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a b s t r a c t

Given n + 1 angles 0 ≤ θ0 < θ1 · · · < θn ≤ π , we discuss various extremal problems over
the class of polynomials Pn endowed with the norm

|p|n = max
0≤j≤n

p(ei θj ) + p(e−i θj )

2

 .
© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let Pn denote the class of polynomials of degree at most n with complex coefficients. To p(z) =
n

k=0 akz
k

∈ Pn,
we associate the polynomial P(z) =

n
k=0 akTk(z) where Tk is the kth Chebyshev polynomial [1]. Given n + 1 angles

0 ≤ θ0 < θ1 < θ2 · · · < θn ≤ π , an application of the Lagrange interpolation formula at the n + 1 nodes

−1 ≤ cos(θn) < cos(θn−1) · · · < cos(θ1) < cos(θ0) ≤ 1

yields

P(cos θ) =

n
j=0

Lj(cos θ)P(cos θj), 0 ≤ θ ≤ 2π, (1.1)

where

Lj(z) :=
W (z)

(z − cos θj)W ′(cos θj)
∈ Pn, 0 ≤ j ≤ n,

with

W (z) :=

n
j=0


z − cos θj


(1.2)
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are the fundamental polynomials of this interpolation process. Setting

Lj(z) =

n
k=0

ak,jTk(z) and ℓj(z) =

n
k=0

ak,jzk

we readily obtain from (1.1) for all 0 ≤ θ ≤ π

p(ei θ ) + p(e−i θ ) =

n
j=0


ℓj(ei θ ) + ℓj(e−i θ )

 p(ei θj) + p(e−i θj)

2

and, in particular, for any p ∈ Pn,

p(ei θ ) =

n
j=0

ℓj(ei θ )
p(ei θj) + p(e−i θj)

2
. (1.3)

Therefore, for any linear functional L over Pn, we have

L(p) =

n
j=0

L(ℓj)
p(ei θj) + p(e−i θj)

2
, p ∈ Pn. (1.4)

Equipping Pn with the norm

|p|n := max
0≤j≤n

p(ei θj) + p(e−i θj)

2

 ,
we obtain from (1.4) that

max
p∈Pn,|p|n=1

|L(p)| ≤

n
j=0

|L(ℓj)|. (1.5)

Indeed, equality holds in (1.5): there exists a polynomial

P(z) :=

n
k=0

akTk(z) ∈ Pn

such that

P(cos θj) =


L(ℓj)/|L(ℓj)| if L(ℓj) ≠ 0,
any complex number with modulus ≤ 1 if L(ℓj) = 0. (1.6)

Then the associated polynomial p(z) =
n

k=0 akz
k clearly satisfies |p|n = 1 and L(p) =

n
j=0 |L(ℓj)|. It is also clear that

the extremal polynomialsp ∈ Pn, i.e., those for which |p|n = 1 and

|L(p)| =

n
j=0

|L(ℓj)|,

are fully determined by the interpolation condition (1.6). In particular, if L(ℓj) ≠ 0 for all 0 ≤ j ≤ n, there exists a unique
(up to a multiplicative constant of modulus 1) extremal polynomial. Any linear problem over the space Pn with the discrete
norm | |n for an arbitrary system {θj : j = 0, . . . , n} given as above is explicitly solvable.

The discrete norm |p|n for the choice {θj} = {jπ/n}nj=0, in combination with the linear functional Lθ , for θ ∈ [0, π] fixed
and,

Lθ (p) :=
p(ei θ ) − p(e−i θ )

ei θ − e−i θ
, p ∈ Pn,

seems to be of particular interest. In this case formula (1.4) becomes

p(ei θ ) − p(e−i θ )

ei θ − e−i θ
=

n
j=0

cn(j, θ)
p(eijπ/n) + p(e−ijπ/n)

2
(1.7)

with

cn(j, θ) =



1
2n

1 − cos(n θ)

1 − cos(θ)
, j = 0,

(−1)j

n
cos(jπ) − cos(n θ)

cos(jπ/n) − cos(θ)
, 1 ≤ j ≤ n − 1,

1
2n

−1 + (−1)n cos(n θ)

