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We study the problem of determining the probability that m
vectors selected uniformly at random from the intersection of
the full-rank lattice Λ in Rn and the window [0, B)n generate Λ

when B is chosen to be appropriately large. This problem plays
an important role in the analysis of the success probability of
quantum algorithms for solving the Discrete Logarithm Problem in
infrastructures obtained from number fields and also for computing
fundamental units of number fields.
We provide the first complete and rigorous proof that 2n + 1
vectors suffice to generate Λ with constant probability (provided
that B is chosen to be sufficiently large in terms of n and the
covering radius of Λ and the last n + 1 vectors are sampled from a
slightly larger window). Based on extensive computer simulations,
we conjecture that only n + 1 vectors sampled from one window
suffice to generate Λ with constant success probability. If this
conjecture is true, then a significantly better success probability of
the above quantum algorithms can be guaranteed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a finite group. Denote by pm(G) the probability that m elements drawn uniformly at ran-
dom from G with replacement generate G . The problem of determining or bounding this probability
is of fundamental interest in group theory and has been extensively studied for various families of
groups (Acciaro, 1996; Pomerance, 2001).
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The purpose of this paper is to study a very natural generalization of this problem from finite
abelian groups to finitely generated abelian torsion-free groups. More precisely, we consider the case
of lattices, i.e., discrete subgroups of Rn . The problem is now to determine the probability that m
vectors selected uniformly at random with replacement from the intersection of the full-rank lattice
Λ in Rn and a window X ⊂ Rn generate Λ. We denote this probability by pm(Λ, X).

Our study of this problem was initially motivated by its relevance to quantum algorithms and
quantum cryptanalysis, which we explain in more detail at the end of the paper. But we also believe
that this problem is interesting on its own due to its appeal as a very natural and fundamental
problem in lattice theory. In fact, it can be viewed as a generalization of the following elementary
problem in number theory. For Λ = Z and X = [1, B], the probability pm(Λ, X) corresponds to the
probability that m integers chosen uniformly at random from the set {1, . . . , B} with replacement are
coprime. It is known that limB→∞ pm(Z, B) = 1/ζ(m) where ζ denotes the Riemann zeta function.
For Λ = Zn and X , the probability pm(Λ, X) is equal to the probability that the m × n matrix whose
column vectors are selected uniformly at random from Λ∩ X is unimodular. This problem was studied
for special forms of X asymptotically. For X = [−B, B]n , B → ∞, it was studied by Maze et al. (2011),
and for X = v + [−B, B]n , B → ∞, where the entries of the vector v are bounded polynomially in
terms of B , by Elizalde and Woods (2007). In both cases, it was shown that the limit of the probability
for B → ∞ is

∏m
j=m−n+1 ζ( j)−1. Both works did not study the problem of bounding the probability

in the non-asymptotic case, i.e., in the case where B is fixed.
In this paper, we consider the case where Λ is an arbitrary full-rank lattice and X = [0, B)n for

a sufficiently large but fixed B . Ideally, we want to minimize m, while at the same time ensure
that the probability pm(Λ, [0, B))n is bounded from below by a nonzero constant. We use ν(Λ) to
denote the covering radius of Λ, λ1(Λ) the length of a shortest (nonzero) vector of Λ, and det(Λ)

the determinant of Λ.
Our two major contributions to the study of this problem are:

Theorem 1.1. Let Λ be a lattice of full rank in Rn, and assume that B � 8nn/2 · ν(Λ) and B1 � 8n2(n + 1)B.
Assume that n vectors are selected uniformly at random from Λ ∩ [0, B)n and n + 1 vectors uniformly at
random from Λ ∩ [0, B1)

n. If the vectors are sampled independently, then the probability that all these vectors
generate Λ is at least

αn :=
(

n+1∏
i=2

ζ(i)−1 − 1

4

)
·

n−1∏
k=0

(
1 − nk/2 (4nn/2 + 1)k

(4nn/2 − 1)n

)
� 0.092.

Unfortunately, our current approach requires m = 2n + 1 samples and two windows of different
sizes to be able to prove that the probability of generating the lattice Λ is bounded from below
by a nonzero constant. However, based on extensive numerical evidence, we formulate the following
conjecture, which states that only m = n + 1 samples and only one window size suffice to attain a
constant probability of generating the lattice.

Conjecture 1.2. For every n ∈ N, there exists a constant 0 < cn < 1 and a rational function fn ∈ R(x, y)

satisfying

∀x0 > 0, ∀y0 ∈ (
0, x1/n

0

]: sup
{

fn(x, y)
∣∣ 0 < x � x0, y0 � y � x1/n} < ∞

such that the following holds:
Let Λ be a lattice in Rn and let B > fn(det Λ,λ1(Λ)). Then the probability that n + 1 vectors chosen

uniformly at random from Λ ∩ [0, B)n generate the lattice Λ is at least cn. Moreover, the constant cn can be
chosen close to

∏n+1
k=2 ζ(k)−1 .

2. Solving the lattice generation problem

We break down the lattice generation problem into two subproblems. First, we consider the prob-
ability that n vectors sampled uniformly at random from Λ generate a sublattice Λ1 of full rank, i.e.
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do not lie in a hyperplane. Then, we compute the probability that the residue classes of the next
n + 1 vectors generate the finite abelian quotient group Λ/Λ1. Finally, we combine these two results.

