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Abstract. Some commonly accepted statements concerning the basic fuzzy logic proposed
by Lotfi Zadeh in 1965, have led to suggestions that fuzzy logic is not a logic in the same
sense as classical bivalent logic. Those considered herein are: fuzzy logic generates results
that contradict classical logic, fuzzy logic collapses to classical logic, there can be no proof
theory for fuzzy logic, fuzzy logic is inconsistent, fuzzy logic produces results that no human
can accept, fuzzy logic is not proof-theoretic complete, fuzzy logic is too complex for prac-
tical use, and, finally, fuzzy logic is not needed. It is either proved or argued herein that all
of the these statements are false and are, hence, misconceptions. A fuzzy logic with truth
values specified as subintervals of the real unit interval [0.0, 1.0] is introduced. Proofs of the
correctness, consistency, and proof theoretic completeness of the truth interval fuzzy logic are
either summarized or cited. It is concluded that fuzzy logics deserve the accolade of logic to
the same degree that the term applies to classical logics.
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1. Introduction

Fuzzy logic, since its introduction in 1965, seems to have generated contro-
versy in many quarters. In the 70’s fuzzy logic is referred to by William Kahan
as “the cocaine of science” and by Dana Scott as “pornography” (Haack
1996: 230). The climate created by such statements from eminent scientists
and philosophers cannot help but generate misconceptions concerning fuzzy
logic in all but the relatively sophisticated. At the Pentagon, in the 70’s, “if a
commander said he had a fuzzy thinker on his staff, his career would be over”
(McNeil 1993: 50). In 1991 we have “Fuzzy logic is based on fuzzy thinking”
(Konieki 1991).

In has been claimed, for instance, that fuzzy logic generates results that
are incompatible with rational human inference and that the complexity of
fuzzy logic makes it unusable as a logic. The features of classical logic, such
as proof-theoretic completeness and consistency, that have helped make clas-
sical logic the de facto standard for human reasoning, are claimed, by some
critics, to be missing from fuzzy logic.
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In this paper a few of these beliefs are selected, examined, and exposed as
misconceptions. In addition, it is argued that fuzzy logic is a truth preserving
formal system well suited to extracting valid inferences from imprecise
empirical data, a task beyond the capability of classical logic.

2. Definition of Terms and Introduction to Fuzzy Logic

In this section the terms used are defined, the basic concepts of classical logic
reviewed, and brief introduction to fuzzy logic presented.

Classical logic uses a two element set of truth values, TVc = {True, False}
≡ {T, F} ≡ {1, 0}. The Principle of Bivalence (PB) states that the elements
of TVc are mutually exclusive and jointly exhaustive (Haack 1996). Hence,
if t(A) = True, then t(¬A) = False. The Law of the Excluded Middle (LEM)
requires that (A ∨ ¬A) be a theorem of the logic system.

The major principle of classical set theory is the Axiom of Specification
(AS), which can be stated:

To every set A and to every sentence S(x) there corresponds a set B
whose elements are exactly those elements x of A for which S(x) holds
(Halmos 1960).

In classical logic and classical set theory (an application of classical logic),
then, either (t(S(x)) = True, when x ∈ B; or t(S(x)) = False, when x /∈ B; an
example of the Law of the Excluded Middle.

Fuzzy sets, as presented by Lotfi Zadeh in his classic work (Zadeh 1965),
allow individuals to have degrees of membership in a set, degree of member-
ship of x in B being specified by the truth value of S(x). If t(S(x)) = 1.0, where
1.0 is equivalent to classical truth, x possesses full membership in B; if t(S(x))
= 0.0, where 0.0 is equivalent to classical falsity, x /∈ B; and 0.0 < t(S(x)) < 1.0
denote intermediate degrees of membership of x in B. S(x) is now a formula
of fuzzy logic.

An interpretation, in both classical logic and fuzzy logic, is defined as:

Given a formula G, if A1, A2, . . ., An are the atoms that make up G
then, if M is an assignment of a single truth value to each Ai, M is an
interpretation of G.

The definition of logical equivalence, applicable to both classical and fuzzy
logic, is:

Two formulae A and B are logically equivalent, written A ≡ B, iff
t(A) = t(B) in all interpretations.
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This is to say that A and B are, actually, the same formula, even though their
appearance may differ.

The axioms of fuzzy logic are (Zadeh 1965):
If A and B are propositions with truth values t(A) and t(B), respectively,

then:

Axiom Z1: 0.0 ≤ t(A), t(B) ≤ 1.0
Axiom Z2: t(A ∧ B) = min(t(A), t(B))
Axiom Z3: t(A ∨ B) = max(t(A), t(B))
Axiom Z4: t(¬A) = 1 − t(A)

The terms tautology and contradiction in classical logic are defined as
follows:

A tautology is a formula F for which t(F) = 1.0, or True, in all inter-
pretations.
A contradiction is a formula F for which t(F) = 0.0, or False, in all
interpretations.

