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[t]he analysis of the phrase “how many” unambiguously leads to a definite meaning for 
the question [“How many different sets of integers do their exist?”]: the problem is to 
find out which one of the א’s is the number of points of a straight line… Cantor, after 
having proved that this number is greater than 0א, conjectured that it is 1א.  An equivalent 
proposition is this: any infinite subset of the continuum has the power either of the set of 
integers or of the whole continuum.  This is Cantor’s continuum hypothesis. … 

But, although Cantor’s set theory has now had a development of more than sixty years 
and the [continuum] problem is evidently of great importance for it, nothing has been 
proved so far relative to the question of what the power of the continuum is or whether its 
subsets satisfy the condition just stated, except that … it is true for a certain infinitesimal 
fraction of these subsets, [namely] the analytic sets.   Not even an upper bound, however 
high, can be assigned for the power of the continuum.  It is undecided whether this 
number is regular or singular, accessible or inaccessible, and (except for König’s negative 
result) what its character of cofinality is.   

      Gödel 1947, 516-517 [in Gödel 1990, 178] 

Throughout the latter part of my discussion, I have been assuming a naïve and uncritical 
attitude toward CH.  While this is in fact my attitude, I by no means wish to dismiss the 
opposite viewpoint.  Those who argue that the concept of set is not sufficiently clear to 
fix the truth-value of CH have a position which is at present difficult to assail.  As long as 
no new axiom is found which decides CH, their case will continue to grow stronger, and 
our assertion that the meaning of CH is clear will sound more and more empty.  

        Martin 1976, 90-91  

 

Abstract:  The purpose of this article is to explain why I believe that the Continuum 
Hypothesis (CH) is not a definite mathematical problem.   My reason for that is that the 
concept of arbitrary set essential to its formulation is vague or underdetermined and there 
is no way to sharpen it without violating what it is supposed to be about.  In addition, 
there is considerable circumstantial evidence to support the view that CH is not definite. 
In more detail, the status of CH is examined from three directions, first a thought 
experiment related to the Millennium Prize Problems, then a view of the nature of 



 2 

mathematics that I call Conceptual Structuralism, and finally a proposed logical 
framework for distinguishing definite from indefinite concepts.   

 

My main purpose here is to explain why, in my view, the Continuum Hypothesis (CH) is 

not a definite mathematical problem.  In the past, I have referred to CH as depending in 

an essential way on the inherently vague concept of arbitrary set, by which I mean that 

the concept of a set being arbitrary is vague or underdetermined and there is no way to 

sharpen it without violating what it is supposed to be about.  I still believe that, which is 

the main reason that has led me to the view that CH is not definite.  Others, with the 

extensive set-theoretical independence results concerning CH in mind, have raised the 

question whether it is an absolutely undecidable proposition, that is, in the words of 

Koellner (2010), “undecidable relative to any set of axioms that are justified.” 1 I prefer 

not to pose the issue that way, because it seems to me that the idea of an absolutely 

undecidable proposition presumes that the statement in question has a definite 

mathematical meaning.  There is no disputing that CH is a definite statement in the 

language of set theory, whether considered formally or informally.  And there is no doubt 

that that language involves concepts that have become an established, robust part of 

mathematical practice.  Moreover, many mathematicians have grappled with the problem 

and tried to solve it as a mathematical problem like any other.  Given all that, how can we 

say that CH is not a definite mathematical problem?    

I shall examine this from three directions, first a thought experiment related to the 

Millennium Prize Problems, then a view of the nature of mathematics that I call 

Conceptual Structuralism, and finally a proposed logical framework for distinguishing 

definite from indefinite concepts.   

1. The Millennium Prize Problem Test 

Early in the year 2000, the Scientific Advisory Board (SAB) of the Clay Mathematics 

Institute (CMI) announced a list of seven mathematical problems, each of which if solved 
                                                
1 That is not Koellner’s view; in fact his main aim in Koellner (2010) is to exposit work 
of Woodin that it is hoped will lead to a decision as to CH. 
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would lead to a prize of one million dollars.  The list includes some of the most famous 

open problems in mathematics, some old, some new: the Riemann Hypothesis, the 

Poincaré conjecture, the Hodge conjecture, the P vs NP question, and so on, but it does 

not include the Continuum Hypothesis.  The ground rules for the prize are that any 

proposed solution should be initiated by a refereed publication, followed by a two-year 

waiting period “to ensure acceptance of the work by the mathematics community, before 

the CMI will even solicit expert opinions about the validity or attribution of a presumed 

solution.“ (Jaffe 2006, 655) One criterion for the selection of problems by the SAB was 

that “each of these questions should be difficult and important.” (Jaffe 2006, 653).  And it 

was decided that the simplest form of a question was to be preferred “at least whenever 

that choice seemed sensible on mathematical and general scientific grounds.”  Finally, 

“while each problem on the list was central and important…the SAB did not envisage 

making a definitive list, nor even a representative set of famous unsolved problems.  