In the following, we assume that n > 1. We discuss a result for the case n = 1 in Section 3.
The idea to prove a lower bound on the probability by considering the above two steps was pro-

posed by Schmidt (2007). We present a correct proof of the problem arising in the first step, fixing
a mistake in Schmidt’s proof. Our approach to analyzing the problem arising in the second step is
entirely different from the approach undertaken by Schmidt. The differences will be discussed in Sec-
tions 2.1 and 2.3.

2.1. Generating a sublattice of full rank

Note that λ1, . . . , λn ∈ Λ ∩ [0, B)n generate a sublattice of full rank if and only if they are linearly
independent over R. This is the case if λi is not contained in the (i − 1)-dimensional hyperplane
spanned by λ1, . . . , λi−1. Thus to bound the probability that n uniformly random vectors from Λ ∩
[0, B)n generate a full-rank sublattice, we bound the number of lattice elements in the intersection as
well as the number of lattice elements lying both in the intersection and a k-dimensional hyperplane,
1 � k < n. We find such bounds using Voronoi cells; see also Section 1.2 of Chapter 8 in Micciancio
and Goldwasser (2002). To state the results, we need to introduce some notation, most notably the
covering radius of a lattice.

Let Λ be a lattice in Rn of full rank. For λ ∈ Λ, let

VΛ(λ) = {
x ∈ Rn

∣∣ ∀λ′ ∈ Λ \ {λ}: ‖x − λ‖2 <
∥∥x − λ′∥∥

2

}
be its (open) Voronoi cell. We know that VΛ(λ) is contained in an open ball of radius ν(Λ) centered
around λ, where ν(Λ) is the covering radius of Λ, and that the volume of VΛ(λ) is detΛ. Moreover, if
λ 
= λ′ , VΛ(λ)∩ VΛ(λ′) = ∅, and

⋃
λ∈Λ VΛ(λ) =Rn . Details can be found in Micciancio and Goldwasser

(2002, Chapter 8).
Note that ν(Λ) � 1

2 nn/2+1 det Λ

λ1(Λ)n−1 , where λ1(Λ) denotes the first successive minimum of Λ

(Micciancio and Goldwasser, 2002), i.e. the length of a shortest nonzero vector in Λ.

Lemma 2.1. If B > 2ν(Λ). Then

(B − 2ν(Λ))n

det Λ
�

∣∣Λ ∩ [0, B)n
∣∣� (B + 2ν(Λ))n

detΛ
.

Lemma 2.2. Let B > 0 and H be a k-dimensional hyperplane, 1 � k < n. Then

∣∣Λ ∩ H ∩ [0, B)n
∣∣ � nk/2(B + 2ν(Λ))k(2ν(Λ))n−k

detΛ
.

The proofs are similar to the one of Proposition 8.7 in Micciancio and Goldwasser (2002):

Proof of Lemma 2.1. If λ ∈ Λ satisfies VΛ(λ) ∩ [ν(Λ), B − ν(Λ))n 
= ∅, then we must have λ ∈ [0, B)n .
Therefore, (B − 2ν(Λ))n/det Λ � |Λ ∩ [0, B)n|.

If λ ∈ Λ ∩ [0, B)n , then we must have VΛ(λ) ⊆ [−ν(Λ), B + ν(Λ))n . Therefore, |Λ ∩ [0, B)n| �
(B + 2ν(Λ))n/det Λ. �
Proof of Lemma 2.2. Let λ ∈ Λ ∩ H ∩ [0, B)n . Then VΛ(λ) ⊆ X := [−ν(Λ), B + ν(Λ))n ∩ (H +
Bν(Λ)(0)), where Bν(Λ)(0) is a ball of radius ν(Λ) centered around 0. Therefore, |Λ ∩ H ∩ [0, B)n| �
vol(X)/det Λ, and we have to estimate vol(X).

Clearly, if volk(Y ) denotes the k-dimensional volume of Y := H ∩ [−ν(Λ), B + ν(Λ))n , we have
that vol(X) � volk(Y ) · (2ν(Λ))n−k . (In fact, we can replace (2ν(Λ))n−k by the volume of an
(n − k)-dimensional ball of radius ν(Λ).)

Let b1, . . . ,bk be an orthonormal basis of H . Set T := {(x1, . . . , xk) ∈ Rk | ∑k
i=1 xibi ∈ [−ν(Λ), B +

ν(Λ))n}; then vol(T ) = volk(Y ). A point y ∈ Y corresponds to (〈y,b1〉, . . . , 〈y,bk〉) ∈ T . Write bi =
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(bi1, . . . ,bin) and y = (y1, . . . , yn) ∈ [−ν(Λ), B +ν(Λ))n , set Aij := B +ν(Λ) if bij � 0 and Aij := ν(Λ)

if bij < 0. Then

n∑
j=1

|bij|
(

Aij − (
B + 2ν(Λ)

))
� 〈y,bi〉 =

n∑
j=1

y jbi j �
n∑

j=1

|bij|Aij,

implying that 〈y,bi〉 ranges over an interval of length ‖bi‖1(B + 2ν(Λ)) �
√

n(B + 2ν(Λ)). Therefore,

vol(T ) � nk/2(B + 2ν(Λ)
)k

. �
The lemmas allow us to find the following bound on the probability that n random vectors gener-

ate a sublattice of full rank:

Corollary 2.3. Assume that B � 8nn/2 · ν(Λ). Let

X := (
Λ ∩ [0, B)n)n

and

Y := {
(y1, . . . , yn) ∈ X

∣∣ spanR(y1, . . . , yn) = Rn}.
Then |Y | � 1

2 |X |.

