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Abstract Bernstein inequality played an important role in approximation theory and

Fourier analysis. This article first introduces a general system of functions and the so-

called multivariate weighted Bernstein, Nikol’skǐı, and Ul’yanov-type inequalities. Then,

the relations among these three inequalities are discussed. Namely, it is proved that a

family of functions equipped with Bernstein-type inequality satisfies Nikol’skǐı-type and

Ul’yanov-type inequality. Finally, as applications, some classical inequalities are deduced

from the obtained results.
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1 Introduction

In this article, we always denote by n a non-negative integer, and by C and Ci (i =

1, 2, · · ·) the absolute positive constants. We also use C (a1, a2, a3, · · ·) to denote a positive

constant depending only on ai, i = 1, 2, · · ·. Let Pn and Tn denote the set of all algebraic and

trigonometric polynomials of degree at most n with real coefficients, respectively. Let S ⊂ R
d

be a bounded convex body, and denote by Lp(S) the space of real valued and p-integrable

functions on S endowed with the norms

‖f‖∞ := ‖f‖L∞(S) := ess sup
x∈S

|f(x)|

and

‖f‖p := ‖f‖Lp(S) :=

{∫
S

|f(x)|pdx

}1/p

<∞, 0 < p <∞.
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As early as 1911, Bernstein in his doctoral dissertation [2] proved so-called Bernstein

inequality

‖T ′n‖C[−π,π] ≤ n‖Tn‖C[−π,π], Tn ∈ Tn.

Three years later, Riesz [18] extended the inequality to the case of Lp-norm. Namely, he proved

that

‖T ′n‖Lp[−π,π] ≤ n‖Tn‖Lp[−π,π], 1 ≤ p <∞.

In 1969, Nikol’skǐı [16] proved that, if 1 ≤ q < p ≤ ∞, then,

‖Tn‖Lp[−π,π] ≤ C(p, q)n
1
q−

1
p ‖Tn‖Lq [−π,π],

which is called Nikol’skǐı inequality.

It is well-known that Bernstein inequality plays an important role in Fourier analysis and

approximation theory, for example, in the proofs of inverse and imbedding theorems (see [5, 7,

14, 15]). By now, inequalities of the same type were established for various systems of functions.

We refer the readers to Borwein [3], Borwein and Erdélyi [4–6], Baranov [1], Pesenson [17], Jung

[12], and Erdélyi [10, 11].

Denote

Dk(f) :=
∂kf

∂xk11 · · ·∂x
kd

d

, k1 + k2 + · · ·+ kd = k.

Let F := {fn}
∞
n=0 be a linearly independent system of functions defined on S, and {λ} := {λn ↑

∞} be an increasing sequence of positive numbers tending to ∞. For fk ∈ F , k = 0, 1, · · · , n,

we define a set of functions:

Fn :=

{
Pn =

n∑
k=0

akfk : ak ∈ R

}
,

and call the elements of Fn general polynomials. We say the system F satisfies a general

multivariate weighted Bernstein-type inequality in Lp(S) (0 < p < ∞) of order {λ}, with

notation F ∈ Bϕ,ψ(Lp, {λ}), if for every fk ∈ F , fk ∈ Lp(S), and D1(fk) ∈ Lp(S), the

inequality

‖ϕD1(Pn)‖p ≤ C(p)λn‖Pnψ‖p (1.1)

holds for every Pn ∈ Fn, where ϕ(x) and ψ(x) are continuous weight functions defined on S.

If, for a given pair 0 < q ≤ p ≤ ∞ and for any fk ∈ F and fk ∈ L
p(S), there hold

‖ϕPn‖p ≤ C(p, q, S)λ
d( 1

q−
1
p)

n ‖ψPn‖q, Pn ∈ Fn, n = 1, 2, · · · , (1.2)

then, F is said to satisfy a general multivariate weighted Nikol’skǐı-type inequality between

Lq(S) and Lp(S) of order {λ}, with notation F ∈ Nϕ,ψ(Lq, Lp, {λ}).

