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Abstract Bernstein inequality played an important role in approximation theory and
Fourier analysis. This article first introduces a general system of functions and the so-
called multivariate weighted Bernstein, Nikol’skii, and Ul’yanov-type inequalities. Then,
the relations among these three inequalities are discussed. Namely, it is proved that a
family of functions equipped with Bernstein-type inequality satisfies Nikol’skii-type and
Ul’yanov-type inequality. Finally, as applications, some classical inequalities are deduced
from the obtained results.
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1 Introduction

In this article, we always denote by n a non-negative integer, and by C and C; (i =
1,2,---) the absolute positive constants. We also use C' (a1, as,as,---) to denote a positive
constant depending only on a;, i = 1,2,---. Let P, and 7,, denote the set of all algebraic and
trigonometric polynomials of degree at most n with real coefficients, respectively. Let S C R?
be a bounded convex body, and denote by LP(S) the space of real valued and p-integrable
functions on S endowed with the norms

[flloc = I fllLoe(s) := esssup|f(z)]|
zeS

and

1/p
1l = 1oy = { / |f<w>|pdw} <00, 0<p<oo.
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As early as 1911, Bernstein in his doctoral dissertation [2] proved so-called Bernstein
inequality

HT’I/IHC[—TI'JT] < n”TnHC[—mﬂ']a T, € 7;1

Three years later, Riesz [18] extended the inequality to the case of LP-norm. Namely, he proved
that

||T1/LHLP[—7r,7r] < n||Tn||LP[—ﬂ')ﬂ']) 1<p<oc.

In 1969, Nikol’skii [16] proved that, if 1 < ¢ < p < oo, then,
11
||Tn||LP[—7r,7r] < C(pv Q)nq P HTn”Lq[—Tr,ﬂ']v

which is called Nikol’skii inequality.
It is well-known that Bernstein inequality plays an important role in Fourier analysis and
approximation theory, for example, in the proofs of inverse and imbedding theorems (see [5, 7,
14, 15]). By now, inequalities of the same type were established for various systems of functions.
We refer the readers to Borwein [3], Borwein and Erdélyi [4-6], Baranov [1], Pesenson [17], Jung
[12], and Erdélyi [10, 11].
Denote
_ o
B okt dah’

Dy(f): ki +ke+---+ka=k.

Let F := {f,}52, be a linearly independent system of functions defined on S, and {A\} := {\,, T
oo} be an increasing sequence of positive numbers tending to co. For fy, € F, k=0,1,---,n,
we define a set of functions:

F, = {Pn = Zakfk ag € R} R
k=0

and call the elements of F;, general polynomials. We say the system F' satisfies a general
multivariate weighted Bernstein-type inequality in LP(S) (0 < p < o0) of order {A}, with
notation F' € By ,(LP,{\}), if for every fi € F, fi € LP(S), and Dy(fx) € L*(S), the
inequality

leD1(Pn)llp < C@)An [l Prtbllp (1.1)

holds for every P, € F,,, where ¢(z) and 1(x) are continuous weight functions defined on S.
If, for a given pair 0 < ¢ < p < oo and for any f € F and fj, € LP(S), there hold

1_1
lePally < Co.a N WPl Pu€ B n=1.2,--, (1.2)

then, F' is said to satisfy a general multivariate weighted Nikol’skii-type inequality between
L4(S) and L?(S) of order {A}, with notation F' € Ny, (L%, L?, {\}).
If, for a given pair 0 < ¢ < p < oo and for any f € F and f, € L?(S), there holds

1

00 dp16 P1

k=n
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) < o0
where p; := pop 9::%—
1, p=o0

En(f)pw = Pirelg lw(f — Pn)”pv

then we say that F' satisfies general multivariate weighted Ul’yanov-type inequality with order
{A} between LI(S) and LP(S), with notation F' € U, (L%, L?,{\}), and we say that P, is the
best approximation general polynomial of f with weighted function w(x) if ||w(f — Pu)|l, =
Balf)par

Now, we state two examples of F' € By, (L?, {A}).