Rather, personal taste entered our choices; a different scientific advisory board 

undoubtedly would have come up with a different list.  … We do not wish to address the 

question, ‘Why is Problem A not on your list?’  Rather we say that the list highlights 

seven historic, important, and difficult open questions in mathematics.”  (Ibid., 654) 

We don’t know if CH was considered for inclusion in the list, though I would be 

surprised if it did not come up initially as one of the prime candidates.  In any case, a new 

opportunity for it to be considered may have emerged since Grigory Pereleman solved 

the Poincaré conjecture, was awarded the prize and declined to accept it.  Let’s imagine 

that the CMI sees this as an opportunity to set one new prize problem rather than let the 

million dollars go begging that would have gone to Perelman.  Here’s a scenario: the 

SAB solicits advice from the mathematics community again for the selection of one new 

problem and in particular asks an expert or experts in set theory (EST) whether CH 

should be chosen for that.2  Questions and discussion ensue. 

********* 
                                                
2 There was apparently no animus to the logic community on the part of the SAB 
concerning the problems it selected; logicians (along with computer scientists) were 
consulted as to the importance of the P = (?) NP problem.   
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SAB: Thank you for joining us today.  CH is a prima-facie candidate to be chosen for the 

new problem and your information and advice will be very helpful in deciding whether 

we should do so.  Please tell me more about why it is important and what efforts have 

been made to solve it.   

EST: Set theory is generally accepted to be the foundation of all mathematics, and this is 

one of the most basic problems in Cantor’s theory of transfinite cardinals which led to his 

development of set theory starting in the 1880s.  Hilbert recognized its importance very 

quickly and in 1900 placed it in first position in his famous list of mathematical 

problems.  As to the problem itself, soon after Cantor had shown that the continuum is 

uncountable in the early 1880s, he tried but failed to show that every uncountable subset 

of the continuum has the same power as the continuum. That’s one form of CH, 

sometimes called the Weak Continuum Hypothesis, the more usual form being the 

statement 21א = 0א; the two are equivalent assuming the Axiom of Choice (AC). [EST 

continues with an account of the early history of work on CH beginning with Cantor 

through Sierpinski and Luzin in the mid 1930s; cf. Moore (1988, 2011).] 

SAB: Despite all that work, the quote you give from Gödel [above] says that nothing was 

learned about the cardinality of the continuum beyond its uncountability and König’s 

theorem.  Is that fair?  And what’s happened since he wrote that in 1947? 

EST:  Well, in that quote Gödel did not mention a related problem that Cantor had also 

initiated, when he showed that every uncountable closed subset X of the continuum has 

the perfect set property, i.e. contains a perfect subset and hence is of the power of the 

continuum; we also say that CH holds of X.  The question then became, which sets have 

that property?  That was actively pursued in the 1930s in the Russian school of 

Descriptive Set Theory (DST, the study of definable sets of reals and of other topological 

spaces) led by Luzin.  The strongest result he obtained, together with his student Suslin, 

is that all ∑1
1 (or “analytic” sets) have the perfect subset property.  The ∑1

1 sets of reals 

are the projections of 2-dimensional Borel sets, and that is the first level of sets in the 

projective hierarchy, which are generated by alternating projection (giving the ∑1
n sets) 

and complementation (giving the ∏1
n sets).  The workers in DST were unable to show 

that the ∏1
1 sets have the perfect set property.  The reason for that was explained by 
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Gödel (1938, 1940) who showed that there are  uncountable ∏1
1 sets that do not have the 

perfect set property in his constructible sets model L of ZFC + GCH.3  

SAB: So the analytic sets would seem to be as far as one could go with the perfect set 

property.   

EST: Actually not, since it could equally well be consistent with ZFC and other axioms 

that not only ∏1
1 sets but all uncountable sets in the projective hierarchy have the perfect 

set property.  And that turned out to be the case through a surprising route, namely the 

use of a statement called the Axiom of Determinacy (AD) introduced in the early 1980s 

by Mycielski and Steinhaus.  That is very powerful because it proves such things as that 

all sets of reals are Lebesgue measurable, contradicting AC.  So set theorists don’t accept 

AD because AC is absolutely basic to set theory and is intuitively true of the domain of 

arbitrary sets.  But set theorists realized that relativized forms of AD could be true and 

have important consequences.   

SAB: Tell me⎯but first explain what AD is.   

EST: Associated with any subset X of 2N is a two person infinite game GX.  Beginning 

with player I, each chooses in alternation a 0 or a 1.  At the “end” of play, one has a 

sequence σ in 2N; player I wins if σ belongs to X while player II wins if not.  AD for X 

says that one player or the other has a winning strategy  for GX, and AD holds for a class 

Γ of sets if it holds for each X in Γ.  Even though AD is not true for the class of all 

subsets of the continuuum, it could well be true for substantial subclasses Γ of that.  In 

fact Martin (1975) proved in ZFC that AD holds for the Borel sets and then moved 

beyond that to study AD for sets in the projective hierarchy.  Projective Determinacy 

(PD) states that AD holds for the class of all projective sets.  PD turns out to have many 

significant consequences including that (i) every projective set is Lebesgue measurable, 

(ii) has the Baire property, and (iii) if uncountable contains a perfect subset. And, in 

                                                
3 ZFC consists of the usual Zermelo-Fraenkel axioms of set theory (ZF) expanded by the 
Axiom of Choice (AC), and GCH is the Generalized Continuum Hypothesis in the form 
that for all ordinals α, 2אα = אα+1.   
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1989, Tony Martin and John Steel succeeded in obtaining the stunning result that PD 

holds; their proof was published in the Journal of the American Mathematical Society 

under the title “A proof of projective determinacy” (Martin and Steel 1989).  

