain Ωj . By the
Osgood-Carathéodory Theorem, φj extends to a homeomorphism ofDj

onto Ωj and we may assume that φj maps the points of tangency of Dj

with neighboring discs to the points of tangency of Ωj with neighboring
Jordan domains. Let φ be the map from D to Ω, defined by setting
φ = φj on Dj. Setting g = f ◦ φ, we have g ∈ A(D) and g(w) 6= 0 for
w ∈ D. By Lemma 2.6, there is a gǫ ∈ A(D) such that |g− gǫ| < ǫ and
gǫ(w) 6= 0, for w ∈ D. We may set fǫ(z) = g(φ−1(z)) = g(w). �
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E-mail address : gauthier@dms.umontreal.ca

Department of Mathematics, University of Alabama, Box 870350

Tuscaloosa, AL 35487-0350

E-mail address : geknese@bama.ua.edu


	1. introduction
	2. Chain of Jordan domains
	References