Proof. Assume that y1, . . . , yk ∈ X are linearly independent, 0 � k < n. We bound the probability
from above that yk+1 ∈ X is not contained in the hyperplane generated by y1, . . . , yk , which is of
dimension k. Write B = j · ν(Λ) with j � 8nn/2. By Lemmas 2.1 and 2.2, the probability that yk+1 is
in a k-dimensional hyperplane is bounded from above by

Pk := nk/2(B + 2ν(Λ))k(2ν(Λ))n−k

detΛ
· det Λ

(B − 2ν(Λ))n
= nk/2 ( j + 2)k2n−k

( j − 2)n
.

The success probability is bounded from below by
∏n−1

k=0(1 − Pk). Using induction on n, we can prove
that

n−1∏
k=0

(1 − Pk) � 1 −
n−1∑
k=0

Pk.

The sum
∑n−1

k=0 Pk can be bounded from above as follows:

n−1∑
k=0

Pk = 2n

( j − 2)n

n−1∑
k=0

(√
n( j + 2)

2

)k

= 2n

( j − 2)n

[(√
n( j + 2)

2

)n

− 1

][(√
n( j + 2)

2

)
− 1

]−1

<
2n

( j − 2)n

(√
n( j + 2)

2

)n[(√
n( j + 2)

2

)
− 1

]−1

= nn/2
(

1 + 4

j − 2

)n[(√
n( j + 2)

2

)
− 1

]−1

.

Now (1 + 4
j−2 )n � exp( 4n

j−2 )� exp( 4
8nn/2−1−2/n

) � 2 for all n � 1 and
√

n( j + 2)/2 − 1 � j/2, whence

n−1∑
Pk < 2nn/2 · 2

j
� 4nn/2

8nn/2
= 1

2
. �
k=0
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Note that our lower bound is far from optimal. If one considers the value
∑n−1

k=0 Pk from the proof
and substitutes j by 8nn/2, one obtains the lower bound

n−1∏
k=0

(
1 − nk/2 (4nn/2 + 1)k

(4nn/2 − 1)n

)
.

For n = 1 this is 2
3 , and the product grows to 1 for n → ∞. For small n, the values are:

Dimension n 1 2 3 4 5 6 7

Lower bound 0.666 0.725 0.812 0.859 0.883 0.896 0.905

Remark 2.4. The basic idea of the proof of this corollary is similar to the proof of the first part
of Satz 2.4.23 in Schmidt (2007). Note that the proof in Schmidt (2007) is not correct: the ratio
|Mi−1 ∩B|/|Mi ∩B| considered in the proof can be > 1

2 ; for example, consider r = 3, M = Z3, n > 0
arbitrary (in Schmidt (2007), nν(M) is what we denote by b, i.e., B = [0,nν(M))n), x1 = (1,nν(M) −
1,0), x2 = (0,1,nν(M)− 1), x3 = (0,0,1); then M1 ∩B contains two elements, while M2 ∩B contains
three elements. Therefore, |M1 ∩B|/|M2 ∩B| = 2

3 > 1
2 . The problem is that det Mi cannot be bounded

linearly in terms of ν(M) and det Mi−1, as it was claimed in that proof; in this example, det M1 =√
1 + (n − 1)2, det M2 = √

1 + (n − 1)2 + (n − 1)4 and ν(M) = 1. In our proof, we proceed differently
by considering the ratio |Mi ∩B|/|M ∩B| directly, and both our bound on the probability and our
bound on the minimal size of B is in fact better than the corresponding bounds given in Schmidt
(2007).

2.2. Generating a finite abelian group

In case Λ1 is a sublattice of full rank of Λ, the quotient group G = Λ/Λ1 is a finite abelian group.
Its order equals the index [Λ : Λ1], and by the Elementary Divisor Theorem, it can be generated by
n elements.

Proposition 2.5. Let G be a finite abelian group known to be generated by n elements. Then the probability
that n + 1 elements drawn uniformly at random from G generate G is at least

ζ̂ :=
∞∏

i=2

ζ(i)−1 � 0.434,

where ζ denotes the Riemann zeta function.

For the decimal expansion of ζ̂ , see Integer sequence A021002 (no date). The probability that a
finite group is generated by a certain number of random elements has been studied extensively. For-
mulas for the probability for p-groups and products of finite groups of coprime orders have been
derived by Acciaro (1996, Lemma 4 and Corollary 3) (see also Pomerance, 2001). Our result is essen-
tially a corollary of these two results, which we have not found in this form in the literature.