SAB: That sounds pretty impressive and like real progress.  So what you’re telling me is 

that not only is PD consistent with ZFC but it’s true, though I guess it can’t be true in L 

from what you told me before.   

EST: You’re right about the latter, but something more has to be said about Martin and 

Steel’s proof to assert that PD is true.  They don’t just use the ordinary axioms of set 

theory; what they actually show (and are quite explicit about) is that PD follows from 

ZFC plus the assumption that there exist infinitely “Woodin cardinals” with a measurable 

cardinal above all of them.   In fact, Woodin strengthened that to showing that under the 

same assumption, AD holds in L(R), the constructible sets relative to the real numbers R 

(cf. Koellner 2010, 205).  Incidentally, he also showed that if AD holds in L(R), then it is 

consistent with ZFC that there are infinitely many Woodin cardinals (ibid.).  

SAB: I know what a measurable cardinal is supposed to be since it was introduced by 

Ulam, and happen to know that Scott showed there are no measurable cardinals in L; on 

the other hand, lots of large cardinals like those due to Mahlo are consistent with V = L, 

so the existence of measurables is pretty strong.  But what are Woodin cardinals?  And 

when are you going to tell me about the status of CH itself? 

EST: First of all, the large cardinals like those of Mahlo, etc., that are consistent with V = 

L are sometimes called “small” large cardinals, while those like the measurables and 

beyond that are inconsistent with V = L are called “large” large cardinals.  Woodin 

cardinals are among the latter; they are located in a hierarchy of large large cardinals 

above measurable cardinals and below supercompact cardinals and are given by a rather 

technical definition (cf. Kanamori 1994, 471).  

SAB: You say the assumption they exist was made by Martin and Steel, so that seems to 

suggest that their existence hasn’t been proved.  Or is it intuitively clear that their 

existence should be accepted? 
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EST: Yes and no: there is a linear hierarchy of known large cardinal assumptions 

increasing in consistency strength containing the measurable cardinals, Woodin cardinals, 

supercompact cardinals and many more.  Now the existence of large cardinals at a given 

stage proves the consistency of the existence of all smaller large cardinals, so by Gödel’s 

incompleteness theorem, the latter can’t be proved without such an additional 

assumption.  And, the individual statements of existence of large cardinals is by no means 

intuitively evident, but experts in the field have argued why it is plausible to assume their 

existence.  One argument in favor of their assumption is that they serve to answer 

classical questions about the projective hierarchy and unify the results in a beautiful way.  

Another, more general, argument is that when natural extensions of ZFC are compared as 

to consistency strength, they also fall into a linear hierarchy, even when they contradict 

each other, as do, say, ZF +AC and ZF + not-AC.  It has been empirically observed that 

whenever T1 and T2 are two theories in this hierarchy of natural extensions of ZF that 

have the same consistency strength, that is mediated by a large cardinal assumption of the 

same strength as both (cf. Steel 2000, 426). In some sense, the linear hierarchy of large 

cardinals is the backbone of the linear hierarchy of natural extensions of ZF when 

compared as to consistency strength.   

SAB: That doesn’t sound very convincing to me as an argument to accept the existence 

of such large cardinals, but I’ll accept the plausibility arguments for the moment.  I keep 

trying to come back to CH itself, which is supposed to be a candidate for the new 

problem on our list.  What can you tell us about that, given all this new work? 

EST: Well, now we’re getting into speculative territory. Levy and Solovay (1967) 

showed that CH is consistent with and independent of all such large cardinal 

assumptions, provided of course that they are consistent.  So the assumption of even 

(Large) Large Cardinal Axioms (LLCAs) is not enough; something more will be 

required. 

SAB: Like what? 

EST: Some of the experts think that one of the most promising avenues is that being 

pursued by Woodin (2005a, 2005b)  via his strong Ω-logic conjecture which, if true, 
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would imply that the cardinal number of the continuum is 2א But the explanation of that 

would take a bit more time (cf. also Koellner 2010, 212 ff).   

SAB: Hmm.  I won’t ask you to explain that to us, or to ask how one would convince 

oneself of its truth, if even LLCAs are not enough.  Anyhow, our time is up, and thank 

you for all this valuable information and advice.   

Next! 