Multivariate Bernstein Inequality for Algebraic Polynomial [8] For a bounded
convex set S C R, any direction ¢ (|¢| = 1, where |¢| is the Euclidean norm of &), integer r,
and 0 < p < 0o, there holds

*\T 8 " T
[z () 2| < cwmmipl, (1)
P
where the weighted function ¢*(z) is defined by
()= sup  d(z,z+pl) sup  d(z,x+ pf),
0<p, z+uples 0> p,z+pges

and P, € P,.
Multivariate Markov Inequality [8] If S is a bounded convex set in R?, 0 < p < oo,
and P, € P, then,
IDr(Pa)llp < Cp, k, S)n* || Pl - (1.5)

In this article, we as well prove that (1.2) can be deduced from (1.1) for some weighted
functions. In Section 3, we will prove that (1.3) implies (1.4) under some assumptions. As
applications of main results of this article, some classical inequalities will be deduced from the
obtained results in the last section. As stated in Sections 2 and 3, an important conclusion
of this article is that a family of functions equipped with Bernstein-type inequality satisfies
Nikol’skii-and-Ul'yanov-type inequalities.

2 Multivariate Weighted Nikol’skii-Type Inequality for F,

In this section, we will discuss the relation between Bernstein and Nikol’skii-type inequal-
ities.
Theorem 2.1 Let 0 < g < p < oo, S C R? be a bounded convex body, and {\} = {\, T

oo} be an increasing sequence of positive numbers. Then, the following statements hold:
(i) If o(z) =(x), Di(p) € LP(S), and

D19l < Crdnllellp, (2.1)

then, F € B, (L, {\}) implies F' € N, (L%, L?,{\}).
(ii) If¢(x) =1 and |p(x)| < Cy, then, F € By, 1(L>®,{\}) implies F' € Ny, 1(L9, LP, {\}).
Proof We first prove (i). For the sake of brevity, set M := 4 max{C(p) \n, C1\n}, where
constants C(p) and Cy are the same as those of (1.1) and (2.1), respectively. For P, € F,,
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we can choose a point tg € S, such that |P,(to)¢(to)| = maxies |Pn(t)p(t)]. We denote by
{&,&, -+, &4} an orthonormal basis of R?, and write to := (u1, g, - -, fa), u := (V1,Va, -+, Va)-
Then, for every absolute constant K > d and every

u € SNO(ty, (KM)™Y),

where O(to, (KM)™!) denotes the ball with center o and of radius (KM)~!, from Lagrange
Mean Value Theorem and (1.1) with p = oo, it follows that there is « := (21, - -, z4), satisfying
min{p;, v;} < x; < max{p;, v} (i =1,---,d), such that

| Pn(to)(to) — u)| = Poip)(@) (i — vi)

0P, () Op(a)
Z;( i pta) + 25 p@) (- )

I /\

*M|P to)e(to |Z|ﬂk—l/k|
< M|Pn(f0)<P(f0)|d(KM)
d
< =
< K|Pn(t0)<P(f0)|a

which implies

Pulto)plto)] < | Palu)ou)]

Therefore, we can deduce

max | Py (@)p(@)] < C(p, g, S)M || Pa()o() o (2:2)

Indeed, we denote by B(S) the boundary of S, and divide the proof of (2.2) into two cases.
Case 1 If tg € S — B(S), then, we choose the constant K large enough such that
(KM)~! < w, where w := I%i(l}g)ﬂt —tol|}, so O(to, (KM)~1) C S. Hence,
te

wwwf/w ww>/ |Pa(t)o(t)|dt
O(to,(KM)—1)

“IP(ta)etto)l” [ dt = CM P, to)olto) .
O(to,(KM)~1)

Case 2 If ty € B(S), then, we choose a point t, € O(tg, (KM)~*) N S and denote by
t§ the middle point of the segment tot(,, and there is a sufficiently large K’ > 2, such that
(K'KM)~! < where w' := mi(I}g){|t — t5|}, which implies
teB

Ots,(K'KM)™) C SN O(ty, (KM)™1).

Therefore,

me—/w W&>/ IPa(t)o(t)|7dt
SNO(to,(KM)—1)
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K—-d

27|P (to)e(to)]? de

/Smo(tg,(KM)l)
K—d

> 2P o) >|q/ ar
O(ty,(K'KM)~1)

> CM~|P,(to)p(to)| -

Collecting Case 1 and Case 2, we get (2.2). So,

n&@w—/uj WHP<>@stuawwmmwﬁéuuwwmwt
< Clp.g, S)MYT" | Pag|2= | Pag|2

< Clp,q. )M | Popl?