If, for a given pair 0 < q ≤ p ≤ ∞ and for any fk ∈ F and fk ∈ L
p(S), there holds

En(f)p,ϕ ≤ C(p, q)

{
∞∑
k=n

λ
dp1θ
k

k
Ek(f)p1q,ψ

} 1
p1

, (1.3)
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where p1 :=

⎧⎨
⎩p, p <∞

1, p = ∞
, θ := 1

q −
1
p and

En(f)p,w := inf
Pn∈Fn

‖w(f − Pn)‖p,

then we say that F satisfies general multivariate weighted Ul’yanov-type inequality with order

{λ} between Lq(S) and Lp(S), with notation F ∈ Uϕ,ψ(Lq, Lp, {λ}), and we say that Pn is the

best approximation general polynomial of f with weighted function w(x) if ‖w(f − Pn)‖p =

En(f)p,w.

Now, we state two examples of F ∈ Bϕ,ψ(Lp, {λ}).

Multivariate Bernstein Inequality for Algebraic Polynomial [8] For a bounded

convex set S ⊂ R
d, any direction ξ (|ξ| = 1, where |ξ| is the Euclidean norm of ξ), integer r,

and 0 < p ≤ ∞, there holds∥∥∥∥(ϕ∗)r/2
(
∂

∂ξ

)r
Pn

∥∥∥∥
p

≤ C(p, r)nr‖Pn‖p, (1.4)

where the weighted function ϕ∗(x) is defined by

ϕ∗(x) := sup
0<μ, x+μξ∈S

d(x, x + μξ) sup
0>μ,x+μξ∈S

d(x, x+ μξ),

and Pn ∈ Pn.

Multivariate Markov Inequality [8] If S is a bounded convex set in R
d, 0 < p ≤ ∞,

and Pn ∈ Pn, then,

‖Dk(Pn)‖p ≤ C(p, k, S)n2k‖Pn‖p. (1.5)

In this article, we as well prove that (1.2) can be deduced from (1.1) for some weighted

functions. In Section 3, we will prove that (1.3) implies (1.4) under some assumptions. As

applications of main results of this article, some classical inequalities will be deduced from the

obtained results in the last section. As stated in Sections 2 and 3, an important conclusion

of this article is that a family of functions equipped with Bernstein-type inequality satisfies

Nikol’skǐı-and-Ul’yanov-type inequalities.

2 Multivariate Weighted Nikol’skǐı-Type Inequality for Fn

In this section, we will discuss the relation between Bernstein and Nikol’skǐı-type inequal-

ities.

Theorem 2.1 Let 0 < q < p ≤ ∞, S ⊂ R
d be a bounded convex body, and {λ} = {λn ↑

∞} be an increasing sequence of positive numbers. Then, the following statements hold:

(i) If ϕ(x) = ψ(x), D1(ϕ) ∈ Lp(S), and

‖D1ϕ‖p ≤ C1λn‖ϕ‖p, (2.1)

then, F ∈ Bϕ,ϕ(L∞, {λ}) implies F ∈ Nϕ,ϕ(Lq, Lp, {λ}).

(ii) If ψ(x) = 1 and |ϕ(x)| ≤ C2, then, F ∈ Bϕ,1(L
∞, {λ}) implies F ∈ Nϕ,1(L

q, Lp, {λ}).

Proof We first prove (i). For the sake of brevity, set M := 4 max{C(p) λn, C1λn}, where

constants C(p) and C1 are the same as those of (1.1) and (2.1), respectively. For Pn ∈ Fn,
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we can choose a point t0 ∈ S, such that |Pn(t0)ϕ(t0)| = maxt∈S |Pn(t)ϕ(t)|. We denote by

{ξ1, ξ2, · · · , ξd} an orthonormal basis of R
d, and write t0 := (μ1, μ2, · · · , μd), u := (ν1, ν2, · · · , νd).