********* 

What would be difficult for the SAB as representatives of the mathematical establishment 

in this imagined interview about whether to add CH to its list is that the usual idea of 

mathematical truth in its ordinary sense is no longer operative in the research programs of 

Martin, Steel, Woodin, et al. which, rather, are proceeding on the basis of what seem to 

be highly unusual (one might even say, metaphysical) assumptions.  And even though the 

experts in set theory may find such assumptions compelling from their experience of 

working with them and through the kind of plausibility arguments indicated above, the 

likelihood of their being accepted by the mathematical community at large is practically 

nil.  So if a resolution of CH were to come out of a pursuit of these programs, 

mathematicians outside of set theory would have no way of judging the truth or falsity of 

CH on that basis.  Thus, given our present understanding of the status of CH, it would not 

be a good bet for the SAB to add it to its Prize list. 

The situation is not at all like that of the case of AC, which was long resisted by 

significant parts of the mathematics community, but came to be accepted by the vast 

majority when Zermelo’s arguments (and those of others) sank in: namely AC is both a 

simple intuitively true statement about the universe of arbitrary sets (granted the concept 

of such) and its use underlies many common informal mathematical arguments 

previously considered unobjectionable even by the critics of AC (cf. Moore 1982) .  

Neither of these applies to the extraordinary set theoretical hypotheses in question here. 

Of course, none of this by itself establishes that CH is not a definite mathematical 

problem, but it surely has to give one pause and ask if the concepts of arbitrary set and 
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function that are essential to its formulation are indeed as definite as one thought, despite 

their ubiquity in modern mathematics.  For that we have to dig deeper into the 

philosophical presumptions of set theory within a view of the nature of mathematical 

truth more generally. If one is not a formalist, finitist, constructivist, or predicativist, etc., 

what are the options?  The well-known difficulties of platonism have left it with few if 

any adherents, though it has re-emerged in some forms of mathematical structuralism.  

Others have retreated to a deflationary view of mathematical truth (e.g., Burgess in 

Maddy 2005, 361-362, but that leaves us just as much at sea when we ask whether or not 

CH is true.   Still others would put philosophical considerations aside in favor of the 

judgment of working mathematicians: “mathematics is as mathematics does.”  Some 

among those (e.g. Maddy 1997, 2005) combine that with specifically methodological 

guidelines in the case of set theory, with slogans like “maximize”, but that does nothing 

to tell us why we should accept something as true if it is the result of such.    

2. Conceptual Structuralism4 

2(a) Mathematical structuralism and structuralist philosophies 

Mathematical practice has been increasingly dominated by structuralist views since the 

beginning  of the 20th century.  Their explicit inception in the 19th century is often 

credited to Dedekind.  But I would argue that mathematicians always regarded their 

subject matter in structuralist terms, if only implicitly, since their concern throughout was 

not with what mathematical objects “really are”, but with how they relate to each other, 

and how they can be a subject of systematic computation and reasoning.  True, one had 

the successive questions: What is zero?, What are negative quantities?, What are 

irrational magnitudes?, What are imaginary numbers?, What are infinitesimal quantities?, 

etc., etc.   But the “what” had to do with the problem as to how one could coherently fit 

systematic use of these successively new ideas with what had previously been recognized 

as mathematically meaningful.  Hilbert is of course famous for his early espousal of an 

explicit structuralist point of view in his work on the foundations of geometry.  The great 

                                                
4 This section of the paper is largely taken from Feferman (2009a, 2010a). 
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contemporary of Hilbert, Henri Poincaré, though known for his emphasis on quite 

different, more intuitive aspects of mathematics from Hilbert, also voiced a structuralist 

view of the subject:   

Mathematicians do not study objects, but the relations between objects; to them it is 

a matter of indifference if those objects are replaced by others, provided that the 

relations do not change.   Matter does not engage their attention, they are interested 

by form alone.  (Poincaré 1952, 20) 

In the 20th century the Bourbaki group led the way in promoting a systematic 

structuralist approach to mathematics, and that has been continued in a specific way into 

the 21st century by the category theorists led by Saunders Mac Lane.  

Structuralist philosophies of mathematics have emerged in the last thirty years as a 

competitor to the traditional philosophies of mathematics.  An early expression is found 

in the famous article by Benacerraf, “What numbers could not be” (1965).  Systematic 

efforts at the development of a structuralist philosophy of mathematics have been given 

in Hellman (1989), Resnik (1997), Shapiro (1997) and Chihara (2004), among others; for 

a survey of some of the leading ideas, see Hellman (2005).  Closest to the views here but 

with quite opposite conclusions re CH is Isaacson (2008).  

2(b) The theses of Conceptual Structuralism 

My version of such a philosophy, Conceptual Structuralism, is meant to emphasize the 

source of all mathematical thought in human conceptions.  It differs in various respects 

from the ones mentioned and is summarized in the following ten theses.5  

1. The basic objects of mathematical thought exist only as mental conceptions, though the 

source of these conceptions lies in everyday experience in manifold ways, in the 

processes of counting, ordering, matching, combining, separating, and locating in space 

and time. 

                                                
5 I began developing these ideas in the late 1970s and first circulated them in notes in 
1978; cf. Feferman (2009a) 170, fn. 2.  
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2. Theoretical mathematics has its source in the recognition that these processes are 

independent of the materials or objects to which they are applied and that they are 

potentially endlessly repeatable.  