To construct the fuzzy analogs of the classical terms True and False we
examine, in Theorems 1 and 2, below, the truth values attainable in fuzzy
logic for A ∧ ¬A, a classic contradiction, and A ∨ ¬A, a classic tautology.

Theorem 1: For all fuzzy propositions A and ¬A, 0.0 ≤ t(A ∧ ¬A) ≤ 0.5
Proof: t(A ∧ ¬A) = min(t(A), 1 − t(A)) according to axioms Z2 and Z4.

If: t(A) = 0.5 then: min(t(A), 1 − t(A)) = 0.5
If: t(A) = 0.0 then: min(t(A), 1 − t(A)) = 0.0
If: t(A) < 0.5 then: 1 − t(A) > 0.5 and min(t(A), 1 − t(A) < 0.5
If: t(A) > 0.5 then: 1 − t(A) < 0.5 and min(t(A), 1 − t(A)) < 0.5
so: 0.0 ≥ t(A) ∧ ¬A) ≥ 0.5 �

In a similar manner, as shown in (Kenevan 1992), we can prove Theorem 2,
below:

Theorem 2: For all fuzzy propositions A and ¬A, 0.5 ≤ t(A ∨ ¬A) ≤ 1.0
Using fuzzy analogs of classical contradiction and tautology, we define fuzzy
truth and fuzzy falsity as follows:

A formula F is said to be true if t(F) = 1.0, fuzzy true if 0.5 < t(F) < 1.0,
false if f(F) = 0.0, fuzzy false if 0.0 < f(F) < 0.5, and fuzzy indeterminate
if t(F) = 0.5.

Proceeding to the next stage of analogy we define fuzzy tautology and fuzzy
contradiction:
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A formula F is a fuzzy tautology if 0.5 < t(F) ≤ 1.0, or F is true or fuzzy
true, in all interpretations.

A formula F is a fuzzy contradiction if 0.0 ≤ f(F) < 0.5, or F is false or
fuzzy false, in all interpretations.

The concept of a proof, or logical consequence, in classical logic is defined
as:

Given formulae F1, F2, . . . , Fn and a formula G, G is said to be a logical
consequence of F1, F2, . . . , Fn if and only if for any interpretation I in
which F1, F2, . . . , Fn is true, G is also true.

The single inference rule of classical propositional logic is modus ponens, or
MP, where:

Modus Ponens: B is a logical consequence of A and A ⇒ B

Theorem 3, easily proven from the definition of logical consequence, is a
useful extension of MP.

Theorem 3: Given formulae F1, F2, . . . , Fn and a formula G, G is a logical
consequence of F1, F2, . . ., Fn if and only if the formula (F1 ∧ . . . ∧ Fn) ⇒
G is a tautology.
Modus ponens can, then, be stated as (A ∧ (A ⇒ B)) ⇒ B. If G is a logical
consequence of F1, F2, . . . , Fn, then (F1 ∧ . . . Fn) ⇒ G is called a theorem
of classical logic and G is said to be provable in classical logic.

3. Misconceptions Regarding Fuzzy Logic

Misconception #1: Fuzzy logic generates results that contradict classical
logic.
Professor William Kahan stated, in 1975, that “Fuzzy logic is wrong, wrong,
and pernicious” (McNeil 1993). If fuzzy logic is wrong then, by definition, a
proof performed using fuzzy logic must contradict that using another logic,
i.e., classical logic, starting from the same premises. But, if the truth values
being used are restricted to TVc axioms Z1–Z4 generate the same results as
do those of classical logic, as shown in the truth table of Figure 1 with the
truth values formatted as: <classical truth value/fuzzy truth value>. Zadeh’s
fuzzy logic is, then, an extension of classical logic. Classical logic cannot
process inferences using the other truth values contained in TVf = [0.0, 1.0]
so there is no possibility for conflict with fuzzy logic.
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Figure 1. Classical Logic/Fuzzy Logic Results.

Misconception #2: Fuzzy logic is inconsistent (Haack 1996: 237).
The terms consistent and inconsistent describe systems, or theories,
constructed using a logic (Davis 1989: 7). A theory L is consistent if there
is no formula X in L such that both X and ¬X are provable in L. For example,
if the axioms L.1 and L.2 define a classical system L, where L.1: A ⇒ B and
L.2: C ⇒ ¬B, then in any interpretation I in which both A and C are true,
applying modus ponens to L.1 proves B; and applying modus ponens to L.2
proves ¬B. L is, therefore, inconsistent. We can construct the fuzzy analog L′
of L, choose an interpretation in which both A and C are either true or fuzzy
true, and L′, like L, would be shown to be inconsistent. Fuzzy logic is, then,
consistent in the same sense as classical logic.