which implies

1_1 d(i—1
1Paglly < .. S)MUE )| Paglly < Clo.q. SN2 | B

This completes the proof of (i).
Now, we turn to prove (ii). Let My := 2C(p)\,, where the constant C(p) is the same as
that in (1.1). We take a point ¢; € S, such that

|Pa(t1)e(t1)| = max [P (t)p(2)]-

It is obvious that ¢(t1) # 0. We can choose an absolute constant K7 > d, such that for every
u € O(t1, (K1 M)™1), there holds |¢(t1)| < Cs|p(u)|. Then, for

u€ SNO(ty, (KiM)™h),

where

<K<

max {Kl, dCsCs }

o(t1)
1< Cs < Cy, and
t = (,Uﬁl‘huzvnuri)a U= (V17V25"'5V;)7

using Lagrange Mean Value Theorem, condition (1.1) when p = oo, and the facts that |p(z)] <
Cs and |p(t1)] < Csleo(u)|, we verify that there is 8 := (z7,---, x}) satisfying min{u}, v} <

xf <max{ul,v} (i=1,---,d) such that

|Pn(t1)p(t1) — Po(u)p(tr)] < |o(th)

d
Z 8 k VZ)
k=

; (%k (B) (1, — Vi)

d
CyM )
5 | P (t1)] Z g, — v,
k=1

Csd
< 27
> Ki

< Cs

IN

[P (t1)]-
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Therefore,
Csd
[Pat)e(t)] < [ Pu(u)e(t)] + 2= [ Pa(ta)l
1
that is,
CoC
Palta)ptn)] < 22 Palus)]
5

Using the similar method as proving (2.2), we obtain
d
|Pu(ty)e(t)] < Clp, g, S)M || Palg.

Then,

1Pl = [ IPpl " IPuplolat < max P03y [ |Pu(ofat

p—q

< C(p,q, S)M* <" | P2~ P, |9
pP—q
< C(p,q,S)M* < ||P, |2,

which implies

1_1 d 1_1
1Pl < Cp g, )M By, < Cp. g, NGBy

The proof of (2) is completed.

3 Multivariate Weighted Ul’yanov-Type Inequality for F;,

In the above section, we have established a relation between multivariate weighted Bern-
stein and Nikol’skii-type inequalities. Now, let us turn to consider the relation between Nikol’skii
and Ul'yanov-type inequalities. In [9], Ditzian and Tikhonov established a relation between
Nikol’skii and Ul’yanov-type inequalities for trigonometric polynomials in L?(T%) with a weighted
function w(z), where T? denotes the d-dimensional cube for the interval T. In this section, we
will extend their result in three directions: (1) arbitrary bounded convex body S in R%; (2)
different weighted functions in both sides of inequalities; (3) general polynomial P, € F,. In
fact, we will prove the following result.

Theorem 3.1 Let {\} = {\,}22, be an increasing sequence of non-negative real num-
bers. Suppose S is a bounded convex body in R% 0 < ¢ < p < oo, F), is dense in LP(S), and

there is a sequence of natural numbers {u,} satisfying

wp=n, F>p s, (3.1)
Up,

Also, {M\,}52, and {u,} are assumed to satisfy
Ay
1>0b3>—= >by>0. (32)
Un 41

Then, if (1.2) is valid, then there is a constant C(S, p, q), such that

1

oo )\dple P1
Enmwsc<s,p,q>{xzwn<f>sz+ 2 Ek<f>%:;p} - (33)
k=n-+1
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Remark The sequences {\;} and {uy} satisfying the conditions of Theorem 3.1 exist.
For example, uj, = n2%, A\, = k% (a > 0).

To prove Theorem 3.1, we need the following lemmas.

Lemma 3.2 Let a be a non-negative integer, and {A\} = {\, 1 oo} be an increasing
sequence of non-negative real numbers, and for which there exists a sequence {u;} of natural
numbers satisfying (3.1) such that, for any n > 1, (3.2) holds. Then,

T < )\Z-i-ll
)\un+1 — C(T? a) Z k + a (n Z ]‘)
k=un_1+1

Proof By (3.2), we have

T

A
0<by <=, n>L

)

Un 41
Then,
Un )\r /\T
Z hta S (4, =y _q)tnmitiba S I up —up— SV
i 1+1k—|—a Uy +a a+1 Up, n-

" 1 Up —Up—1,, 1
> 71) "\ > A\
“a+1 Uy, “”“_a—l—l( b)u“+1
> Cla,m)Ay, -

This finishes the proof of Lemma 3.2.
Lemma 3.3 (Extended Holder inequality, see page 18 of [19])

n
(1) If g1,92, -+, gn € LP, then, there are a, >0, k =1,---,n, satisfying > ay =1 such
k=1
that

Joron<lally - lol 1. (3.9

(2) If g1,92, -+, gn € LP, then, there are a, >0, k =1,---,n, satisfying > ay =1 such
k=1

that a1 an
> gu(1)--gu(n) < <Z |gv(1)|all> <Z|gv(n)|al"> - (3.5)