3. The basic conceptions of mathematics are of certain kinds of relatively simple ideal 

world-pictures which are not of objects in isolation but of structures, i.e. coherently 

conceived groups of objects interconnected by a few simple relations and operations.  

They are communicated and understood prior to any axiomatics, indeed prior to any 

systematic logical development. 

4. Some significant features of these structures are elicited directly from the world-

pictures which describe them, while other features may be less certain.  Mathematics 

needs little to get started and, once started, a little bit goes a long way.   

5. Basic conceptions differ in their degree of clarity.  One may speak of what is true in a 

given conception, but that notion of truth may only be partial.  Truth in full is applicable 

only to completely clear conceptions.   

6. What is clear in a given conception is time dependent, both for the individual and 

historically. 

7. Pure (theoretical) mathematics is a body of thought developed systematically by 

successive refinement and reflective expansion of basic structural conceptions. 

8. The general ideas of order, succession, collection, relation, rule and operation are pre-

mathematical; some understanding of them is necessary to the understanding of 

mathematics.   

9. The general idea of property is pre-logical; some understanding of that and of the 

logical particles is also a prerequisite to the understanding of mathematics.  The 

reasoning of mathematics is in principal logical, but in practice relies to a considerable 

extent on various forms of intuition in order to arrive at understanding and conviction.    

10. The objectivity of mathematics lies in its stability and coherence under repeated 

communication, critical scrutiny and expansion by many individuals often working  
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independently of each other.  Incoherent concepts, or ones which fail to withstand critical 

examination or lead to conflicting conclusions are eventually filtered out from 

mathematics.  The objectivity of mathematics is a special case of intersubjective 

objectivity that is ubiquitous in social reality. 

 There is not time to elaborate these points, but various aspects of them will come up in 

our discussion of two constellations of structural notions, first of objects generated by one 

or more “successor” operations, and second of the continuum.   

Before digging into these structures,  I want to address a common objection to locating 

the nature of mathematics in human conceptions, namely that it does not account for the 

objectivity of mathematics.   I disagree strongly, and in support of that appeal to the 

objectivity of much of social reality.  That is so pervasive, we are not even aware that 

much of what we must deal with in our daily lives is constrained by social institutions 

and social facts.  In this respect I agree fully with John Searle, in his book, The 

Construction of Social Reality, and can hardly do better than quote him in support of that: 

[T]here are portions of the real world, objective facts in the world, that are only 

facts by human agreement.  In a sense there are things that exist only because we 

believe them to exist.  ... things like money, property, governments, and marriages.  

Yet many facts regarding these things are ‘objective’ facts in the sense that they are 

not a matter of [our] preferences, evaluations, or moral attitudes.  (Searle 1995, p.1) 

Searle goes on to give examples of such facts (at the time of writing) as that he is a 

citizen of the United States, that he has a five dollar bill in his pocket, that his younger 

sister got married on December 14, that he owns a piece of property in Berkeley, and that 

the New York Giants won the 1991 Superbowl.6  He might well have added board games 

to the list of things that exist only because we believe them to exist, and facts such as that 

in the game of chess, it is not possible to force a checkmate with a king and two knights 

                                                
6 Objective facts for others might be that they are not citizens of the United States, or that 
they are not married, or that they are married in some US States but not in others, or that 
they have no money in their pockets.  Purported facts that might be up for dispute are that 
one is fishing beyond the 12 nautical mile territorial waters off the coast of Maine.    
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against a lone king.  Unlike facts about one’s government, citizenship, finances, property, 

marital relations, and so on, that are vitally important to our daily welfare, since they 

constrain one’s actions and determine one’s “rights”, “responsibilities” and “obligations”, 

facts about the structure and execution of athletic games and board games are not 

essential to our well-being even though they may engage us passionately.  In this respect, 

mathematics is akin to games; the fact that there are infinitely many prime numbers is an 

example of a fact that is about our conception of the integers, a conception that is as clear 

as what we mean, for example, by the game of chess or the game of go.   

 Searle’s main concern is to answer the question, “How can there be an objective reality 

that exists in part by human agreement?”, and his book is devoted to giving a specific 

account of the nature of certain kinds of social facts, and of what makes them true.  That 

account is open to criticism in various respects, but what is not open to criticism is what it 

is supposed to be an account of.   That is, we must take for granted the phenomenon of 

intersubjective objectivity about many kinds of social constructions, be they 

governments, money, property, marriages, games, and so on.  (It should be stressed that 

we are not dealing with the in many respects antiscientific viewpoint of social 

constructivism in post-modernist and deconstructionist thought.) My claim is that the 

basic conceptions of mathematics and their elaboration are also social constructions and 

that the objective reality that we ascribe to mathematics is simply the result of 

intersubjective objectivity about those conceptions and not about a supposed independent 

reality in any platonistic sense.   Also, this view of mathematics does not require total 

realism about truth values.  That is, it may simply be undecided under a given conception 

whether a given statement in the language of that conception has a determinate truth 

value, just as, for example, our conception of the government of the United States is 

underdetermined as to the presidential line of succession past a certain point.7  

2(c) Conceptions of Sequential Generation 

The most primitive mathematical conception is that of the positive integer sequence 
                                                