Misconception #3: A fuzzy logic defined using axioms Z1–Z4 collapses to
a two valued logic (Elkan 1994).
In 1993, at the AAAI Eleventh National Conference on Artificial Intelligence,
Charles Elkan presented a paper entitled “The Paradoxical Success of Fuzzy
Logic”, claiming that that fuzzy logic collapses into classical bivalent logic
(Elkan 1993). The paper won a “Best Paper of Conference” citation. A later
version with the same title was published in a special issue of IEEE Expert
(Elkan 1994). In both articles Elkan claims that axioms Z1–Z4 define a logic
that is, in reality, a classical bivalent logic; and that all of the virtues attributed
to the capability of reasoning with a set of truth values defined by the real unit
interval are illusory, since there are two, and only two, truth values. The basis
for Elkan’s claim is Theorem 4 (Elkan 1994), presented below.

Theorem 4: If ¬(A ∧ ¬B) and B ∨ (¬A ∧ ¬B) are logically equivalent
then for any two assertions A and B, either t(A) = t(B) or t(B) = 1 − t(A)
Axiom Z4 states that t(¬A) = 1 − t(A), so Theorem 4 requires that either t(B)
= t(A) or t(B) = t(¬A) and these are the only possible truth values. We show
here that ¬(A ∧ ¬B) is not logically equivalent to B ∨ (¬A ∧ ¬B) in fuzzy
logic; so the hypothesis of Theorem 4 is not true in fuzzy logic, and, hence,



70 CARL W. ENTEMANN

the conclusion does not apply to fuzzy logic. The proof requires the definition
of logical equivalence and the following three lemmas, which can be easily
proven by the reader:

Lemma L1: max {a, min{b, c}} ≡ min{max{a, b}, max{a, c}}
Lemma L2: − min{a, b} ≡ max{−a, −b}
Lemma L3: 1 + max{−a, − 1 + b} ≡ max{1 − a, b}

The hypothesis of Theorem 4 can be written as:

¬(A ∧ ¬B) ≡ B ∨ (¬A ∧ ¬B) (3.1)

If we apply Z4, Z2, and Z4, in that sequence, to the left side of (3.1) we get:

t(¬(A ∧ ¬B)) = 1 − t(A ∧ ¬B) = 1 − min{t(A), t(¬B)} =
= 1 − min{t(A), 1 − t(B)}

Applying L2 and L3 to 1 − min(t(A), 1 − t(B)} gives:

1 − min{t(A), 1 − t(B)} = 1 + max{ −t(A), − 1 + t(B)} =
= max{1 − t(A), t(B)}

so that:

t(¬(A ∧ ¬B)) = max{1 − t(A), t(B)} (3.2)

Applying Z3, Z2, and Z4 to the right side of (3.1) gives:

t(B ∨ (¬A ∧ ¬B)) = max{t(B), min{1 − t(A), 1 − t(B)}}

We then have, after applying L1:

max{t(B), min{1 − t(A), 1 − t(B)}} =
= min{max{1 − t(A), t(B)}, max{t(B), 1 − t(B)}}

From (3.2), Z2, and Z4 we have:

t(B ∨ (¬A ∧ ¬ B)) = min{t(¬(A ∧ ¬B)), t(B ∨ ¬B)}. (3.3)

Therefore, from (3.3):

t(¬(A ∧ ¬B)) �= t(B ∨ (¬A ∧ ¬B))

In any interpretation in which t(¬(A ∧ ¬B)) > t(B ∨ ¬B), e.g., t(A) = 0.2 and
t(B) = 0.6, we have 0.8 = t(¬(A ∧ ¬B)) �= t(B ∧ (¬A ∧ ¬B)) = 0.6

So the conditions of logical equivalence are not fulfilled, since t(¬ (A ∧ ¬B))
�= t(B ∨ (¬A ∧ ¬B)) in all interpretations; and, therefore, ¬(A ∧ ¬B) is not
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logically equivalent to B ∨ (¬A ∧ ¬B) in fuzzy logic. The hypothesis of
Theorem 4 clearly does not hold for fuzzy logic; the conclusion does not,
therefore, apply to fuzzy logic; and it has not been shown that fuzzy logic
collapses to classical logic.

Since, in classical bivalent logic, ¬(A ∧ ¬B) ≡ B ∨ (¬A ∧ ¬B), Theorem
4 does prove that classical bivalent logic, but not fuzzy logic, has two and
only two truth values.

Misconception #4: Fuzzy logic “can lead inescapably to conclusions that
no human being would accept” (deSilva 1994).
The argument presented below (the line numbers have been added for easy
reference) is claimed to be a case in which axioms Z1–Z4 lead to conclusions
that no human would accept:

You know that the airplane on which John Doe was traveling has crashed
in some remote location, but you have no information whether anyone
on board has survived. In this situation, you might make the following
assignment:

t(“John Doe is alive”) = 0.5. (4.1)

Axiom Z4 would lead you immediately to:

t(“John Doe is dead”) = 0.5. (4.2)

While this is a reasonable assignment, it would in turn lead you to

t(“John Doe is both dead and alive”) = 0.5 (4.3)

Thus there is an element of truth in the statement “John Doe is both dead
and alive”. However, any rational person will argue that it is impossible
for John Doe to be both dead and alive, so that the statement “John Doe is
both dead and alive” must always be false and have a truth value of zero.