Then, for every absolute constant K > d and every

u ∈ S ∩O(t0, (KM)−1),

where O(t0, (KM)−1) denotes the ball with center t0 and of radius (KM)−1, from Lagrange

Mean Value Theorem and (1.1) with p = ∞, it follows that there is α := (x1, · · · , xd), satisfying

min{μi, νi} ≤ xi ≤ max{μi, νi} (i = 1, · · · , d), such that

|Pn(t0)ϕ(t0)− Pn(u)ϕ(u)| =

∣∣∣∣∣
d∑
k=1

∂

∂ξk
(Pnϕ)(α)(μk − νk)

∣∣∣∣∣
=

∣∣∣∣∣
d∑
k=1

(
∂Pn(α)

∂ξk
ϕ(α) +

∂ϕ(α)

∂ξk
Pn(α)

)
(μk − νk)

∣∣∣∣∣
≤

1

2
M |Pn(t0)ϕ(t0)|

d∑
k=1

|μk − νk|

≤ M |Pn(t0)ϕ(t0)|d(KM)−1

≤
d

K
|Pn(t0)ϕ(t0)|,

which implies

|Pn(t0)ϕ(t0)| ≤
K

K − d
|Pn(u)ϕ(u)|.

Therefore, we can deduce

max
x∈S

|Pn(x)ϕ(x)| ≤ C(p, q, S)M
d
q ‖Pn(·)ϕ(·)‖q . (2.2)

Indeed, we denote by B(S) the boundary of S, and divide the proof of (2.2) into two cases.

Case 1 If t0 ∈ S − B(S), then, we choose the constant K large enough such that

(KM)−1 ≤ ω, where ω := min
t∈B(S)

{|t− t0|}, so O(t0, (KM)−1) ⊆ S. Hence,

‖Pnϕ‖
q
q =

∫
S

|Pn(t)ϕ(t)|qdt ≥

∫
O(t0,(KM)−1)

|Pn(t)ϕ(t)|qdt

≥
K − d

K
|Pn(t0)ϕ(t0)|

q

∫
O(t0,(KM)−1)

dt ≥ CM−d|Pn(t0)ϕ(t0)|
q.

Case 2 If t0 ∈ B(S), then, we choose a point t′0 ∈ O(t0, (KM)−1) ∩ S and denote by

t∗0 the middle point of the segment t0t
′
0, and there is a sufficiently large K ′ ≥ 2, such that

(K ′KM)−1 ≤ ω′ where ω′ := min
t∈B(S)

{|t− t∗0|}, which implies

O(t∗0, (K
′KM)−1) ⊆ S ∩O(t0, (KM)−1).

Therefore,

‖Pnϕ‖
q
q =

∫
S

|Pn(t)ϕ(t)|qdt ≥

∫
S∩O(t0,(KM)−1)

|Pn(t)ϕ(t)|qdt
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≥
K − d

K
|Pn(t0)ϕ(t0)|

q

∫
S∩O(t0,(KM)−1)

dt

≥
K − d

K
|Pn(t0)ϕ(t0)|

q

∫
O(t∗0 ,(K

′KM)−1)

dt

≥ CM−d|Pn(t0)ϕ(t0)|
q.

Collecting Case 1 and Case 2, we get (2.2). So,

‖Pnϕ‖
p
p =

∫
S

|Pn(t)ϕ(t)|p−q |Pn(t)ϕ(t)|qdt ≤ |Pn(t0)ϕ(t0)|
p−q

∫
S

|Pn(t)ϕ(t)|qdt

≤ C(p, q, S)Md p−q
q ‖Pnϕ‖

p−q
q ‖Pnϕ‖

q
q

≤ C(p, q, S)Md p−q
q ‖Pnϕ‖

p
q

which implies

‖Pnϕ‖p ≤ C(p, q, S)Md( 1
q−

1
p )‖Pnϕ‖q ≤ C(p, q, S)λ

d( 1
q−

1
p )

n ‖Pnϕ‖q.

This completes the proof of (i).

Now, we turn to prove (ii). Let M1 := 2C(p)λn, where the constant C(p) is the same as

that in (1.1). We take a point t1 ∈ S, such that

|Pn(t1)ϕ(t1)| = max
t∈S

|Pn(t)ϕ(t)|.