1 + cos(θ)
, j = n.
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This formula has been derived in previous work [2–4] and it has also been shown that

n
j=0

|cn(j, θ)| ≤ n, 0 ≤ θ ≤ π. (1.8)

The limiting case θ → 0, when applied to p(eiϕz), leads to

eiϕp′(eiϕ) =

n
j=0

cn(j, 0)
p(ei(ϕ+jπ/n)) + p(ei(ϕ−jπ/n))

2
, (1.9)

and to

eiϕp′(eiϕ) −
n
2
p(eiϕ) =

n
j=1
j odd

cn(j, 0)
p(ei(ϕ+jπ/n)) + p(ei(ϕ−jπ/n))

2
. (1.10)

Formula (1.10) has various consequences, some of which are (even improvements of) classical results: for example if
p ∈ Pn and pϕ(z) = p(eiϕz), we obtaineiϕp′(eiϕ) −

n
2
p(eiϕ)

 ≤
n
2
|pϕ |n, 0 ≤ θ ≤ 2π,

which is a refinement of the classical Bernstein inequality for polynomials in the unit disc D = {z | |z| < 1}.
It can also be shown that (1.10) contains the Marcel Riesz interpolation formula for trigonometric polynomials: if t(ϕ) is

a trigonometric polynomial of degree n then p(eiϕ) := einϕt(ϕ) is in P2n. Formula (1.10), with n replaced by 2n, and applied
to this polynomial p turns out to be nothing but the Marcel Riesz formula.

The famous inequality of Duffin and Schaeffer for the first derivative of polynomials in the interval [−1, 1] also follows
from (1.9); see [4]. For matters concerning polynomial inequalities and interpolation formulae, we refer the reader to the
book of Rahman and Schmeisser [5].

The norm |p|n (with {θj} = {jπ/n}nj=0) naturally should be compared to other norms on Pn, for example to |p|D :=

supz∈D |p(z)| or else ∥p∥n := max0≤j≤2n−1 |p(eijπ/n)|. It is a consequence of a very beautiful theorem of Rakhmanov and
Shekhtman [6] (see also [7] for related results) that for some absolute constant K (not depending on n)

∥p∥n ≤ |p|D ≤ K∥p∥n, p ∈ Pn.

This has recently been extended by Sheil-Small [8] and Dubinin [9]. It is also known [10] that

|p′
|D ≤ n∥p∥n, p ∈ Pn.

We shall prove the following three results.

Theorem 1.1. There exists a universal constant M < ∞ (independent of n) such that for any polynomial p ∈ Pn we have

|p|D ≤ M log n max
0≤j≤n

p(eijπ/n) + p(e−ijπ/n)

2

 .
Again using the case where {θj} = {jπ/n}nj=0, we obtain inequalities for coefficient functionals.

Theorem 1.2. For any p(z) :=
n

k=0 ak(p)z
k, we have

|a0(p)| ≤ |p|n, |an(p)| ≤ |p|n

and

|a1(p)| ≤ |p|n


2
n
cot

 π

2n


, n even

2
n
csc

 π

2n


, n odd (≥3).

Furthermore, for a fixed integer k ≥ 1, we have

lim
n→∞

max
p∈Pn
|p|n=1

|ak(p)| =
4
π

.
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Our final result is dealing with the coefficients cn(j, θ) in the formula (1.7). We have seen that for the system {θj} =

{jπ/n}nj=0 the relation

n
j=0

|cn(j, θ)| ≤ n, 0 ≤ θ ≤ π, (1.11)

holds. This is obviously also important for possible variants of the Bernstein inequality. We are interested to which extent
(1.11) holds for other node systems {θj} as well. We have the following theorem.

Theorem 1.3. Let n be odd and for some set of nodes {θj}
n
j=0 assume

max


n

j=0

|cn(j, 0)|,
n

j=0

|cn(j, π)|


≤ n. (1.12)

Then {θj}
n
j=0 = {jπ/n}nj=0 and (1.11) holds.

We have numerical evidence that this result is not true for n even. There is also evidence that one cannot replace the
condition (1.12) by the weaker one

n
j=0

|cn(j, 0)| ≤ n

to guarantee the validity of the conclusion of Theorem 1.3.
Theorem 1.3 is reminiscent of a result of Duffin and Schaeffer [11] (see also [5, pp. 574–576] for a detailed proof).