The semantics defined in (Zadeh 1965) would assign to (4.1) the following
meaning:

John Doe has a degree of membership equal to 0.5 in the set of all living
persons.

John Doe, then, possesses 50% of the characteristics associated with persons
who are fully alive. While not an unreasonable assignment of truth value,
(4.1) implies a very precise knowledge of John Doe’s condition which is
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inconsistent with the statement “you have no information whether anyone on
board has survived”. Then (4.2) follows immediately from (4.1) via Axiom
Z4, and states that John Doe possesses 50% of the characteristics associ-
ated with completely dead persons. The conclusion, (4.3), is that John Doe
possesses half of the characteristics associated with persons that are fully
alive and half of the characteristics that are associated with persons that are
completely dead, as may well befit someone involved in an airplane crash in a
remote area, is a direct result of Axiom Z2. Other than the initial assignment
of a precise truth value while claiming to know nothing about John Doe’s
status, there would seem to be nothing in the fuzzy logic inference presented
in (deSilva 1994) that contradicts human rationality.

It seems likely, however, that different semantics were intended in justi-
fying the conclusion that “any rational person will argue that it is impossible
for John Doe to be both dead and alive, so that the statement ‘John Doe
is both dead and alive’ must always be false and have a truth value of zero”
(deSilva 1994). If the statement “John Doe is alive” was construed as meaning
that “John Doe is fully alive” then t(“John Doe is alive”) = 1.0 �= 0.5, and
axiom Z4 gives t(“John Doe is dead”) = 0.0. Then it follows immediately
from axiom Z2 that t(“John Doe is both dead and alive”) = 0.0. The problem
thus stated is one of classical bivalent logic, not fuzzy logic, and the initial
truth value assignment of t(“John Doe is alive”) = 0.5 is erroneous.

Alternatively, the following meaning may have been intended:

[t(“John Doe is alive”) = 0.5] ≡ [the probability that John Doe is fully
alive = 0.5] (4.4)

[t(“John Doe is dead”) = 0.5] ≡ [the probability that John Doe is
completely dead = 0.5] (4.5)

Once again, these are reasonable estimates of the probability that John Doe
has full membership in either the set of living persons or the set of dead
persons, respectively. But, these semantics involve only classical sets and
probability theory, and the problem statement has nothing to do with fuzzy
logic. The Law of the Excluded Middle applies; John Doe cannot be both
fully alive and completely dead; so we must have:

t(“John Doe is both dead and alive”) ≡ [the probability that John Doe is
both fully alive and fully dead] = 0.0

The claim that “fuzzy logic can lead inescapably to conclusions that no
human being would accept” (deSilva 1994) is not supported by any of these
arguments.

The use of the Law of the Excluded Middle when reasoning with empirical
data deserves additional attention. If the sentences “The glass is full” and
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“The glass is empty” had been used above to describe a case in which a glass
is half full, we would have t(“The glass is full”) = 0.5 and t(“The glass is
empty”) = 0.5. The resulting conclusion,

t(“The glass is full” ∧ “The glass is empty”) = 0.5 (4.6)

indicates that the glass is both half full and half empty, i.e., it possess 50% of
the characteristics of a full glass and 50% of the characteristics of an empty
glass, a result acceptable to rational humans. Classical logic, in which t(“The
glass is full”) = 0.0, since the glass is not full; and t(“The glass is empty’) =
0.0, since the glass is half full; generates, in accord with LEM, the conclusion:
t(The glass is full” ∧ “The glass is empty”) = 0.0. This is a correct result,
the glass is neither full nor empty, but, in comparison to (4.6), relatively
uninformative.

Even when dealing with emotionally charged issue of human life and
death it is not clear that the Law of the Excluded Middle always applies.
Consider the case of a person in a “persistent vegetative state”, i.e., one
who exhibits no brain activity and and whose heart and lung functions are
controlled by external devices. To assign to this person the same degree of
membership in the set of all living persons as that accorded to the physician
attending the patient would seem to be a gross miscategorization (Cranford
1987) (Wikler 1988).

4. Introduction to the Kenevan Truth Interval Fuzzy Logic

Axioms Z1–Z4 provide us with a mechanism by which, if we know t(A) and
t(B), we can determine t(A ∧ B). But, if we are given t(A ∧ B) we cannot infer
t(A) or t(B). If t(A) is completely unknown, we can only write t(A) = x. In
what follows we define a fuzzy logic that uses a subinterval of the real unit
interval, to denote the degree of truth of a proposition that eliminates these
shortcomings.