Proof of Proposition 2.5. For a finite group H , let λt(H) be the probability that t group elements
chosen uniformly at random generate H . In Acciaro (1996), it is shown that if H is a p-group with
minimal number d of generators, then

λt(H) =
d∏

i=1

(
1 − p−i) ·

t∏
i=d+1

pi−d − p−d

pi−d − 1
=

t∏
i=t−d+1

(
1 − p−i)

for t � d (Lemma 4), and that if H = H1 × H2 with |H1|, |H2| being coprime, then λt(H) =
λt(H1)λt(H2) (Corollary 3).
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Let p1, . . . , pk be the distinct prime divisors of |G|, and let Gi be the pi -Sylow subgroup of G .
Then G = G1 ⊕ · · · ⊕ Gk . Now Acciaro (1996, Corollary 3) yields λt(G) = ∏k

i=1 λt(Gi) since |Gi | is a
pi -group, and pi 
= p j for i 
= j. Let di be the minimal number of generators for Gi ; since the minimal
number for G is n, we must have di � n. Thus, by Acciaro (1996, Lemma 4)

λn+1(Gi) =
n+1∏

i=n+1−di

(
1 − p−i)� n+1∏

i=2

(
1 − p−i).

Therefore, the probability that n elements of an arbitrary finite abelian group G which can be gener-
ated by n elements generate the group is at least

∏
p

n+1∏
i=2

(
1 − p−i) =

n+1∏
i=2

∏
p

(
1 − p−i) =

(
n+1∏
i=2

ζ(i)

)−1

using the Euler product representation of the Riemann zeta function. Now

n+1∏
i=2

ζ(i) �
∞∏

i=2

ζ(i) = ζ̂−1. �

Observe that our approach only works if we have at least n + 1 elements. If we chose just n ele-
ments randomly, the final product would include ζ(1)−1 = 0 and the probability would drop down to
zero. However, a different approach can result in a nonzero probability for n elements. This probability
will necessarily not be constant anymore, but has to depend on n or |G|. For example, if p1, . . . , pk are
distinct primes and G = ∏k

i=1 F
n
pi

∼= (Z/(p1 · · · pk)Z)n , then G can be generated by n elements, but the

probability that n random elements from G generates G is exactly
∏k

i=1
∏n

j=1(1− p− j
i ), which goes to

zero for k → ∞ for exactly the above reasons. Hence, any non-trivial bound on the probability must
take n or p1, . . . , pk into account.

This shows that our approach will not work with fewer than 2n + 1 elements, if the desired bound
on the probability should be independent of n.

2.3. The final result

Assume that the first n sampled vectors from Λ ∩ [0, B)n generate a sublattice Λ1 of full rank.
Then G = Λ/Λ1 is a finite abelian group which can be generated by n elements. Thus if we sam-
ple n + 1 elements λ + Λ1 from G in a uniform random manner, we can bound the probability
that they generate G . In case G = 〈λn+1 + Λ1, . . . , λ2n+1 + Λ1〉 and Λ1 = 〈λ1, . . . , λn〉, we have
Λ = 〈λ1, . . . , λn, λn+1, . . . , λ2n+1〉.

The main problem is that we cannot directly sample uniformly at random from G: if we choose
λ ∈ Λ ∩ [0, B)n uniformly at random, then λ + Λ1 will in general not be uniformly distributed in
G = Λ/Λ1. By enlarging the window [0, B)n to [0, B1)

n with B1 > B large enough, we ensure that the
residue classes of the samples λ ∈ Λ ∩ [0, B1)

n are essentially distributed uniformly at random in G .
More precisely, we can show that the statistical distance between the distribution and the perfectly
uniform distribution is small enough. This is established by the following result:

Lemma 2.6. Let Λ1 be an arbitrary full-rank sublattice of Λ. Assume that B1 > 2ν(Λ1) and we can sample
uniformly at random from Λ ∩ [0, B1)

n. Denote the sample by λ. Then, the total variation distance between
the uniform distribution over Λ/Λ1 and the distribution of λ + Λ1 , where λ ∈ Λ ∩ [0, B1)

n is uniformly
distributed, is at most

1 − (B1 − 2ν(Λ1))
n

(B1 + 2ν(Λ))n
.
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Proof. First note that VΛ1 (λ1) = λ1 + VΛ1 (0) and VΛ1 (λ1) = λ1 + VΛ1 (0). Now, as
⋃

λ1∈Λ1
(λ1 +

VΛ1 (0)) = Rn and two translates of VΛ1 (0) by different elements of Λ1 do not intersect, there exists
a set V with VΛ1 (0) ⊆ V ⊆ VΛ1 (0) satisfying⋃

λ1∈Λ1

(λ1 + V ) = Rn and ∀λ1 ∈ Λ1 \ {0}: (λ1 + V ) ∩ V = ∅.

Note that vol(V ) = vol(VΛ1 (0)) = det Λ1.
We first assume that the window has the form [0, B1]n instead of the form [0, B1)

n and later argue
that the bounds derived also apply to the actual window [0, B1)

n . We need the following three facts:

• There are exactly m = det Λ1/det Λ points of Λ in each translate of V , i.e.,∣∣(λ1 + V ) ∩ Λ
∣∣ = m for all λ1 ∈ Λ1.

This can be shown by using asymptotic arguments similarly to those used in the proof that each
translate of the elementary parallelepipeds of Λ1 contains exactly m elements of Λ (see e.g.
Barvinok, no date).