7 According to Wikipedia, that is now specified up to #17, the Secretary of Homeland 
Security.   
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represented by the tallies: |, ||, |||, ...  .  Mathematics begins when we conceive of these as 

being generated from a fixed initial unit by repeatedly associating with each term n a 

unique successor Sc(n), without bound; the objects thus generated form the collection N+ 

of positive integers. Implicit in this conception is the order relation m < n, which holds 

when m precedes n in the generation of N+.  Our primitive conception is thus that of a 

structure (N+, 1, Sc, <), about which certain facts, if we think about them, are evident: 

that < is a total ordering of N+ for which 1 is the least element, and that m < n implies 

Sc(m) < Sc(n).  At a further stage of reflection we may recognize the least number 

principle for the positive integers, that if P(n) is any definite property of members of N+ 

and there is some n such that P(n) then there is a least such n.   

As we reflect on a given structure we are tempted to elaborate it by adjoining further 

relations and operations and to expand basic principles accordingly.  In the case of the  

positive integers N+  the operation of addition, m + n, is clearly understood through the 

conception of integers as represented by tallies, for example  +  is obtained by 

concatenating the tallies for m and n respectively, so that in particular n + 1 = sc(n).  

Then we think of m × n as “m added to itself n times”.  The basic properties of the + and 

× operations such as commutativity, associativity, distributivity, and cancellation are 

initially recognized only implicitly.   

As we know,  already with these concepts and their basic properties, and derivative ones 

such as the relation of divisibility and the property of being a prime number, a wealth of 

interesting mathematical statements can be formulated and investigated as to their truth or 

falsity, to begin with the existence of infinitely prime numbers, the question of infinity of 

the twin prime numbers, the questions about perfect numbers, the solvability and 

unsolvability of various diophantine equations, the theory of congruences, and so on.  

Incidentally, the least number principle was implicitly applied, for example, by Fermat, in 

his use of the “method of descent” to establish the non-existence of solutions of x4 + y4 = 

z4 in positive integers.   

The conception of (N+, 1, Sc, <, +, ×) is so clear that, again implicitly, at least, there is no 

question in the minds of (amateur or professional) number theorists--nor should there be 

any question in our minds--as to the definite meaning of such statements and the assertion 
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that they are true or false, independently of whether we can establish them one way or the 

other.   In other words, in more modern terms, we should accept realism in truth values 

for statements about this structure; then the application of classical logic in reasoning 

about such statements is automatically legitimized.  Thus, despite the subjective source of 

the positive integer structure in the collective human understanding, there is no reason to 

restrict oneself to intuitionistic logic on subjectivist grounds.   

I have described in Feferman (2009a) how reflection on the structure of positive integers 

leads us to conceive of and reduce to it the concepts of the arithmetical structures on the 

natural numbers N, the integers Z and the rational numbers Q, for which truth in these 

structures is a definite notion.  But it should be emphasized that the general scheme of 

induction, 

   P(0) ∧ ∀n[P(n) → P(Sc(n))] → ∀n P(n), 

needs to be understood in an open-ended sense, by which I mean that it is accepted for 

any definite property P of natural numbers that one meets in the process of doing 

mathematics, no matter what the subject matter and what the notions used in the 

formulation of P. 8 The question⎯What is a definite property?⎯may require in each 

instance the mathematician’s judgment.  For example, the property,”n is an odd perfect 

number”, is a definite property, while “n is a feasibly representable number” is not.  What 

about “GCH is true at n”?  

 

Returning to the starting point of finite generation under a successor operation, it is also 

natural to conceive of generation under more than one such operation, Sca where a is an 

element of an index collection A.   We may conceive of the objects of the resulting 

structure as “words on the alphabet A”, with Sca(w) = wa in the sense of concatenation.  

The mathematics of this conception is simply the theory of concatenation, which is 
                                                
8 In Feferman (1996) I introduced the concept of the unfolding of an open-ended system 
T based on axioms in the usual sense of the word and open-ended schemata, to 
characterize what operations and relations, and what principles concerning, them ought to 
accepted if one has accepted those provided by T.   In Feferman and Strahm (2000) we 
showed that the unfolding of schematic number theory is of proof-theoretical strength the 
same as predicative analysis.    
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equivalent to the theory of natural numbers when A has a single element.  Of special 

interest below is the case that A = {0, 1}, for which we also conceive of the words on A 

as the finite paths in the binary branching tree, alternatively as the end nodes of such 

paths.   

 

2 (d). Conceptions of the continuum   

The question of the determinateness of CH in its weak form depends on our conception 

of three things: (1) the continuum, (2) subsets of the continuum, and (3) mappings 

between such subsets.  As to (1), there is in fact no unique concept, but rather several 

related ones, and part of the problem whether CH is a genuine mathematical problem is 

that there is a certain amount of conflation of these concepts with a resulting muddying of 

the picture.  I shall be relatively brief about each of these since I have expanded on them 

in Feferman (2009a).    