We assume that the single truth value a of any formula A exists but that it
is known only as a closed subinterval of the real unit interval that encloses it.
The subinterval will be designed by its endpoints and written as A: [a0, a1],
where a0 ≤ a ≤ a1. If the single truth value is known, we write A : [a, a]. For
ease of exposition we denote max(a, b, . . ., z) by ab . . . z and min(a, b, . . ., z)
by ab . . . z.

We will state the inference rules in tableau format; introduced by Bethe,
enhanced by Smullyan; and described in (Elfrink 1989). The premises for
the inference are written above the line, the conclusions below. The vertical
line used in the inference rules for conjunction and disjunction separates two
worlds, each of which represents a possible conclusion inferable from the
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hypotheses. In an example from classical logic we represent a logical formula
S conjoined with the conjunction A ∧ B in an interpretation in which A ∧ B
has truth value False as S[F(A ∧ B)]. The inference is then stated as:

S[F(A ∧ B)]
FA, S|FB, S

Two worlds, or interpretations, are possible in this case; one in which the
truth value of A must be False and that of B can be either True or False; and
another in which the truth value of B must be False and that of A can be either
True or False.

Given these conventions the inference rules for disjunction, conjunction,
negation, and intersection (Kenevan 1992: 147) are shown in tableaux format
in Figure 2, below.

Figure 2. Inference Rules for Truth Interval Fuzzy Logic.

The inference rule for conjunction states that; if a world, i.e., an interpret-
ation, exists in which the single truth value for A is known to lie in the interval
[a0, a1], that for B in the interval [b0, b1], and that for A ∧ B in the interval
[q0, q1]; then two worlds are possible, one of which must occur even though
we do not know which. In one, the truth value of A is contained by the interval
[q0a0, a1], that of B by [q0b0, q1b1], and that of A ∧ B by [q0a0b0, q1a1b1].
The second world differs from the first in that the truth value of A is contained
by the interval [q0a0, q1a1] and that of B by [q0b0, b1]. The other inference
rules operate in a similar manner.
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The intersection inference rule deserves additional explanation. It is
possible that a formula or proposition F may appear more than once, with
different truth intervals associated with each occurrence, in a single node
of the proof tree resulting from successive applications of inference rules.
The multiple appearances of F can be compressed into a single occurrence
by using the inference rule for intersection which requires that the single
truth interval associated with F be the intersection of all of the truth intervals
associated with the multiple occurrences of F. If, in any leg of the proof tree,
a null interval results from an application of the intersection inference rule,
that leg is considered to be closed.

The correctness of the truth interval boundaries for the disjunctive rule
is demonstrated in (Kenevan 1992: 148–150) and proofs for the remaining
inference rules are similar. The truth interval fuzzy logic defined by these
inference rules includes the classical logic as a special case (Entemann 2000:
169) and the truth intervals specified in the inference rules are as small as
they can be (Entemann 2000: 166).

The simplest proof method of the fuzzy interval logic, the truth interval
refinement proof method, starts by creating a tableau with the premises, above
the line. The inference rules are then applied until the resulting truth intervals
cease to contract, or until either an impossible truth interval (one in which
the lower boundary is greater than the upper boundary) or a null interval is
generated. Any such interval designates a closed leg of the proof tree, one
which contributes nothing to the final truth intervals. At the termination of the
proof each non-closed leaf of the proof tree, a tableau, describes a possible set
of truth values for each logical expression in the hypothesis, i.e., a possible
world. If all branches of the proof tree close then it has been inferred that the
original premises constitute a contradiction.

Each application of an inference rule results in a truth interval that is
smaller than or equal to the original, so if one starts with X: [x, y], 0.5 <
x, y ≤ 1.0, it is impossible to prove X: [w, z], 0.0 ≤ w, z, < 0.5. The truth
interval fuzzy logic is, then, consistent in the same sense that classical logic
is consistent.

To demonstrate the truth interval refinement proof method we return to
Misconception #4 and let:

A = “John Doe is alive” and
¬A = ¬(“John Doe is alive”) = “John Doe is dead”

Since we are totally ignorant of John doe’s condition, we set A: [0.0, 1.0]. By
this choice we are asserting that, since we have absolutely no knowledge of
John Doe’s degree of membership in the set of living persons, the smallest
interval that is guaranteed to contain the correct value is the entire real unit
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Figure 3. First Step in the Proof of A ∧ ¬A.

interval. The negation inference rule then requires that ¬A: [0.0, 1.0]. If we
are certain of nothing else, then we must also assert that A ∧ ¬A: [0.0, 1.0].
The conjunctive inference rule then infers that one of two worlds must exist,
each of which is identical to the initial world, or that, since we know nothing,
we can infer nothing.