• There are at least

� = (B1 − 2ν(Λ1))
n

detΛ1

translates of V that are entirely contained inside the window [0, B1]n since V ⊆ Bν(Λ1)(0).
• There are at most

u = (B1 + 2ν(Λ))n

detΛ

points of Λ inside [0, B1]n .

Let Ω = Λ ∩ [0, B1]n . We call λ ∈ Ω good if there exists λ1 ∈ Λ1 such that

λ ∈ λ1 + V ⊆ [0, B1]n.

In words, λ ∈ Ω is good if it belongs to a translate of V that is entirely inside the window [0, B1]n .
Let Ωgood denote the set of good points. Using the first two facts above, we deduce that |Ωgood| � m�.

Let P denote the uniform distribution on Ω and P̃ the uniform distribution on the set of good
points. We view P̃ as a probability distribution on Ω by assigning the probability 0 to any point that
is not good. Then, the total variation distance between P and P̃ is bounded from above by

1

2

∑
λ∈Ω

∣∣P(λ) − P̃(λ)
∣∣ = 1

2
|Ωgood|

(
1

|Ωgood| − 1

|Ω|
)

+ 1

2

(|Ω| − |Ωgood|) 1

|Ω|

= 1 − |Ωgood|
|Ω| � 1 − m�

u
� 1 − (B1 − 2ν(Λ1))

n

(B1 + 2ν(Λ))n
.

Let κ : Λ → Λ/Λ1 denote the canonical projection map. Let Q and Q̃ be the probability distribu-
tions on the cosets Λ/Λ1 induced by the following two-step process: (1) sample λ according to P
and P̃ , respectively, and (2) apply κ to the obtained sample λ. Observe that Q̃ is the uniform distri-
bution on Λ/Λ1. Unfortunately, we cannot sample according to Q̃ but only according to Q. However,
the total variation distance between Q and Q̃ must be less or equal to the one between P and P̃
since the total variation distance satisfies a so-called data processing inequality.

Note that so far, we have considered [0, B1]n instead of [0, B1)
n . As Λ is discrete, there exists some

2ν(Λ1) < B ′
1 < B1 with [0, B ′

1]n ∩ Λ = [0, B1)
n . Applying the result above to [0, B ′

1]n and then using
that
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x �→ 1 − (x − 2ν(Λ1))
n

(x + 2ν(Λ))n

is increasing yields the stated claim for [0, B1)
n . �

Combining the lemma and Proposition 2.5 and using the additivity of the total variation distance
under composition provided that the components are independent, we obtain the following result:

Corollary 2.7. Assume that B � 8nn/2 · ν(Λ) and B1 � 8n2(n + 1)B. Let Y be as in Corollary 2.3 and
(y1, . . . , yn) ∈ Y . Let

X1 := (
Λ ∩ [0, B1)

n)n+1
,

Z = {
(z1, . . . , zn+1) ∈ Xn+1

1

∣∣ spanZ{y1, . . . , yn, z1, . . . , zn+1} = Λ
}
.

Then |Z |� (ζ̂ − 1
4 )|X1| � 0.184|X1|.

Proof. Let Λ1 be the full-rank sublattice generated by y1, . . . , yn . We have the following simple
bound on the covering radius

ν(Λ1) �
√

n

2
λn(Λ1) �

√
n

2
max

i=1,...,n
‖yi‖2 �

√
n

2

√
nB = nB

2

since the yi are linearly independent and every vector in [0, B)n is shorter than
√

nB . Moreover,
ν(Λ1) � ν(Λ).

Let zi be uniformly distributed in Λ ∩ [0, B1)
n . Then, Lemma 2.6 implies that zi + Λ1 (for i =

n + 1, . . . ,2n + 1) are distributed almost uniformly at random from Λ/Λ1. The total variation distance
from the uniform distribution is bounded from above as follows:

1 − (B1 − 2ν(Λ1))
n

(B1 + 2ν(Λ))n
� 1 − (B1 − 2ν(Λ1))

n

(B1 + 2ν(Λ1))n
= 1 −

(
1 − 4ν(Λ1)

B1 + 2ν(Λ1)

)n

� 1 −
(

1 − n
4ν(Λ1)

B1 + 2ν(Λ1)

)
� 4nν(Λ1)

B1
� 2n2 B

B1
� 1

4(n + 1)
.

Consider now the uniform probability distribution on the (n + 1)-fold direct product of Λ/Λ1 and the
probability distribution that arises from sampling almost uniformly at random on each of the compo-
nents as above. Then the total variation between these two distributions is bounded from above by
(n + 1) · 1

4(n+1)
= 1

4 . This is because the total variation distance is subadditive under composition pro-
vided that the components are independent (see e.g. Micciancio and Goldwasser (2002, Subsection 1.3
“Statistical distance” in Chapter 8) for more information on the total variation distance).

