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1. 

1.1. An expression of the form C;= --n c, eive, where the c,‘s are arbitrary 
complex numbers will be referred to as a trigonometric polynomial of 
degree n. By a polynomial of degree n we will mean the finite sum 
C;=. avzy, where a, EC (v = 0, l,..., n). 

According to Bernstein’s inequality if t is a trigonometric polynomial of 
degree n such that 

It(e)I G 1 for WEIR (1) 

then (for references see [ 61) 

It’(e)1 Gn for PER. (2) 

In (2) equality holds if and only if 

t(e) = c ~ n e - i”8 + C, eine, ICC,I + Ic,I = 1. 

It was shown by van der Corput and Schaake [l] that in the case when 
t(e) is real for real values of 0 the much stronger conclusion 

it’(e) + int(e)l = J{ t’(e)}‘+ n2{ t(e)}‘< n (3) 
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holds for all ~9 E If& Inequality (3) is sharp for each 8; in fact, all real 
trigonometric polynomials of the form 

t(e)=C-ne-in~+C,eino (ccn=E,, Ic,I =J) 

are extremal. The example t(0) = efinO shows that for an arbitrary 
trigonometric polynomial of degree n the quantity It’($) f int(e)l can be as 
large as 2n, which is trivially its upper bound. 

If p(z) = C:=,, u,z” is a polynomial of degree n such that 

I P(Z)1 d 1 for IzI = 1 (4) 

then p(e”) = t(e”), where t is a trigonometric polynomial of degree n 
satisfying (1) and so 

I P’(Z)1 G n for IzI = 1. (5) 

Here, equality holds if and only if 

p(z) = a,z” (IanI = 1). 

If z”p( l/f) = p(z), i.e., uk = C&_~ for 0 <k < n, then (for references see [6]) 
the right-hand side of (5) may be replaced by n/2. The question as to what 
happens if 

z”p( l/z) = p(z) (i.e., ak = a, _ k) for O<k<n (6) 

was taken up by Govil, Jain and Labelle [S] but remains unresolved. In 
[4] we showed that there exists a polynomial of degree n ( >2), namely 

p(z)= {(l-iz)‘+z”-2(z-~)2}/4, (7) 