If we are sure that the Law of the Excluded Middle applies, we may also
assert that A ∧ ¬A: [0.0, 0.0], or that John Doe cannot have any degree of
membership in both the set of living persons and the set of dead persons.
Figure 3 shows the first steps in the inference. First, the conjunctive inference
rule is applied to the premises, the result being given as the first row below
the line. The negation inference rule is then applied to A to generate the
second row, containing two occurrences of ¬A with different truth intervals.
An application of the negation inference rule to the two occurrences of ¬A
completes the first three steps in the proof. We continue by applying the
appropriate inference rules to the bottom left tableau of Figure 3 to generate
the next step in the proof process, shown in Figure 4. Here the right leg of
the proof tree terminates with a tableau that contains ¬A: [0.0, 0.0] and ¬A:
[1.0, 1.0] which would, after an application of the intersection inference rule,
generate the null interval, closing that leg. The tableau on the lower left is
identical to the original, so another application of the inference rules will
simply duplicate Figure 4. This is, then the final step in the left leg of the
proof tree started in Figure 3.

In a similar manner we now apply inference rules to the bottom right
tableau of Figure 3, with the result shown as Figure 5, to complete the proof.
The left subtree in Figure 5 is closed due to the nonexistent truth interval
[1.0, 0.0] attached to ¬A. The final tableau of the right subtree duplicates the
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Figure 4. Left Leg of the Proof Tree for A ∧ ¬ A

Figure 5. Right Leg of the Proof Tree Started in Figure 3.

premises, so further application of inference rules will not produce any new
results, and this leg of the proof tree is terminated.

Figure 6 shows, without the intermediate steps, the only survivors of the
proof procedure, the terminal tableaux of both the right and left subtrees of
Figure 3. That for the left describes a world in which one has no knowledge of
the John Doe’s degree of membership in the set of living persons, but he is not
a member of the set of dead persons. In the second, John Doe is clearly dead.
In both worlds the Law of the Excluded Middle is satisfied, in agreement with
popular dogma, since John Doe has a zero degree of membership in the set of
those who are both living and dead.
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Figure 6. Final Tableau in the Proof of A ∧ ¬A.

5. Misconceptions Regarding Fuzzy Logic Proof Theory

Misconception #5: There can be no proof theory for fuzzy logic (Pelletier
1994).
A proof theory for the Kenevan truth interval fuzzy logic has been presented
above. To completely invalidate this claim a proof theory for a logic defined
only by axioms Z1–Z4 is presented below.

By analogy with the classical concept, we define fuzzy logical
consequence as follows:

Given formulae F1, F2, . . ., Fn and a formula G, G is said to be a fuzzy
logical consequence of F1, F2, . . ., Fn (or, G logically follows from F1,
F2, . . ., Fn using fuzzy logic) if and only if for any interpretation in
which F1 ∧ F2 ∧ F3 ∧ . . . ∧ Fn is true or fuzzy true, G is also true or
fuzzy true, respectively.

Theorem 5: Given formulae F1, F2, . . ., Fn and a formula G, G is a fuzzy
logical consequence of F1, F2, . . ., Fn if and only if the formula (F1 ∧ . . .

∧ Fn) ⇒ G is a fuzzy tautology.
Proof: Recall that: (F1 ∧ . . . ∧ Fn) ⇒ G ≡ ¬(F1 ∧ . . . ∧ Fn) ∨ G.

Assume that G is a fuzzy logical consequence of (F1 ∧ . . . ∧ Fn) so, in
any interpretation I in which t(F1 ∧ . . . ∧ Fn) > 0.5, we must have t(G) >
0.5 in I. When t(F1 ∧ . . . ∧ Fn) > 0.5 and t(G) > 0.5, we have from Z3,
t(¬(F1 ∧ . . . ∧ Fn) ∨ G) > 0.5 in I. If t(F1 ∧ . . . ∧ Fn) < 0.5 in I then
t(¬(F1 ∧ . . . ∧ Fn)) > 0.5 in I and, from Z2, t(¬(F1 ∧ . . . ∧ Fn) ∨ G) >
0.5 in I. Therefore, t((F1 ∧ . . . ∧ Fn) ⇒ G) > 0.5 in all interpretations and
is a fuzzy tautology.

Now assume that (F1 ∧ . . . ∧ Fn) ⇒ G is a fuzzy tautology. Therefore
t(¬(F1 ∧ . . . ∧ Fn) ∨ G) > 0.5 in all interpretations I. Then, from Z4, if
t(F1 ∧ . . . ∧ Fn) > 0.5 in I, t(¬(F1 ∧ . . . ∧ Fn)) < 0.5 in I, and, according
to Z3, t(G) > 0.5 in I. Hence, G is a fuzzy logical consequence of (F1 ∧
. . . ∧ Fn). �
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Whenever: (F1 ∧ . . . ∧ Fn) ⇒ G is a fuzzy tautology,
¬((F1 ∧ . . . ∧ Fn) ⇒ G) must be a fuzzy contradiction.
¬((F1 ∧ . . . ∧ Fn) ⇒ G) ≡ ¬(¬(F1 ∧ F2 ∧ . . . ∧ Fn) ∨ ¬G) ≡
(F1 ∧ F2 ∧ . . . ∧ Fn) ∧ ¬G
and we have proven Theorem 6, the fuzzy analog of the classical proof by
contradiction.