(i) The Euclidean continuum.  The conception is semi-structural.   Straight lines are 

conceived of as lying in the plane or in space.  They are perfectly straight and have no 

breadth.  Points are perfectly fine; they are conceived of as the objectification of pure 

locations.  A point may lie on a line, but the line does not consist of the set of its points.  

The idea of arbitrary subset of a line or of the removal of some points from a line is 

foreign to Euclidean geometry. 

 (ii) The Hilbertian continuum.  The conception is structural: one has points, lines, planes, 

incidence, betweenness and equidistance relations.  Continuity is expressed set-

theoretically following Dedekind.   

 (iii) The Dedekind real line.  This is a hybrid (arithmetical/geometric) notion that can be 

expressed in structural terms relative to the rationals.  Continuity is expressed by the 

Dedekind cut condition.   

 (iv) The Cauchy-Cantor real line.  This is again a hybrid structural notion relative to Q.  

Continuity is expressed by the Cauchy convergence condition, used by Cantor to 

“construct” the reals. 
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 (v) The set 2N, i.e. the set of infinite sequences of 0’s and 1’s, i.e. all paths in the full 

binary tree. 

 (vi) The set of all subsets of N, S(N).    

Not included here are physical conceptions of the continuum, since our only way of 

expressing them is through one of the mathematical conceptions via geometry or the real 

numbers.  

Euclidean geometry aside, so far as CH is concerned, set theory erases the distinctions 

between the notions in (ii)-(vi) by identifying sequences with sets and by considering 

only the cardinality of the various continua.  But there is also a basic conceptual 

difference between 2N and S(N), with the elements of 2N pictured as the result of an 

unending sequence of choices, 0 or 1 (left or right) while the elements of S(N) are the 

result of sprinkling 1s through the natural numbers in some simultaneous manner and 

then attaching 0s to the rest.  Of course, with each set is associated a sequence as its 

characteristic function and vice versa, but that requires a bit of reasoning⎯the 

equivalence of these notions is not conceptually immediate.   

2(e). Set theoretical conceptions 

Setting aside this difference for the moment, let’s consider the standard set theoretical 

account.  Sets in general are supposed to be definite totalities A determined solely by 

which objects are in the membership relation (∈) to them, and independently of how they 

may be defined, if at all. That is, two sets A, B which agree as to their members are 

identical; in other words the Axiom of Extensionality holds.  Suppose given a set A of 

“individuals”; a subset X of A, in symbols X ⊆ A, is a set every element of which is an 

element of A.  Then the basic idea of S(A), the “set of all subsets of A” is that it consists 

of all the sets X ⊆ A and only those.  From the structural point of view, when we are 

dealing with S(A) it is through the two-sorted structure (A, S(A), ∈).   

When a collection C is a definite totality, the logical operation of quantification over C 

leads from definite properties to definite properties.  In these terms one sees that the 

terminology, “the set of all subsets of A” is tendentious since it implicitly assumes that 
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S(A) is a set, and hence that it is a definite totality, so that the operation of quantification 

over S(A), i.e. (∀X⊆A) P(X), has a determinate truth value for each property P(X) that 

has a determinate truth value for each X ⊆ A.  This is the usual conception of S(A) in set 

theory, whether informal or axiomatic.  However, one may alternatively consider S(A) to 

be an indefinite collection whose members are subsets of A, but whose exact extent is 

indeterminate.   To distinguish the two views of S(A), I will refer to the former as the set-

theoretical one and the latter as the open-ended one.  The set-theoretical view of S(A) is 

certainly justified when A is finite; if A has n elements the 2n elements of S(A) can be 

completely listed (at least in principle).  So the only case where the distinction would be 

significant is when A is infinite, and the first case in which that is met is for A = N, the 

set of natural numbers.    

The set-theoretical view of S(A) is justified by a thorough-going platonism9, as accepted 

by Gödel.  According to this view, sets in general have an existence independent of 

human thoughts and constructions, and in particular, for any set A, S(A) is the definite 

totality of arbitrary subsets of A.  A major problem with this view is the classic one of 

epistemic access raised most famously by Paul Benacerraf (1965).  What the platonistic 

set-theoretical view has going for it, among other things, is the supposed determinateness 

of statements about S(A) involving quantification over S(A).  The open-ended view, on 

the other hand, rests on conceptual structuralism, for which epistemic access is no 

problem, but the determinateness of various statements then comes into question. 

So, now, on the set theoretical point of view, the power set operation can at least be 

iterated finitely often and in particular both S(N) and S(S(N)) are definite totalities.  The 

weak form of CH takes the form: for every subset X of S(N) either X is in 1-1 

correspondence with N or it is in 1-1 correspondence with S(N).  In order for this to be a 

determinate question, both S(N) and S(S(N)) have to be definite totalities,  and for each 

subset X of S(N) there has to be a definite totality of all possible 1-1 functions whose 

domain is X and whose range is N or S(N).  Prima facie, the assumption of all these 

definite totalities is only justified on the grounds of platonistic realism.  One can try to 
                                                
9 Or Robust Realism, as Maddy (2005) terms it. 
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sidestep that by posing the question of CH within an axiomatic theory T of sets, but then 

one can only speak of CH as being a determinate question relative to T.   