satisfying (6) for which 

~~~Ip’(z)l~Ip’(-~)l=n-~~(n-l)~~~Ip(z)l. (8) 2 * 

This is surprising since (6) is in some sense quite restrictive. It is clear that 
for a polynomial p satisfying (4) and (6) the sharp upper bound for 
I p’(e”)I would depend not only on n but also on 8. We shall see that for 
such polynomials 

1 p’(e2kni’n)l <n - 1, k = 0, l,..., n - 1, (9) 

and so the polynomial in (7) happens to be extremal for 8= --i if 
n = 4, 8, 12 ,.... This remains true even if (6) is replaced by the much weaker 
assumption a0 = a,. In fact, we prove 
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THEOREM 1. Let p(z) = xi=0 u,z” be a polynomial of degree n ( 22) 
satisfying (4). Zf a, = a,, then 

1 p’(e”)I < (n - 1) + laOI leine - 11 for BElR, (10) 

and so in particular 

Ip’(e”)I <n- 1 if eine= 1. (10’) 

Remark. The example 

p,(z) = {Co~+0-z)2+Z~--(oJ +z)2}/4, con= 1, 

shows that in (10’) equality can hold at any of the n-th roots of unity for 
all n 2 2. 

As a global upper bound for Ip’(e”)l, inequality (10) gives us only the 
trivial value n. But we will show how it can be used to obtain: 

THEOREM 2. Under the conditions of Theorem 1 we have 

1 1 
Ip’(z)l <n--+- 

2 2(n+l) 
for IzI = 1. (11) 

If t is a trigonometric polynomial of degree n then 

e”‘t(Q=p,(e’@), eei”Bt(B)=pz(ee’e) 

where p1 and p2 are polynomials of degree 2n. Thus Theorems 1 and 2 
readily imply: 

COROLLARY 1. Let t(0) = C;= --n c, eive be a trigonometric polynomial of 
degree n satisfying (1). If c _ n = c, (which is the case tf for example t is a 
cosine polynomial), then 

It’(@ AI iMe)/ G 2n - 1 + 2 Ic,I [sin no/ for eE R, (12) 

and so in particular 

It’(Wn) + int(k+z)l Q 2n - 1, k = 0, l,..., 2n - 1. (13) 

Further 

IW)*We)l~24+2~2n1+ 1) for em. (14) 

It is easily seen that 

I t’(krc/n) + int(k+z)l = 2n - 1 



76 FRAPPIER, RAHMAN, AND RUSCHEWEYH 

for the trigonometric polynomial 

t(e)=t,,(e)=e-jne{(l -ei(e-(Wn)))* 

+ e2i(Wn) e2i(n - I)@( 1 + ei(e - (Wn)))2}/4 

which satisfies ( 1) and for which c _ n = c, = b. We have 

It’(k?T/n) - int(kx/n)l = 2n - 1 

for 

t: el-+ t,,(e). 

1.2. It was proved by DuBin and Schaeffer [3] that if f is an entire 
function of exponential type r satisfying 

If(x)1 G 1 for xEIW (15) 

and is real on the real axis, then 

If’(x) Ik izf (x)l < 7 for XER (16) 

This result generalizes inequality (3) of van der Corput and Schaake since 
a trigonometric polynomial t(e) = C;= --n c, eive is an entire function of 
exponential type n of the complex variable 8. A cosine polynomial being an 
even entire function of exponential type one might wonder if Corollary 1 
admits an extension to such functions. It turns out that the best possible 
upper bound is the trivial bound 22. To see this let E be an arbitrary 
positive number less than z (there is nothing to prove in the case r = 0) and 
consider the even entire function 

fT.E(Z) = e -ir=( (1 _ @z)2 + e21(r-e)z(ei&z _ i)2}/4 

which is of exponential type r and for x E R 

1 f,,,(x)1 d +( 11 - ieiU( 2 + leiEx - iI 2, 
=+(lei=+i12+ lei&x-i12) 

< 1. 

Further, it is easily checked that 

lfi,((4k~1)n)+i~f~,.((4k2E1)n)(>2r-E, k=O, +l, +2,... 
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We have 

If’((4ki1)‘)-iTf((4ki1)“)/ ,22-E, k=O, +l, +2,... 

for 

f: z Hf,,,W 

1.3. If p is a polynomial of degree n such that 

I P(X)1 6 1 for -16x61 (17) 

then p(cos 0) is a cosine polynomial t of degree n satisfying (1) and so as a 
special case of Corollary 1 we obtain 

COROLLARY 2. Let T,,(x) =cos n arccos x be the nth Chebyshev 
polynomial of the first kind. If p(x) = C;=0 a,x” is a polynomial of degree n 
satisfying ( 17), then 

Inp(x) *i Jt-;;z p’(x)1 

<2n-l+ j& Ia,1 jm, -l<X<l, (18) 

and so in particular 