Theorem 6: Given formulae F1, F2, . . . , Fn and a formula G, G is a fuzzy
logical consequence of F1, . . . , Fn iff the formula (F1 ∧ . . . ∧ Fn) ∧ ¬G is
a fuzzy contradiction.

So, if we restrict ourselves to fuzzy propositions A for which

0.5 < t(A) ≤ 1.0 or 0.0 ≤ t(A) < 0.5

fuzzy logic is amenable to the concept of logical consequence and, hence, a
proof theory. This subset of the entire fuzzy logic includes Zadeh’s dispos-
itional logic, where a disposition is “a proposition which is preponderantly,
but not necessarily always, true” (Zadeh 1988).

Misconception #6: Fuzzy logic can never be proven to be proof theoretic
complete (Pelletier 1994).
The term proof theoretic complete, as applied to a logical theory, indicates
that any theorem that can be composed using the syntax of a theory can also
be proven using the inference rules of the theory. Formal definitions of these
terms are:

A logical theory L is said to be proof theoretic complete, or complete,
if every tautology in L is provable in L.

A computation method is complete if, for every sentence S, the
alogrithm will, with input S, return an indication that S is a tautology,
or that it is not, in a finite amount of time.

The second definition ties the term complete to a computational recipe that
determines whether or not a theorem is a tautology. In this case the term
decideable should, perhaps, be used instead of complete.

Truth interval fuzzy dispositional logic is proof theoretic complete (Ente-
mann 2000: 174–176). The proof involves showing that all fuzzy tautologies
involving only one disjunction, e.g., A ∨ ¬A, or two disjunctions and one
conjunction, e.g., (A ∨ ¬A) ∧ (B ∨ ¬B), can be proven in the theory. This
set of formulae contains all simple tautologies. A simple inductive argument
extends this result to include all tautologies.
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Misconception #7: “Fuzzy logic introduces enormous complexities”
(Haack 1996: 238).
The term complexity, when applied to a logic, embraces multiple meanings.
The first involves computational complexity or, very informally, a measure
of the time required by a theorem proving algorithm to process a formula
containing N propositions. In another sense, the complexity of a logic refers
to the difficulty of formulating, then solving, a problem using the syntax of
that logic. A third case, probably that intended by Susan Haack, concerns the
size of the formal rule base that is required to assign truth values to logical
formulae, i.e. the process of logical inference.

The first, that of computational complexity, can be dealt with quickly. The
worst case complexity of the truth interval refinement method in the Kenevan
Truth Interval Fuzzy Logic is O (23∗N), that of the proof methods involving
fuzzy logical consequence is O(24∗N), where N is the number of connectives
in the formula being processed (Entemann 2000: 178–179). In contrast, the
complexity of proof methods associated with classical propositional logic
is O(2N), where N is the number of symbols in the formula. The computa-
tional complexity of fuzzy logic is, then, greater than that of classical logic.
Nonetheless, PROLOG, an automatic theorem prover for the Horn clause
subset of classical predicate logic (which is, in the worst case, undecideable),
has proven to be quite useful for solving empirical problems. Fuzzy logic
theorem provers are likely to be equally useful. If the increased complexity
proves to be a problem, heuristics of considerably lower complexity are avail-
able (Cox 1994). An automatic theorem proving program implementing the
truth interval refinement proof method for the truth interval fuzzy logic has
been implemented (Entemann 2000: 180–181).

As an illustration of the second sense of complexity, we consider the
control logic of an autonomous mobile robot and contrast implementations in
fuzzy logic and classical logic. The speed of the robot and the distance separ-
ating it from the nearest obstacle on its current trajectory are, at any instant in
time, crisp values known to the limits of precision of the sensors employed,
their maxima, and the CPU being used. The set all discrete values for such
parameters is, usually, impossibly large. It would seem to be desirable, even
necessary, to categorize discrete parameter values and define the control logic
for each category rather than for each individual parameter value. Speed,
for example, could be categorized by SLOW, MODERATE, and FAST; each
category being typified by the observed behavior of the robot at a speed
deserving full membership in that category. At any speed fully deserving
the designation SLOW, for example, the robot can execute a right angle turn
without rolling over. In contrast, at any speed fully deserving the appellation
of MODERATE the sharpest turning angle that can be successfully negotiated
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is 60◦. It is, futhermore, very unlikely that the behavior of the robot at a speed
of 5.63 cm/sec will be significantly different than at 5.64 cm/sec. Hence,
categorizing 5.63 cm/sec as SLOW and 5.64 cm/sec. as MODERATE is not
justified.