It is obvious that ϕ(t1) �= 0. We can choose an absolute constant K1 > d, such that for every

u ∈ O(t1, (K1M)−1), there holds |ϕ(t1)| ≤ C3|ϕ(u)|. Then, for

u ∈ S ∩O(t1, (K
′
1M)−1),

where

max

{
K1,

dC3C5

ϕ(t1)

}
≤ K ′1 ≤

C3C4d

ϕ(t1)
,

1 < C5 < C4, and

t1 := (μ∗1, μ
∗
2, · · · , μ

∗
d), u := (ν∗1 , ν

∗
2 , · · · , ν

∗
d),

using Lagrange Mean Value Theorem, condition (1.1) when p = ∞, and the facts that |ϕ(x)| ≤

C2 and |ϕ(t1)| ≤ C3|ϕ(u)|, we verify that there is β := (x∗1, · · · , x
∗
d) satisfying min{μ∗i , ν

∗
i } ≤

x∗i ≤ max{μ∗i , ν
∗
i } (i = 1, · · · , d) such that

|Pn(t1)ϕ(t1)− Pn(u)ϕ(t1)| ≤ |ϕ(t1)|

∣∣∣∣∣
d∑

k=1

∂Pn(β)

∂ξk
(μ∗k − ν

∗
k)

∣∣∣∣∣
≤ C3

∣∣∣∣∣
d∑
k=1

∂Pn(β)

∂ξk
ϕ(β)(μ∗k − ν

∗
k)

∣∣∣∣∣
≤
C3M

2
|Pn(t1)|

d∑
k=1

|μ∗k − ν
∗
k |

≤
C3d

K ′1
|Pn(t1)|.
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Therefore,

|Pn(t1)ϕ(t1)| ≤ |Pn(u)ϕ(t1)|+
C3d

K ′1
|Pn(t1)|,

that is,

|Pn(t1)ϕ(t1)| ≤
C2C5

C5 − 1
|Pn(u)|.

Using the similar method as proving (2.2), we obtain

|Pn(t1)ϕ(t1)| ≤ C(p, q, S)M
d
q ‖Pn‖q.

Then,

‖Pnϕ‖
p
p =

∫
S

|Pnϕ(t)|p−q |Pnϕ(t)|qdt ≤ max
t∈S

|Pn(t)ϕ(t)|p−qM1

∫
S

|Pn(t)|qdt

≤ C(p, q, S)Md p−q
q ‖Pn‖

p−q
q ‖Pn‖

q
q

≤ C(p, q, S)Md p−q
q ‖Pn‖

p
q ,

which implies

‖Pnϕ‖p ≤ C(p, q, S)Md( 1
q−

1
p )‖Pn‖q ≤ C(p, q, S)λ

d( 1
q−

1
p )

n ‖Pn‖q.

The proof of (2) is completed.

3 Multivariate Weighted Ul’yanov-Type Inequality for Fn

In the above section, we have established a relation between multivariate weighted Bern-

stein and Nikol’skǐı-type inequalities. Now, let us turn to consider the relation between Nikol’skǐı

and Ul’yanov-type inequalities. In [9], Ditzian and Tikhonov established a relation between

Nikol’skǐı and Ul’yanov-type inequalities for trigonometric polynomials in Lp(Td) with a weighted

function w(x), where T
d denotes the d-dimensional cube for the interval T. In this section, we

will extend their result in three directions: (1) arbitrary bounded convex body S in R
d; (2)

different weighted functions in both sides of inequalities; (3) general polynomial Pn ∈ Fn. In

fact, we will prove the following result.

Theorem 3.1 Let {λ} = {λn}
∞
n=0 be an increasing sequence of non-negative real num-

bers. Suppose S is a bounded convex body in R
d, 0 < q < p ≤ ∞, Fn is dense in Lp(S), and

there is a sequence of natural numbers {un} satisfying

u0 = n,
un+1

un
≥ b1 > 1. (3.1)

Also, {λn}
∞
n=0 and {un} are assumed to satisfy

1 > b3 ≥
λun

λun+1

≥ b2 > 0. (3.2)

Then, if (1.2) is valid, then there is a constant C(S, p, q), such that

En(f)p,ϕ ≤ C(S, p, q)

{
λdp1θn En(f)p1q,ψ +

∞∑
k=n+1

λ
dp1θ
k

k
Ek(f)p1q,ψ

} 1
p1

. (3.3)
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Remark The sequences {λk} and {uk} satisfying the conditions of Theorem 3.1 exist.