d2n- 1, k = 0, 1 ,..., n - 1. (19) 

Further 

It is 

Inp(x)+iJi7p’(x)I <2n-;+A, -1 <x< 1. (20) 

clear from the context that inequality (19) is sharp. 

1.4. A lower bound for max,,, = I Ip’(z)l. 
Let p(z) = CfEO a,z” be a polynomial of degree n ( 2 2) such that a, = a, 

and max,,, =1 I p(z)1 = 1. The example p(z) = z shows that for such a 
polynomial max,=,=i Ip’(z)l may be as small as 1. On the other hand, we 
have 
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THEOREM 3. Zf p(z) = C;=O a,z” is a polynomial of degree n such that 
/a,,[ = [anI and max,,, = 1 [p(z)/ = 1, then 

gl+ s I% if na3 

;a=; I P’(Z)l .? 21 if n=2. 

2. AN INTJZRWLATION FORMULA 

For the proof of Theorem 1 we need the following 

LEMMA 1. Zfp(z)=C;= O a,z” is a polynomial of degree n ( 2 3) then for 
all real y we have 

a0 + ((n - 1) p(z) - zp’(z) + a,z” - 2a,) eiY 

+ (zp’(z) - p(z) - 2a,z” + ao) eziv + a,z” e3iy 

= & eiy sin*(y/2) 

n-2 

a .2 

e-(2kn+y)i/(n-2) 

k= l sin ((2ka + y)/2(n - 2)) p(ze 
(2kn+y)i/(n-2) 

13 (21) 

with 

Proof: Let y (& 0 (mod 2n)) be an arbitrary real number. Further, let z 
be any complex number and consider the integral 

where 

P(5) 
F(i)=(i_Z)2i(jn-2_eiyZn-22). 

Clearly 

Z(p)-, as p-+00, (23) 
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whereas the residues of F at its poles z, 0 and zei(Y+2kn)‘(n-22), k = l,..., n - 2, 
are 

--- : in sii2ii2j { (1 - eiY) q’(z) - (1 - e”) P(z) - (n - 2) P(z)), 

1 
--e - iy 

Z” 
a0 

and 

11 1 - iy 
e - (2kn + v)i/(n - 1) 

----e 

4z”n-2 sin2((2k7r + y)/2(n - 2)) 
p(ze(2k” + Y”” - 2)), k = I,..., n - 2, 

respectively. Hence by the theorem of residues 

4a,z” eiy sin2(r/2) 

- {(n - 2) p(z) + (I- eiy) p(z) - (1 - e”) z&(z)} + 4a. sin2(r/2) 

= - & sin2(r/2) 

i.e., 

n-2 

XC 

e - (2kn + y)i/(n - 2) 

k=, sin2((2kn+y)/2(n-2))p(ze 
(2ka + y)i/(n - 2) 1, 

@ 3ir _ 2e2iY + eiy) u,zn 

+ {(n - 1) eiYp(z) - e2iYp(z) - (eiy -e”‘) z@(z)} 

+ (eZiy -2eiY+ l)a, 

= & eiy sin2(y/2) 

n-2 

XC 

e-(2kn+y)i/(n-2) 

k=l sin2((2kn+y)/2(n-2))P(Ze 
(2klr + y)i/(n - 2) 1 

which is the same as (21). The assumption “y & 0 (mod 2~)” can obviously 
be dropped. Formula (21) when applied to zn - ’ (or to z) readily leads us 
to the identity (22). 

3.1. Proof of Theorem 1. If p(z) = X:=0 u,z” is a polynomial of degree n 
satisfying (4), then (21) in conjunction with (22) and a result of van der 
Corput and Visser [2] implies that 

11101 + Izp’(z) - p(z) - 2U”Z” + a01 <n - 2, JZI = 1, n 2 3. 
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In the case when a,, = a,, this latter inequality can be written as 

la,z”l + Izp’(z) - p(z) - 2a,z” + a,1 <n - 2, IZI = l,n>3 

from which we readily obtain (10) for n 2 3. 
In the case n=2, p(z) has the form ao(z2 + l)+a,z so that 

e- jep(eie) = 2a, cos 8 + a,. 

Thus 

Ip’(e”)I < Ip( +2 Ia,sin81 

which gives us the desired estimate. 

Proof of Theorem 2. From (10) it readily follows that (11) holds 
provided laOI Q +((n + 2/(n + 1)). In case laOI > +((n + 2)/(n + 1)) we may 
use the known estimate [7, p. 1251 

Iif(e”)l <n--$la,l, BER, 

to obtain the desired conclusion. 

Proof of Theorem 3. Let 

P(z) = P(Z) - a0 and Q(z)=~~P(l/Z)=a,z”-‘+a,~“-*+ . . . +a,. 

From 

Q(@) = eine P(e’B), ee R, 

it follows that if IP(eieo)l =max,,,=, IP( = M (say), then 

I P’(e”O)I > Mn - lQ’(eieo)l. (24) 

Further, since Q is a polynomial of degree n- 1 such that 
max,,, = i IQ(z)\ = A4 and IQ(O)\ = IanI = laoI, we have 

lQ’(ete)l < M(n - 1) -3 laOI, 8ER. 

Thus, we obtain 

max IP’(z)l > IP’(eieo)l > M+ 
121 = 1 

5 laoI. 

This gives us the desired result for n > 3 since A4 > 1 - laoI. 
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In the case n = 2 we clearly have 
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