Lemma 3.4 Let P, € F, be the general polynomial of the best approximation of f
with weighted function t(¢). Then, under the conditions of Theorem 3.1, there is a constant
C(p,q,S), such that

1

< C(p.q.5) (Z (Aiﬁi g, (f)q,w)pl> T )

k=0

m

E uk+1 -

k=0

P
Proof By (1.2), we have, for p <1 and p; = p,
P

S Z ||90(Puk+1 - Puk)”g

p, Qa Z )\Uk+1 ”1/} Uk+1 Puk)Hg
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For p > 1 and p; = 1, by (1.2), we may write

m
QOZ(PMC+1 - uk < Z ”90 Uk+1 Puk)”P
k=0 »
N
p7 q,S Z )\uk+1 ”90 Upt1 Puk)”q
m
< 20 p7 q,5 Z uk+1 )q,w

In fact, we only need p; = 1 for p = co. To complete the proof, we need to settle the case
1 < p < oo and p; = p, which is the hard part of the proof. For the sake of brevity, set
bk = Gr(t) == |(Pupy, (1) — Puy (8)p(t)| and ¢y, = ¢5(t) 1= [(Puy,, (t) — Pu, ()9 (t)], and choose

= [p] + 1, where [z] denotes the largest integer not larger than z. Recalling 1 < p < oo, we
have

IN
\
~

M=~
<
ES]
=
N———
]
[oN
P
A
| — |
\
N
NgE
S
I3
=
N———
<
[oN
Lt
o=

=

[T ¢ie, |

ki=0 k=0 1<i<j<r

NE
M-

IA
NE
NE

‘ —

VRS
—
e
=
<
r~
=
\i/

g
)

<C S - . N )\d(l ) A ( ) P
= (P;(L ) Z Z Uk, +1 ||¢k H Uk ;41 ||¢k ”q
1<i<j<r

B =

r d(p—q)
m m T d( ) f T u 2(p+q)r(r—1)
mln{k Jke 341
< C(pJCLS) E E ( Uk g+1 ) -
=1 “max{ks ke}+1

d(p—q)

p T 2(p+q)(r—1)
% % ) Aumln{ks k341
uks+1
t=1 )\umax{k sk} +1

o+

=

1
o
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Sk}

1
d(p—q) i

m (1_ ) p m m T ” - X (p+q)(r—1)
< C(p,q75') Z (|¢k1”q Uk +1 > Z Z < min{ky,k¢}+ )

k1=0 ko=0  k,=0t=1 “max{kl ki1

[

1

m dp( L l P
C(p,q,S (Z/\u o ||¢k||p>
k=

0

Cp,q,S (é( ura k(f)q,w>p>;,

where the equality

r r—1
<H an> = H aja; forr >1
n=1

1<i<j<r
is used in the third inequality, and (3.4) is used in the fourth inequality with oy = ﬁ, n

__p __p
rr=1) > Y and g, = T(T () (1), i < j,v=1,---,n. Considering that p» = (erq)p > ¢ and

p3 = % > q, by (1.2) and Holder inequality with powers a = ’%‘q and o/ = p‘;q, we obtain
I _p
(p;q)p p+aq % Pt
gbk t)dt < b, 2t (t)dt by, (t)dt
b p
(-8 e 1]
dl - L
q)‘uqu+1 " ||¢Itj |q‘|

EIeE)

G Mug, |

uk +1 H(bk ||q A .
Uk +1

So, the fifth inequality holds. Symmetry between ¢ and j in the last equality allows us to

dl - L
< C(p, q, S) [Au£iq+1 m)

:C(pv(LS) |: Zg +1 )

) . Aug, 41 2(p+a) kumin{kv ki1 2(p+aq)
exchange ¢ and j if uy, > ug; and replace | by ( &—m—— , then the

ki1 )‘“max{ki,kj}+1
sixth inequality follows from the inequality

A ‘o :
Umin{ky,kj}+1 o r umln{k Jke b1
R e R I
t=1

1<i<j<r utxlax{ki,kj}+l umax{ks ke}+1

with

yd
d Ty
ar, = ( 1)) 6, ||q)

__ dlp—9q)
(P +qr(r—1)
And (3.5) with a, = 2, n =7 and v = (k1,---,k;) yields the seventh inequality. Observing

and

that all r factors of the product in the seventh inequality are equal and their common value is

P—q %
m m m r )\ 2(p+q)(r—1)
Umin{ky,k¢}+1
[}j(wklnq Y PR EZII() ,
5=0 kr=0t=1

k1=0 Umax{ky k¢ }+1
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we have by (3.2)

i ( Umin{ky,k}+1 ) < O p L], Z bL(maX{kl JkY—min{ky,k})