For example, uk = n2k, λk = ka (a > 0).

To prove Theorem 3.1, we need the following lemmas.

Lemma 3.2 Let a be a non-negative integer, and {λ} = {λn ↑ ∞} be an increasing

sequence of non-negative real numbers, and for which there exists a sequence {ui} of natural

numbers satisfying (3.1) such that, for any n ≥ 1, (3.2) holds. Then,

λrun+1
≤ C(r, a)

un∑
k=un−1+1

λrk+a
k + a

(n ≥ 1).

Proof By (3.2), we have

0 < b2r2 ≤
λrun−1

λrun+1

, n ≥ 1.

Then,

un∑
k=un−1+1

λrk+a
k + a

≥ (un − un−1)
λrun−1+1+a

un + a
≥

1

a+ 1

un − un−1

un
λrun−1

≥
1

a+ 1

un − un−1

un
b2r2 λ

r
un+1

≥
1

a+ 1
(1−

1

b1
)λrun+1

≥ C(a, r)λrun+1
.

This finishes the proof of Lemma 3.2.

Lemma 3.3 (Extended Hölder inequality, see page 18 of [19])

(1) If g1, g2, · · · , gn ∈ L
p, then, there are αk > 0, k = 1, · · · , n, satisfying

n∑
k=1

αk = 1 such

that ∫
g1 · · · gn ≤ ‖g1‖ 1

α1

· · · ‖gn‖ 1
αn
. (3.4)

(2) If g1, g2, · · · , gn ∈ L
p, then, there are αk > 0, k = 1, · · · , n, satisfying

n∑
k=1

αk = 1 such

that ∑
v

gv(1) · · · gv(n) ≤

(∑
v

|gv(1)|
1

α1

)α1

· · ·

(∑
v

|gv(n)|
1

αn

)αn

. (3.5)

Lemma 3.4 Let Pn ∈ Fn be the general polynomial of the best approximation of f

with weighted function ψ(t). Then, under the conditions of Theorem 3.1, there is a constant

C(p, q, S), such that∥∥∥∥∥ϕ
m∑
k=0

(Puk+1
− Puk

)

∥∥∥∥∥
p

≤ C(p, q, S)

(
m∑
k=0

(
λ
d( 1

q−
1
p )

uk+1 Euk
(f)q,ψ

)p1) 1
p1

. (3.6)

Proof By (1.2), we have, for p ≤ 1 and p1 = p,∥∥∥∥∥ϕ
m∑
k=0

(Puk+1
− Puk

)

∥∥∥∥∥
p

p

≤
m∑
k=0

‖ϕ(Puk+1
− Puk

)‖pp

≤ C(p, q, S)

m∑
k=0

λ
d( 1

q−
1
p)

uk+1 ‖ψ(Puk+1
− Puk

)‖pq

≤ C(p, q, S)

m∑
k=0

λ
d( 1

q−
1
p)

uk+1 Euk
(f)pq,ψ.
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For p ≥ 1 and p1 = 1, by (1.2), we may write

∥∥∥∥∥ϕ
m∑
k=0

(Puk+1
− Puk

)

∥∥∥∥∥
p

≤

m∑
k=0

‖ϕ(Puk+1
− Puk

)‖p

≤ C(p, q, S)

m∑
k=0

λ
d( 1

q−
1
p)

uk+1 ‖ϕ(Puk+1
− Puk

)‖q

≤ 2C(p, q, S)

m∑
k=0

λ
d( 1

q−
1
p )

uk+1 Euk
(f)q,ψ .