Clearly, the abelian group Λ/Λ1 can be generated with only n generators. Hence, Proposition 2.5
implies that n + 1 samples (provided that they are distributed uniformly at random over the group)
form a generating set with probability greater or equal to ζ̂ . Due to the deviation from the uniform
distribution on the (n + 1)-fold direct product of Λ/Λ1 this probability may decrease. However it is
at least ζ̂ − 1/4 since the total variation distance is at most 1/4. The claim follows now by translating
the lower bound on the probability to a lower bound on the fraction of elements with the desired
property. �

Combining this corollary with Corollary 2.3, we obtain a proof of Theorem 1.1. This theorem is
similar to Satz 2.4.23 in Schmidt (2007). We emphasize that our bound on the success probability is
constant, whereas the bound presented in Satz 2.4.23 decreases exponentially fast with the dimen-
sion n. The first part of the proof of Satz 2.4.23 (concerning the generation of a full-rank sublattice)
is unfortunately not correct, but can be corrected as we have shown in our proof of Corollary 2.3.
The idea behind the second part is completely different from our proof and cannot be used to prove
a constant success probability. Perhaps it could be used to prove that only 2n random elements (as
opposed to 2n + 1 elements) are needed to guarantee a nonzero success probability.
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Note that for a fixed dimension n, one obtains bounds larger than 0.092. For n = 2, 3, 4 and 5,
αn is larger than 0.238, 0.185, 0.176, 0.172 and 0.170, respectively.

3. Conjecture

Let b1, . . . ,bn be any basis of the lattice Λ. Consider the natural isomorphism Φ : Rn → Rn map-
ping the i-th standard unit vector ei to bi . Then Φ(Zn) = Λ. Let

X := Φ−1([0, B)n) =
{

(a1, . . . ,an) ∈ Rn
∣∣∣ n∑

i=1

aibi ∈ [0, B)n

}
;

this is a parallelepiped in Rn of volume Bn

det Λ
having 0 as a vertex. If we assume that the basis

b1, . . . ,bn is reduced, then this parallelepiped is not too skewed.
Now let v1, . . . , vm ∈ Λ be vectors, m � n, and consider v̂ i := Φ−1(vi) ∈ Zn for i = 1, . . . ,m. We

have that 〈v1, . . . , vm〉 = Λ if and only if 〈v̂1, . . . , v̂m〉 = Zn , and this is the case if and only if the
matrix (v̂1, . . . , v̂m) ∈ Zn×m is unimodular.

Therefore, the probability that m � n vectors selected uniformly at random in Λ ∩ [0, B)n generate
Λ equals the probability that an n×m integer matrix whose columns are chosen uniformly at random
in X is unimodular.

As indicated in the introduction, this problem was studied for special forms of X asymptotically.
For X = [−B, B]n , B → ∞, it was studied in Maze et al. (2011), and for X = v + [−B, B]n , B → ∞
while v is bounded polynomially in terms of B , in Elizalde and Woods (2007). In both cases, it was
shown that the limit of the probability for B → ∞ is

∏m
j=m−n+1 ζ( j)−1 – which for m = n + 1, not

very surprisingly, equals the probability given in Section 2.2. This can be bounded from below by
ζ̂ > 0.434 as soon as m > n. This implies that for a certain B̂ > 0, we have that the probability is at
least 0.434 for all B > B̂ .

While it seems probable that the proof of Elizalde and Woods (2007) can yield effective non-trivial
bounds for any such B̂ . However, it is unclear whether this would help for the general case, as the
proof only considers the special case X = v +[−B, B]n , while we have to consider essentially arbitrary
parallelepipeds with 0 as a vertex.

We have run computer experiments to study the probability for arbitrary parallelepipeds. We
restricted to the case m = n + 1. For the experiments, we generated a random parallelepiped by
choosing n vectors from [−C, C]n and considering the parallelepiped spanned by them. We gen-
erated 1000 such parallelepipeds, and for every parallelepiped we generated 10 000 integer ma-
trices with columns taken uniformly at random from the parallelepiped. Every matrix was tested
whether it is unimodular. We used three different bounds for C , namely C = 104, C = 109 and
C = 1018. For every combination of n × m = n × (n + 1) and C , we computed both the aver-
age probability that an n × m integer matrix taken from a parallelepiped is unimodular, and the
minimal probability (over all parallelepipeds for given n × m and C ). The results are shown in Ta-
bles 1 (average probabilities) and 2 (minimal probabilities) on p. 12. They also include the “ideal”
probabilities

∏n+1
j=2 ζ( j)−1 predicted for the special parallelepiped with B → ∞ in Maze et al.

(2011).
As one can clearly see, the average values are very close to the ideal ones. But also the minimal

probabilities observed in the experiments were always close to the ideal values. In fact, the difference
between minimal and maximal probabilities never exceeded 3.66%. If one compares these probabilities
to the ones given at the end of Section 2.3, one sees that the probabilities obtained there are far too
low.

Our conjecture is based on the evidence sketched above. The conditions on f ensure that given a
family of lattices where we have an upper bound on det Λ and a lower bound on λ1(Λ), we can find
a lower bound on B such that the result holds for all lattices of this family. This is for example the
case for unit lattices of number fields. There, one has a lower bound on λ1(Λ) depending only on the
degree of the number field (Remak, 1932), and an upper bound on det Λ in terms of the degree and
discriminant of the number field (Sands, 1991).
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Table 1
Average empirical probability that a random n × (n +1) integer matrix from a random parallelepiped inside
[−C, C]n is unimodular.