A fuzzy logic controller would utilize (Entemann 2001):
1. A fuzzy rule base, or a set of rules of the form:

IF speed is MODERATE & distance is MODERATE THEN turn
MODERATELY
IF speed is FAST & distance is MODERATE THEN turn
SHARPLY

2. A set of functions defining the degrees of membership of discrete values
in the various categories. If a relatively large number of values deserve
full membership in each category Ci a graphical representation of the
membership function might resemble Figure 7a, below. Alternatively, if
only one value, or a very small number of values, characterizes a category
the membership function might resemble that of Figure 7b.

3. A fuzzy inference engine to:
a. Calculate the truth value of the premise of each rule according to

axiom Z2, invoking the membership functions supplied to do so.
b. Select the maximum truth value associated with each action in

accordance with Axiom Z3.
c. Compute a weighted average (the weights are the truth values) of

action values to generate a crisp value for the designated action.

Figure 7. Membership Functions for Fuzzy Categories.

A classical inference engine, using crisp sets, would execute the first
rule for which the premises could be evaluated as True. Since very small
changes in parameter values should not, usually, cause large changes in the
action taken, the precision of the classical inference engine would need to be
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enhanced by significantly reducing the size of each category. The number of
categories is, as a result, increased thereby significantly increasing both the
computational complexity of the classical inference engine and the design
complexity of its rule base. The complexity of the fuzzy control system is,
less than that of the classical under these circumstances.

The third, and final, sense of complexity refers to the complexity of the
formal rule set required to process a particular system, as in “the complex-
ities introduced by fuzzy logic are such as to nullify the usual definite,
mechanical, routine character of formal rules” when linguistic variables,
e.g., MODERATE in “speed is MODERATE”, are used in statements of a
logic (Haack 1996: 239). The rationale for this statement appears to in the
statement that follows: “Zadeh concedes that the choice of suitable linguistic
approximations is a matter of discretion.” Consider, however, a formal logic
in which:

1. The definitions of the membership functions, e.g., those of Figure 7, that
define the linguistic variables (one for each linguistic variable) used in
logical inference are part of the input.

2. Each membership function is invoked as a step in specifying each
interpretation.

The membership functions replace the “built in” rules of classical logic that
assign values of True and False when creating a classical interpretation. The
resulting logic system would retain the “definite, mechanical, and routine
character” of the formal rules of inference. The increase in complexity would
be of the order of magnitude of the task performed in classical first order
logic when creating interpretations for a universally quantified formula. In
PROLOG, Robinson’s Unification Algorithm performs this task quite nicely
and would, with some modifications, do the same thing for fuzzy lgoic.

Proving theorems in fuzzy logic is, indeed, a more complex task than
proving theorems in classical logic, but not impossibly complex. A basis for a
system that performs such tasks using rule-based heuristic rules of inference
and a limited number of membership functions, is presented in (Chang 1997).

Misconception #8: “We Do Not Need Fuzzy Logic” (Haack 1996: 242).
Classical logic is, clearly, an indispensable tool for mathematicians and philo-
sophers who can postulate worlds in which premises are known precisely and
can be legitimately assigned bivalent truth values. In particular, all of the
proofs about fuzzy logic, i.e., meta proofs, presented herein used classical
logic. It would seem, then, that philosophers and mathematicians, and anyone
else who restricts themselves to inference in theoretical domains, do not need
fuzzy logic. But, a theory formulated in classical logic can be expected to
have only limited applicability to empirical problems because
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“. . . its use presupposes that the relevant relations and individuals of the
theoretical discourse are exact. Relations and individuals of empirical
discourse are, however, usually inexact and so cannot be included in the
theoretical domain. A correspondence with theoretical entities is achieved
by idealization” (Cleave 1991).

So, investigators drawing inferences from empirical data, those who are not
content to approximate reality in order to use classical logic, need a logic that
processes truth values other than True or False. The descriptors degrees of
belief, or degrees of nearness to truth, which are acceptable to Susan Haack
(Haack 1996: 257), are excellent descriptors for the truth values of fuzzy
logic. The use of such designations, in either formal or heuristic inference,
requires fuzzy logic.

Conclusions

All of the alleged misconceptions concerning fuzzy logic presented here have
been demonstrated to be misconceptions. Most importantly, fuzzy logic is not
classical bivalent logic masquerading under a misleading title; nor does it lack
the properties of consistency and completeness, which are deemed neces-
sary in a formal logic system; nor do the additional complexities inherent in
fuzzy inference justify the statement that “fuzzy logic introduces enormous
complexities”.

To say that “. . . fuzzy logic is not, after all, an attempt to represent truth-
preserving inferences, and is not, after all, a theory in the same domain as
classical logic; in fact, so construed, it is obviously not properly describable
as a ‘logic’ at all” (Haack 1996: 231), is simply not justified. Fuzzy logic
as described in this paper is a formal tool eminently suited for dealing with
the imprecision inherent in empirical data. Imprecise premises used in formal
inference will, of necessity, generate imprecise conclusions. This does not
justify withholding the accolade of logic from fuzzy logic.
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