In fact, we only need p1 = 1 for p = ∞. To complete the proof, we need to settle the case

1 < p < ∞ and p1 = p, which is the hard part of the proof. For the sake of brevity, set

φk = φk(t) := |(Puk+1
(t)−Puk

(t))ϕ(t)| and φ∗k = φ∗k(t) := |(Puk+1
(t)−Puk

(t))ψ(t)|, and choose

r = [p] + 1, where [x] denotes the largest integer not larger than x. Recalling 1 < p < ∞, we

have

∥∥∥∥∥ϕ
m∑
k=0

(Puk+1
− Puk

)

∥∥∥∥∥
p

≤

[∫ ( m∑
k=0

φk(t)

)p
dt

] 1
p

≤

[∫ ( m∑
k=0

φ
p
r

k (t)

)r
dt

] 1
p

=

[
m∑

k1=0

· · ·

m∑
kr=0

∫
φ

p
r

k1
(t) · · ·φ

p
r

kr
(t)dt

] 1
p

≤

⎡
⎢⎣ m∑
k1=0

· · ·

m∑
kr=0

∫ ⎛⎝ ∏
1≤i<j≤r

φ
p
r

ki
(t)φ

p
r

kj
(t)

⎞
⎠

1
r−1

dt

⎤
⎥⎦

1
p

≤

⎡
⎣ m∑
k1=0

· · ·

m∑
kr=1

∏
1≤i<j≤r

(∫
φ

p
2

ki
(t)φ

p
2

kj
(t)dt

) 2
r(r−1)

⎤
⎦

1
p

≤ C(p, q, S)

⎡
⎣ m∑
k1=0

· · ·

m∑
kr=0

⎧⎨
⎩

∏
1≤i<j≤r

(
λ
d( 1

q−
1
p )

uki+1 ‖φ∗ki
‖qλ

d( 1
q−

1
p )

ukj+1 ‖φ∗kj
‖q

)p

×

(
λuki+1

λukj+1

)d p−q
p+q

⎫⎬
⎭

1
r(r−1)

⎤
⎥⎦

1
p

≤ C(p, q, S)

⎡
⎣ m∑
k1=0

· · ·
m∑

kr=0

r∏
s=1

(
λ
d( 1

q−
1
p )

uks+1 ‖φ∗ks
‖q

) p
r

r∏
t=1

(
λumin{ks,kt}+1

λumax{ks,kt}+1

) d(p−q)
2(p+q)r(r−1)

⎤
⎦

1
p

≤ C(p, q, S)

⎛
⎜⎝ r∏
s=1

⎡
⎣ m∑
k1=0

· · ·
m∑

kr=0

(
‖φ∗ks

‖qλ
d( 1

q−
1
p )

uks+1

)p r∏
t=1

(
λumin{ks,kt}+1

λumax{ks,kt}+1

) d(p−q)
2(p+q)(r−1)

⎤
⎦

1
r
⎞
⎟⎠

1
p
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≤ C(p, q, S)

⎛
⎜⎝
⎡
⎣ m∑
k1=0

(
‖φ∗k1‖qλ

d( 1
q−

1
p )

uk1+1

)p m∑
k2=0

· · ·
m∑

kr=0

r∏
t=1

(
λumin{k1,kt}+1

λumax{k1,kt}+1

) d(p−q)
(p+q)(r−1)

⎤
⎦

1
r
⎞
⎟⎠

r
p

≤ C(p, q, S)

(
m∑
k=0

λ
dp( 1

q−
1
p )

uk ‖φ∗k‖
p
q

) 1
p

≤ C(p, q, S)

(
m∑
k=0

(
λ
d( 1

q−
1
p )

uk+1 Euk
(f)q,ψ

)p) 1
p

,

where the equality (
r∏

n=1

an

)r−1

=
∏

1≤i<j≤r

aiaj for r > 1

is used in the third inequality, and (3.4) is used in the fourth inequality with αk = 2
r(r−1) , n =

r(r−1)
2 , and gv = φ

p
r(r−1)

ki
(t)φ

p
r(r−1)

kj
(t), i < j, v = 1, · · · , n. Considering that p2 = (p+q)p

2q > q and

p3 = p+q
2 > q, by (1.2) and Hölder inequality with powers α = p+q

q and α′ = p+q
p , we obtain

∫
φ

p
2

ki
(t)φ

p
2

kj
(t)dt ≤

(∫
φ

(p+q)p
2q

ki
(t)dt

) q
p+q
(∫

φ
p+q
2

kj
(t)dt

) p
p+q

≤ ‖φki‖
p
2
p2‖φkj‖

p
2
p3

≤ C(p, q, S)

[
λ
d
(

1
q−

1
p2

)
uki+1 ‖φ∗ki

‖qλ
d
(

1
q−

1
p3

)
ukj+1 ‖φ∗kj

‖q

] p
2

= C(p, q, S)

[
λ
d( 1

q−
1
p)

uki+1 ‖φ∗ki
‖qλ

d( 1
q−

1
p)

ukj+1 ‖φ∗kj
‖q

] p
2

(
λuki+1

λukj +1

) p−q
2(p+q)

.