n C = 104 C = 109 C = 1018 Ideal probability

1 60.7273% 60.8094% 60.8103% 60.7927%
2 50.5849% 50.5899% 50.5649% 50.5739%
3 46.7040% 46.7257% 46.7367% 46.7272%
4 45.0382% 45.0252% 45.0080% 45.0631%
5 44.2531% 44.2315% 44.2052% 44.2949%
6 43.8661% 43.8894% 43.8740% 43.9281%
7 43.6945% 43.6773% 43.7059% 43.7497%
8 43.6003% 43.6162% 43.6049% 43.6620%
9 43.5529% 43.5662% 43.5447% 43.6187%

10 43.5369% 43.5343% 43.5332% 43.5971%
11 43.5124% 43.5463% 43.5556% 43.5864%
12 43.5314% 43.5488% 43.5218% 43.5810%
13 43.5329% 43.5314% 43.5224% 43.5784%
14 43.5217% 43.5322% 43.5679% 43.5770%
15 43.5113% 43.5273% 43.4947% 43.5764%

Table 2
Minimal empirical probability that a random n×(n+1) integer matrix from a random parallelepiped inside
[−C, C]n is unimodular.

n C = 104 C = 109 C = 1018 Ideal probability

1 58.98% 59.17% 59.31% 60.7927%
2 49.03% 48.91% 49.17% 50.5739%
3 45.16% 44.96% 45.34% 46.7272%
4 43.09% 43.31% 43.60% 45.0631%
5 42.39% 42.61% 42.61% 44.2949%
6 42.27% 42.06% 42.06% 43.9281%
7 42.24% 42.37% 41.72% 43.7497%
8 41.99% 42.17% 41.83% 43.6620%
9 42.18% 42.14% 41.78% 43.6187%

10 42.14% 42.02% 42.14% 43.5971%
11 41.94% 41.97% 42.09% 43.5864%
12 41.86% 41.81% 42.09% 43.5810%
13 41.98% 42.12% 42.05% 43.5784%
14 41.65% 42.10% 42.06% 43.5770%
15 41.99% 42.00% 42.13% 43.5764%

The only case in which we know how to prove the conjecture is n = 1. In that case, we
have Λ = vZ for some real number v > 0. Given two elements av,bv ∈ Λ ∩ [0, B), we have that
〈av,bv〉 = vZ if and only if a and b are coprime. Therefore, we are interested in the probability that
two random integers in [0, B

det Λ
) are coprime. For B

det Λ
→ ∞, it is well-known that this probability

goes to ζ(2)−1 = 6
π2 ≈ 0.607927. One can easily make this more precise, for example by using the

computations from Lehmer (1900) and additional computer computations for n � 1000:

Proposition 3.1. Let n � 1 be a natural number and

pn = |{(x, y) ∈ N2 | 0 � x, y � n, gcd(x, y) = 1}|
(n + 1)2

.

Then

pn �
13

22
> 0.5909

with equality in the first inequality if and only if n = 10.
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Proof. For n � 1, let

A(n) := ∣∣{(x, y) ∈N2
∣∣ 0 � x, y � n, gcd(x, y) = 1

}∣∣.
Clearly, pn = A(n)

(n+1)2 and A(n) = 2
∑n

k=1 φ(k) + 1, where

φ(k) = ∣∣{x ∈ N
∣∣ 0 � x < k, gcd(x,k) = 1

}∣∣
is Euler’s totient function. Now in Lehmer (1900, Theorem IV and proof), it is proven that

n∑
k=1

φ(k) = n2

2
· 1

ζ(2)
+ (n), where

∣∣(n)
∣∣ � n

n∑
k=1

1

k
+ n2

2
· 1

n

and ζ is the Riemann ζ function. Now
∑n

k=1
1
k � 1 + ∫ n

1
1
x dx = 1 + log n, whence

∣∣(n)
∣∣ � n(1 + log n) + 1

2
n = 3

2
n + n log n.

This together with ζ(2) = π2

6 shows that

pn = 1 + 2
∑n

k=1 φ(k)

(n + 1)2
�

1 + 2( 3
π2 n2 − 3

2 n − n log n)

(n + 1)2

= 6

π2
· n2

(n + 1)2
− n log n

(n + 1)2
− 3n

2(n + 1)2
+ 1

(n + 1)2
.

Using a computer program, one quickly verifies that pn � 13
22 for all n ∈ Z∩ [1,1000], with equality if

and only if n = 10. For n > n0 := 1000, the above inequality yields

pn >
6

π2
· n2

0

(n0 + 1)2
− n0 log n0

(n0 + 1)2
− 3n0

2(n0 + 1)2
>

13

22
. �

Therefore, the conjecture is true for n = 1 with c1 = 13
22 and f1(x, y) = x.

Finally, note that in case n = m, the result in Maze et al. (2011) shows that one expects that the
only lower bound one can give is 0. We have run a few experiments here as well, and already for
C = 104, not a single unimodular matrix was found during the experiments.

4. Relevance of lattice generation to quantum algorithms and quantum cryptanalysis

The Discrete Logarithm Problem (DLP) is a mathematical primitive on which many public-key cryp-
tosystems are based. Examples of groups, in which the DLP is considered to be computationally hard,
include the multiplicative group of Fq (Menezes et al., 1997), the group of Fq-rational points of an
elliptic curve (Cohen et al., 2006), the divisor class and ideal class groups of an algebraic curve, or
the infrastructure of an algebraic number field (Buchmann, 1991; Scheidler et al., 1994). For the cryp-
tographically relevant instances, the best know classical algorithms have a subexponential running
time. In contrast, there are efficient quantum algorithms that solve these DLPs in polynomial time
(Shor, 1997; Cheung and Mosca, 2001; Hallgren, 2002; Sarvepalli and Wocjan, 2013; Hallgren, 2005;
Schmidt and Vollmer, 2005; Schmidt, 2007).