—0 )\umdx{kl k}+1 k=0

=C(p,q,S ZbL(“ﬁ k|)<0pq, Zb

k=0

Hence,

m m kA L m m T L
Z Z <)\umin{k1,kt}+1 ) _ Z Z <)\umin{k1,kt}+1 )
5 A

Umax{ky, ks }+1 Umax{ky,kt}+1
r m L
S Z i min{kqy,ks}+1
t=2 \k:= Umax{ky,k¢}+1

Thus, the eighth and ninth inequalities are obvious. This completes the proof of Lemma 3.4.
Now, we proceed the proof of our main result in this section.

Proof of Theorem 3.1 Let P, € F),, be the general polynomial of the best approxima-
tion of f € LY with the weighted function . By the density of F,,, we have

(fo = Pup)(t) = > {Puyy (0)p() = Pu, (£ (1)}
k=m

Using Lemmas 3.5 and 3.2 with @ = 0, we have

En(f)p,w <|fe—- Pn‘PHp = 77}51100

1
m U )\dpl(%fi) P

D B

k=1j=up_1+1

o) dp16 i
< C(S,p,q){/\d”leE Hw+ D Ek(f)gfw} :
k=n-+1

This completes the proof of Theorem 3.1.
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4 Applications

Theorem 2.1 shows that the general Bernstein-type inequality (1.1) implies the general
Nikol’skii-type inequality (1.2), and Theorem 3.1 shows that the general Ul’yanov-type inequal-
ity (1.3) can be deduced from the general Nikol’skii-type inequality (1.2) under some conditions.
In contrast, for algebraic polynomials, there are some such weighted Bernstein-type inequalities,
which were shown in [5, 8, 12, 13], etc. Also, there are many weighted functions, such as z7,
e”, etc., satisfying Theorems 2.1 and 3.1.

The following Corollary 4.1 is a combination of Theorem 2.1 and (1.4).

Corollary 4.1 For a bounded convex set S C R?, P, € P,, and 0 < p < q < 00, we

have
H((p*)l/Q Pn

1_ 1
, S Cp, ¢,r)nG=5) | Polly,

where ¢*(x) is defined in Section 1.
From Theorem 3.1, it follows
Corollary 4.2 For a bounded convex set S C R? and 0 < g < p < oo, there holds
1
o] P1
Eal(f)p iy < C(S,p,0) {ndm@Enmz;}l + kdm@-lEuf)’;}l} :
k=n-+1
By combination of (1.5) and Theorem 2.1 with ¢(z) = ¢ (z) = 1, we have
Corollary 4.3 If S is a bounded convex set in R?, 0 < ¢ < p < 00, and P, € P, is a
polynomial, then there is a constant C(p, k, S), such that

1Pally < Clp, b, $)n22G=3)|| P, .

Combining Corollary 4.3 with Theorem 3.1 gives
Corollary 4.4 For a bounded convex set S € R?, 0 < ¢ < p < 0o, and a polynomial
P, € P,, there is a constant C(p, k, S), such that

1

En(f)pa < C(S,p,q) {nw’“eEn(f)Zq),ll + ) k2dp19_1Ek(f)§,l1} :
k=n-+1

Now, we turn to the case of one dimension. The following lemma 4.1 is Theorem 1.6 of
[13].

Lemma 4.1 Let W(z) = e 2® and 0 < p < 00, and let § > _?1 if p<ooand g >0if
p = oco. Then, for n > 1, P, € P,, and a bounded interval I,

|12y, (2)W (2)2”|| oty < CnP|| P(2)W ()27 || 1o 1),

where Q(z) was defined in Definition 1.1 of [13].

It is proved that the weighted function W (x)z” satisfies the restriction of Theorem 2.1.
Therefore, we have

Corollary 4.5 Let W(z) = e ?®) and let 8 > %1 if p<ooand >0 if p=oc. Then,
for0<g<p<oo,n>1, P, € Py, and a bounded interval I,

1P (@)W (2)2 | oy < Cr2G™ ) | P(@)W (2)2?| gy
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From Theorem 3.1, it also follows that
Corollary 4.6 Let W(z) = e ?®) and let 8 > %1 if p<ooand 8 >0if p=oc. Then,

for0<g<p<oo,n>1, P, € Py, and a bounded interval I,

En(Dpw@ar < O Ba(Dipayer + D K Bkl iy (ayr
k=n+1
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