So, the fifth inequality holds. Symmetry between i and j in the last equality allows us to

exchange i and j if uki > ukj and replace

(
λuki+1

λukj+1

) p−q
2(p+q)

by

(
λumin{ki,kj}+1

λumax{ki,kj}+1

) p−q
2(p+q)

, then the

sixth inequality follows from the inequality

∏
1≤i<j≤r

akiakj

(
λumin{ki,kj}+1

λumax{ki,kj}+1

)ι
=

r∏
s=1

ar−1
ks

r∏
t=1

(
λumin{ks,kt}+1

λumax{ks,kt}+1

) ι
2

with

aks =

(
λ
d( 1

q−
1
p )

uks+1 ‖φks‖q

) p
r(r−1)

and

ι =
d(p− q)

(p+ q)r(r − 1)
.

And (3.5) with αk = 1
r , n = r and v = (k1, · · · , kr) yields the seventh inequality. Observing

that all r factors of the product in the seventh inequality are equal and their common value is

[
m∑

k1=0

(
‖φ∗k1‖qλ

d( 1
q−

1
p)

uk1+1

)p m∑
k2=0

· · ·

m∑
kr=0

r∏
t=1

(
λumin{k1,kt}+1

λumax{k1,kt}+1

) p−q
2(p+q)(r−1)

⎤
⎦

1
r

,
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we have by (3.2)

m∑
k=0

(
λumin{k1,k}+1

λumax{k1,k}+1

)ι
≤ C(p, q, S)

m∑
k=0

b
ι(max{k1,k}−min{k1,k})
3

= C(p, q, S)

m∑
k=0

b
ι(|k1−k|)
3 ≤ C(p, q, S)

∞∑
k=0

bkι3

≤ C(p, q, S).

Hence,

m∑
k2=0

· · ·

m∑
kr=0

r∏
t=1

(
λumin{k1,kt}+1

λumax{k1,kt}+1

)ι
=

m∑
k2=0

· · ·

m∑
kr=0

r∏
t=2

(
λumin{k1,kt}+1

λumax{k1,kt}+1

)ι

≤

r∏
t=2

(
m∑

kt=0

(
λumin{k1,kt}+1

λumax{k1,kt}+1

)ι)

≤ C(p, q, S).

Thus, the eighth and ninth inequalities are obvious. This completes the proof of Lemma 3.4.

Now, we proceed the proof of our main result in this section.

Proof of Theorem 3.1 Let Pn ∈ Fn be the general polynomial of the best approxima-

tion of f ∈ Lq with the weighted function ψ. By the density of Fn, we have

(fϕ− Pumϕ)(t) =

∞∑
k=m

{Puj+1 (t)ϕ(x) − Puj (t)ϕ(t)}.

Using Lemmas 3.5 and 3.2 with a = 0, we have

En(f)p,ϕ ≤ ‖fϕ− Pnϕ‖p = lim
m→∞

∥∥∥∥∥
m∑
k=0

(Puk+1
ϕ− Puk

ϕ)

∥∥∥∥∥
p

≤ C(p, q, S) lim
m→∞

(
m∑
k=0

(
λ
d( 1

q−
1
p )

uk+1 Euk
(f)q,ψ

)p1) 1
p1

≤ C(p, q, S) lim
m→∞

(
m∑
k=0

Euk
(f)p1q,ψλ

dp1( 1
q−

1
p )

uk+1

) 1
p1

≤ C(p, q, S) lim
m→∞

((
λ
d( 1

q−
1
p )

u1 Eu0(f)q,ψ

)p1

+
m∑
k=1

um∑
j=uk−1+1

λ
dp1( 1

q−
1
p)

j

j
Ej(f)p1q,ψ

⎞
⎠

1
p1

≤ C(S, p, q)

{
λdp1θn En(f)p1q,ψ +

∞∑
k=n+1

λ
dp1θ
k

k
Ek(f)p1q,ψ

} 1
p1

.