2. Proof of Theorem 1.1

We shall use the notation
n

j=0

′′αj =
α0

2
+

n−1
j=1

αj +
αn

2
.

Then, it has been established in [4] that (compare with (1.3))

p(ei θ ) =

n
j=0

′′λj(θ)


p(eijπ/n) + p(e−ijπ/n)

2


where for 0 ≤ j ≤ n

λj(θ) =
i(−1)j sin(θ)(−einθ + (−1)j)

n(cos(jπ/n) − cos(θ))

and using (1.5), (1.6)

M(n, θ) := max
p∈Pn,|p|n=1

|p(ei θ )| =

n
j=0

′′
|λj(θ)|

=
2
n

n
j=0

′′
| sin(θ)| | sin(n θ/2 + jπ/2)|cos(θ) − cos(jπ/n)

 .

Since the functions λj are 2π-periodic and fulfil

|λj(−θ)| = |λj(π − θ)| = |λn−j(θ)|, j = 0, . . . , n,

we find

M(n, θ + 2π) = M(n, −θ) = M(n, π − θ) = M(n, θ), θ ∈ R,

so that we can restrict our attention to the range 0 ≤ θ ≤ π/2. We look for upper bounds for the terms in the last sum.
When j = 0,

1
n

| sin(θ)| | sin(n θ/2)|
|1 − cos θ |

=
1
n

 sin(n θ/2)
sin(θ/2)

cos


θ

2

 ≤
1
n

 sin(n θ/2)
sin(θ/2)

 ≤ 1.
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When j = n,

1
n

| sin(θ)| | sin(n θ/2 + nπ/2)|
|1 − cos θ |

=
1
2n

| sin(θ)| | sin(n θ/2 + π/2)|
| cos2(θ/2)|

≤
1

2n cos2(θ/2)
≤

1
n

and for 1 ≤ j ≤ n − 1, the terms are

2
n

| sin(θ)| | sin(n θ/2 − jπ/2)|
| cos(θ) − cos(jπ/n)|

=
1
n

| sin(θ)|

| sin(jπ/(2n) + θ/2)|
| sin(n(θ − jπ/n)/2)|
| sin ((θ − jπ/n)/2) |

while  sin(θ)

sin(jπ/(2n) + θ/2)

 =
| sin(θ/2)|

| sin(jπ/(2n) + θ/2)|
| sin(θ)|

| sin(θ/2)|

≤ 2
| sin(θ/2)|

| sin(jπ/(2n) + θ/2)|

= 2
sin(θ/2)

sin(jπ/(2n) + θ/2)
(2.1)

because π/(2n) < jπ/(2n) + θ/2 < π if 1 ≤ j ≤ n − 1.
Remark further that

d
dθ

2 sin(θ/2)
sin(jπ/(2n) + θ/2)

=
sin(jπ/n)

sin2(jπ/n + θ/2)
≥ 0

and therefore by (2.1) and π/4 < jπ/2n + π/4 < 3π/4 2 sin(θ/2)
sin(jπ/(2n) + θ/2)

 ≤
2 sin(π/4)

sin(jπ/(2n) + π/4)
≤ 2.

This leads to

M(n, θ) ≤ 1 +
1
n

+
2
n

n−1
j=1

 sin(n(θ − jπ/n)/2)
sin((θ − jπ/n)/2)

.
We now write θ = sπ/n + ε π/nwhere s is an integer, 0 ≤ s < n − 1 and −1/2 ≤ ε < 1/2. Then

M(n, θ) ≤ 1 +
1
n

+
2
n

| sin(n(θ − sπ/n)/2)|sin ((θ − sπ/n)/2)
 +

2
n

n−1
j=1
j≠s

| sin(n(θ − jπ/n)/2)|sin ((θ − jπ/n)/2)


≤ 3 +
1
n

+
2
n

n−1
j=1
j≠s

| sin(n(θ − jπ/n)/2)|sin ((θ − jπ/n)/2)


and given our representation we also have for any 1 ≤ j ≤ n − 1,θ − jπ/n
2

 ≤
π

2
so that

| sin(θ/2 − jπ/(2n))|
|θ/2 − jπ/(2n)|

≥
2
π

.