The statement on the running time of the quantum algorithm for solving the DLP in the infrastruc-
ture of a number field needs to be made more precise. It scales polynomially in the logarithm of the
discriminant K/Q of the number field K , but exponentially in a polynomial expression q([K : Q]) of
its degree [K : Q]. While the exponential scaling seems to be unavoidable for fundamental reasons –
one has to compute shortest lattice basis vectors in dimension [K : Q] to be able to perform basic
arithmetic operations in the infrastructure – it is important to reduce the magnitude of the polyno-
mial q. We now explain why our theorem and conjecture on lattice generation can be used to achieve
such reduction.
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The quantum algorithm solves the DLP problem by reducing it to the problem of finding a basis of
a certain full-rank lattice L ⊂Rn where n = d + 1. We explain this reduction in more detail at the end
of this section. To find a basis of L, the quantum algorithm has a mechanism which, with a certain
probability p1 > 0, outputs an essentially uniformly distributed vector λ ∈ Λ∩[0, B)n+1, where Λ = L∗
is the dual lattice of L and B > 0 is sufficiently large. With probability 1 − p1 it outputs a vector that
is not an element of Λ. Unfortunately, this unfavorable case cannot be recognized efficiently. If one
has λ1, . . . , λm with Λ = 〈λ1, . . . , λm〉Z , one can compute a basis of Λ from these vectors and then
use linear algebra (matrix inversion) to retrieve a basis of L = Λ∗ itself.

To compute the success probability, one has to consider the probability that the m sampled
vectors are actually in Λ, and the probability that the m random vectors from Λ ∩ [0, B)n+1 gen-
erate Λ. If the latter probability is p2, then the overall success probability is ≈ pm

1 p2, and one
expects that one has to run the algorithm ≈ (pm

1 p2)
−1 times before it outputs a basis of Λ and

thus of L itself. The main problem is that for n > 1, the lower bound one can prove for p1 is
quite small. In fact, it seems unavoidable that p1 is bounded away from 1 by a nonzero constant.
Therefore, it becomes evident why it is so important to minimize m without decreasing p2 too
much.

Theorem 1.1 shows that the quantum algorithm can recover a basis of L with constant probability
p2 conditioned on the event that it has obtained m = 2n + 1 samples of Λ, which occurs with proba-
bility pm

1 = p2n+1
1 . For this, we use two different window sizes: the first n vectors are sampled from a

smaller window [0, B)n+1, and the latter n + 1 vectors from a larger window [0, B1)
n+1 with B1 > B .

To the best of our knowledge, this is the first explicit result that leads to a rigorous bound on the
running time of the quantum algorithm.

Conjecture implies that the quantum algorithm can recover a basis of L with constant probability
p2 conditioned on the event that it has obtained only mc = n + 1 samples of Λ. This event occurs
with probability pmc

1 = pn+1
1 , which is greater by the exponential factor 1/pn

1. Moreover, the quantum
algorithm becomes simpler because it suffices to sample vectors from one window.

For the sake of completeness, we now describe the reduction in more detail. The infrastructure
of a number field is isomorphic to a torus T = Rd/M , where M is a full-rank lattice in Rd and the
coefficients of all non-trivial vectors of M are transcendental numbers (Fontein, 2011). This forces
one to work with approximations, which is ultimately responsible for the poor performance when the
dimension d increases.

Assume that we are given two elements x, y ∈ T and we want to find the “discrete logarithm”
� ∈ Z with �x = y, assuming that such number � exists. For this, it suffices to know v, w ∈ Rd with
v + M = x and w + M = y together with a basis of M: then one can use linear algebra to recover
� (and decide whether it exists). In the infrastructure of a number field, one has a representation of
T which allows us to compute the projection Rd → T easily, but recovering a preimage of a random
x ∈ T is hard.

Finding a preimage can be reformulated as a lattice problem: consider the map

φ : Z×Rd → T , (z, v) �→ zx + v;
this is a group homomorphism, and the kernel L := kerφ is a lattice in Rd+1 of full rank. The kernel
contains elements of the form (−1, v) with v ∈ Rd; any such element satisfies v + M = x. If we have
a basis of L, we can again use linear algebra to recover such an element. Thus, the task is to find a
basis of a lattice L ⊆ Rd+1 of full rank.

Finally, we want to note that using different distributions on the lattice vectors can lead to much
better results which are simpler to obtain. For example, when using the discrete Gaussian distribution
on the lattice points, a result similar to ours in Theorem 1.1 follows from works by Micciancio and
Regev (2007), Gentry et al. (2008). Unfortunately, it is not known how to sample from this distribution
on a quantum computer, even in case a basis of the lattice is given. For our problem, where we want
to determine a basis, we are only given an indirect description of the lattice. Therefore, these results
cannot be used for solving the DLP without new ideas.
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