This completes the proof of Theorem 3.1.
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4 Applications

Theorem 2.1 shows that the general Bernstein-type inequality (1.1) implies the general

Nikol’skǐı-type inequality (1.2), and Theorem 3.1 shows that the general Ul’yanov-type inequal-

ity (1.3) can be deduced from the general Nikol’skǐı-type inequality (1.2) under some conditions.

In contrast, for algebraic polynomials, there are some such weighted Bernstein-type inequalities,

which were shown in [5, 8, 12, 13], etc. Also, there are many weighted functions, such as xγ ,

ex, etc., satisfying Theorems 2.1 and 3.1.

The following Corollary 4.1 is a combination of Theorem 2.1 and (1.4).

Corollary 4.1 For a bounded convex set S ⊂ R
d, Pn ∈ Pn, and 0 < p < q ≤ ∞, we

have ∥∥∥(ϕ∗)1/2 Pn∥∥∥
p
≤ C(p, q, r)nd(

1
q−

1
p )‖Pn‖q,

where ϕ∗(x) is defined in Section 1.

From Theorem 3.1, it follows

Corollary 4.2 For a bounded convex set S ⊂ R
d and 0 < q < p ≤ ∞, there holds

En(f)p,(ϕ∗)1/2 ≤ C(S, p, q)

{
ndp1θEn(f)p1q,1 +

∞∑
k=n+1

kdp1θ−1Ek(f)p1q,1

} 1
p1

.

By combination of (1.5) and Theorem 2.1 with ϕ(x) = ψ(x) = 1, we have

Corollary 4.3 If S is a bounded convex set in R
d, 0 < q < p ≤ ∞, and Pn ∈ Pn is a

polynomial, then there is a constant C(p, k, S), such that

‖Pn‖p ≤ C(p, k, S)n2d( 1
q−

1
p )‖Pn‖q.

Combining Corollary 4.3 with Theorem 3.1 gives

Corollary 4.4 For a bounded convex set S ⊂ R
d, 0 < q < p ≤ ∞, and a polynomial

Pn ∈ Pn, there is a constant C(p, k, S), such that

En(f)p,1 ≤ C(S, p, q)

{
n2dp1θEn(f)p1q,1 +

∞∑
k=n+1

k2dp1θ−1Ek(f)p1q,1

} 1
p1

.

Now, we turn to the case of one dimension. The following lemma 4.1 is Theorem 1.6 of

[13].

Lemma 4.1 Let W (x) = e−Q(x) and 0 < p ≤ ∞, and let β > −1
p if p <∞ and β ≥ 0 if

p =∞. Then, for n ≥ 1, Pn ∈ Pn, and a bounded interval I,

‖P ′n(x)W (x)xβ‖Lp(I) ≤ Cn2‖P (x)W (x)xβ‖Lp(I),

where Q(x) was defined in Definition 1.1 of [13].

It is proved that the weighted function W (x)xβ satisfies the restriction of Theorem 2.1.

Therefore, we have

Corollary 4.5 Let W (x) = e−Q(x), and let β > −1
p if p <∞ and β ≥ 0 if p = ∞. Then,

for 0 < q < p ≤ ∞, n ≥ 1, Pn ∈ Pn, and a bounded interval I,

‖Pn(x)W (x)xβ‖Lp(I) ≤ Cn2( 1
q−

1
p )‖P (x)W (x)xβ‖Lq(I).
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From Theorem 3.1, it also follows that

Corollary 4.6 Let W (x) = e−Q(x), and let β > −1
p if p <∞ and β ≥ 0 if p = ∞. Then,

for 0 < q < p ≤ ∞, n ≥ 1, Pn ∈ Pn, and a bounded interval I,

En(f)p,W (x)xβ ≤ C

{
n2p1θEn(f)p1

q,W (x)xβ +

∞∑
k=n+1

k2p1θ−1Ek(f)p1
q,W (x)xβ

} 1
p1

.
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