Therefore

M(n, θ) ≤ 3 +
1
n

+
2
n

n−1
j=1
j≠s

1
| sin((θ − jπ/n)/2)|

≤ 3 +
1
n

+
2π
n

n−1
j=1
j≠s

1
|θ − jπ/n|

= 3 +
1
n

+ 2
n−1
j=1
j≠s

1
|s − j + ε|
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≤ 3 +
1
n

+ 2
n−1
j=1
j≠s

1
|s − j| − ε

≤ 3 +
1
n

+ 8
n−1
j=1
j≠s

1
2j − 1

≤ 3 +
1
n

+ 8
2n
j=1

1
j

≤ 3 +
1
n

+ 8γ + 8 log(2n + 1),

where γ is the Euler constant. �
The order of growth O(log n) is sharp since, for odd n, the Riemann sumsM(n, π/2) satisfy

M

n,

π

2


≥

2
√
2

π
log(n) + O(1).

Remark. Applying the classical Bernstein inequality to Theorem 1.1 yields

|p′
|D ≤ Mn log(n) |p|n, p ∈ Pn,

with the same constant M as in Theorem 1.1.

3. Proof of Theorem 1.2 and related remarks

In this section we always assume {θj} = {jπ/n}nj=0.

Proof of Theorem 1.2. In this case we have (see (1.2))

W (z) = −
(1 − z2)T ′

n(z)
n2n−1

and a simple computation together with (1.4) gives

ak =


2
n

n
j=0

′′ cos

kjπ
n


p(eijπ/n) + p(e−ijπ/n)

2
, 1 ≤ k ≤ n − 1

1
n

n
j=0

′′ cos

kjπ
n


p(eijπ/n) + p(e−ijπ/n)

2
, k = 0, n

for any polynomial p(z) =
n

k=0 akz
k
∈ Pn. As explained in the introduction we obtain

max
p∈Pn,|p|n=1

|a0| = max
p∈Pn,|p|n=1

|an| = 1

with the maximum attained respectively only if p(z) ≡ a0 or p(z) ≡ anzn. Similarly, for n > 1, elementary computations
lead to

max
p∈Pn,|p|n=1

|a1| =


2
n
cot

 π

2n


if n is even,

2
n
csc

 π

2n


if n ≥ 3 is odd

and there will be essentially only one extremal polynomial when n is odd but many more when n is even. For k ≥ 1 fixed,
we have

lim
n→∞

max
p∈Pn,|p|n=1

|ak| = 2
 1

0
| cos(kπx)|dx =

4
π

. �

We end this section by looking at a particular extremal problem and set for n ≥ 1,

mn = max
p∈Pn,|p|D=1

|a0 + a1| = max
p∈Pn, |p|D=1

(|a0| + |a1|).
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Not much seems to be known about the sharp size ofmn. Rahman [10] has shown that

mn ≤
2

n + 1
cot


π

2(n + 1)


(3.1)

but the equality cannot hold for infinitely many values of n since by a simple application of the Schwarz lemma we have

sup
f

|a0 + a1| =
5
4

<
4
π

= lim
n→∞

2
n + 1

cot


π

2(n + 1)


where the sup is taken over all functions f (z) =


∞

n=0 anz
n, holomorphic in D with |f |D = 1. It is also known [12] that

mn = inf
Q

res 1Q


where the inf is taken over all polynomials Q (z) =
n

j=1(1 − eiϕjz) with ϕj real and |Q ′(0)| = 1 and the sum is taken over
all residues of each such 1/Q . The choice Q (z) = (1 − zn+1)/(1 − z) leads again to (3.1).

The more recent remark [13] is that for any p(z) =
n

k=0 akz
k
∈ Pn

|a0| + |a1| ≤ max
|z|=2 cos(π/n+2)

|p(z)|.

Unfortunately, none of the above results seems to yield an explicit sharp estimate concerning mn for large values of n. The
approach in this paper yields an interesting alternative:

µn := max
p∈Pn,|p|n=1

|a0 + a1| =
1
n

n
j=0

1 + 2 cos

jπ
n


with

lim
n→∞

µn =

 1

0
|1 + 2 cos(πx)|dx +

1
3

+
2
√
3

π
= 1.4359 . . . .

Remark however that 5/4 < 4/π < 1/3 + 2
√
3/π . It is also not clear whether or not

max
p∈Pn,|p|n=1

(|a0| + |a1|) = max
p∈Pn,|p|n=1

|a0 + a1|.

4. Proof of Theorem 1.3

Suppose we are given a set of angles {θj} with n odd and with

max


n

k=0

|cn(k, 0)|,
n

k=0

|cn(k, π)|


≤ n. (4.1)

We shall prove that {θj} = {jπ/n}nj=0. Let first p(z) ≡ zn in (1.6) with θ = 0. We then have

n =

n
k=0

cn(k, 0) cos(n θk) = (−1)n−1n
n

k=0

cn(k, π) cos(n θk)

and by (4.1) for both, θ = 0 and θ = π ,

n =

 n
k=0

cn(k, θ) cos(n θk)

 ≤

n
k=0

|cn(k, θ)| | cos(n θk)|

≤

n
k=0

|cn(k, θ)| ≤ n.

It follows that the above equality holds everywhere and in particular for each 0 ≤ k ≤ n

|cn(k, 0)| + |cn(k, π)| > 0 H⇒ cos(n θk) = ±1 H⇒ θk =
ℓk π

n
, (4.2)

where ℓk is an integer, 0 ≤ ℓk ≤ n. We now write the identity (1.6) as

p(ei θ ) − p(e−i θ )

ei θ − e−i θ
=


k∈S

cn(k, θ)
p(ei θk) + p(e−i θk)

2
+


k∈T

cn(k, θ)
p(ei θk) + p(e−i θk)

2
(4.3)
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for all p ∈ Pn, 0 ≤ θ ≤ π , where

T =


k | 0 ≤ k ≤ n and θk ≠

jπ
n

∀j ∈ {0, 1, . . . , n}


and

S =


k | 0 ≤ k ≤ n and θk =

ℓk π

n
for some ℓk ∈ {0, 1, . . . , n}


.

By (4.2), cn(k, 0) = cn(k, π) = 0 for each k ∈ T . We shall now assume that T is non-empty, i.e., there existskwith 0 ≤k ≤ n
such that θk̃ is not an integer multiple of π/n. Then the cardinality of S is at most n and there exists v, 0 ≤ v ≤ n such that
θk ≠ v π/n for all k ∈ S.

Next we define

P(z) :=
(1 − z2)T ′

n(z)
z − cos(v π/n)

:=

n
j=0

αj,vTj(z) ∈ Pn

and the associated p(z) =
n

j=0 αj,vz j. As before we have

P(cos θ) =
p(ei θ ) + p(e−i θ )

2
and in particular for all k ∈ S, p(ei θk) + p(e−i θk)/2 = 0. It follows from (4.3) that

p(ei θ ) − p(e−i θ )

ei θ − e−i θ
=


k∈T

ck(θ)
p(ei θk) + p(e−i θk)

2

and, taking the limits θ → 0 and θ → π ,

p′(1) =


k∈T

cn(k, 0)
p(ei θk) + p(e−i θk)

2
= 0,

and

p′(−1) =


k∈T

cn(k, π)
p(ei θk) + p(e−i θk)

2
= 0.

What remains is to calculate the values p′(1) and p′(−1) explicitly. We have

P(cos θ) =
sin2(θ)T ′

n(cos θ)

cos(θ) − cos(v π/n)
=

n sin(θ) sin(n θ)

cos(θ) − cos(v π/n)

and using z = ei θ , we get

P(cos θ) = −
n
2zn

(1 − z2)(1 − z2n)
(1 − zeiv π/n)(1 − ze−iv π/n)

= 2n(−1)v+1
n

k=0

′′ cos

k
v π

n


cos(kθ), (4.4)

hence

p(z) = 2n(−1)v+1
n

k=0

′′ cos

k
v π

n


zk.

This implies

p′(1) =


−n3, v = 0,
n((−1)v+1

+ 1)
cos(πv/n) − 1

, 0 < v ≤ n,

which can be 0 only if v is an even number, and

p′(−1) =


n((−1)n − (−1)v)
cos(πv/n) + 1

, 0 ≤ v < n,

(−1)nn3, v = n,

which, under the assumption v even, can be zero only if n is even as well. This contradiction completes the proof. �
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