In the familiar theories T of sets, not only is it accepted that the power set operation can 

be iterated finitely often, it is posited that it can be iterated transfinitely often in a 

cumulative way.  This is a new idea of sets, not implicit in what has been said so far, 

which expands the concept of arbitrary set to that of a “universe” V of “all sets” with the 

usual picture of V as fanning out from the class On of “all ordinals”, sliced by the sets Vα 

at each α in On, where V0 is the empty set, each Vα+1 = S(Vα) and for limit α, Vα = the 

union of all Vβ for β < α.  On this picture, N is represented as a subset of the hereditarily 

finite sets Vω, and then S(N) ⊆Vω+1, and S(S(N)) ⊆Vω+2. There is no problem to put 

oneself in the mental frame of mind of “this is what the cumulative hierarchy looks like”, 

for which one can see that such and such propositions including the axioms of ZFC are 

(more or less) obviously true.  I have taught set theory many times and have presented it 

in terms of this ideal-world picture with only the caveat that this is what things are 

supposed to be like in that world, rather than to assert that that’s the way the world 

actually is.  I am no more uncomfortable doing that than if I were teaching Newtonian 

mechanics and talking of a world in which space-time is Euclidean, objects are point 

masses, and we have action at a distance, e.g. under gravitational force, or alternatively if 

I were teaching relativistic mechanics.   And one can see why little more is needed 

conceptually to develop an extraordinary part of set theory; as in the case of number 

theory, a little bit goes a long way. The issue is not whether we can think in such terms 

but, rather, what the philosophical status is of that kind of thought.   

How does this look from the viewpoint of conceptual structuralism? According to the 

ideal-world story that has been told us: whether looked at directly over N or as part of 

Vω+2, S(S(N)) is a definite totality, quantification over it is well-determined, and CH is a 

definite problem.  But saying that these things are conceived as being definite does not 

make them definite. Daniel Isaacson espouses a form of conceptual structuralism in 

which he tries to make the case for that.  He writes: 

The basis of mathematics is conceptual and epistemological, not ontological, and 

understanding particular mathematical structures is prior to axiomatic 
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characterization.  When such a resulting axiomatization is categorical, a particular 

mathematical structure is established.  Particular mathematical structures are not 

mathematical objects.  They are characterizations.  (Isaacson 2008, 31) 

So Isaacson makes a very strong demand on conceptions of certain particular structures, 

namely that they have categorical axiomatizations, i.e. they are exemplified in the 

conceived structure and any two structures that exemplify them are isomorphic.  Now the 

only axiomatizations in sight that will do this for number theory and set theory are 

formulated in 2nd order logic where the quantifiers are interpreted as ranging over 

arbitrary subsets of the domains of  the particular structures considered.  Certainly no 

characterizations in 1st order logic will do the trick, by the Löwenheim-Skolem results.  

And indeed, there are 2nd order characterizations not only of the natural numbers, but of 

each of the structures mentioned above in which CH is formulated.  Moreover, there is 

such a characterization of (Vα, ∈) for α = the first strongly inaccessible ordinal, and that 

structure is a model of ZFC.  All of this is established in ZFC as a background set theory 

(in the last case under the assumption that that α exists).10 Clear as these results are as 

theorems within ZFC about 2nd order ZFC, they are evidently begging the question about 

the definiteness of the above conceptions required for the formulation of CH.  Isaacson 

follows Kreisel (1971) in the argument that CH is a definite mathematical problem 

because of such categoricity results. But in relying on so-called standard 2nd order logic 

for this purpose we are presuming the definiteness of the very kinds of notions whose 

definiteness is to be established. 11   The circularity is so patent, one does not see that any 

more can be claimed thereby than that the definiteness of those notions may be accepted 

as a matter of faith.   Moreover, the argument via categoricity, which takes structures as 

objects of a particular kind, vitiates the claim that the issues are conceptual and 
                                                
10 Isaacson makes much of the work of Zermelo (1930) in which a general semi-
categoricity result is proved for ZFC2, i.e. ZFC formulated in 2nd order terms, and that 
was reproved in greater detail by John Shepherdson in his three part paper on inner 
models for set theory in the J. Symbolic Logic 16-18.  This takes the form that if M1, M2 
are any two structures satisfying ZFC2, M1 is isomorphically embeddable in M2 as a 
transitive submodel, or vice versa.  
11 Väänänen (2001) has fully deconstructed the facile appeal to “standard” 2nd order logic 
in this and other foundational arguments.   
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epistemological, not ontological.   

My own conceptual structuralism forces me to be much more modest.  First of all, each 

of the conceptions (i)-(vi) of the continuum is treated in its own right, not necessarily 

equivalent to the others in terms of cardinality.  Secondly, the intuitive distinction 

brought up above between sets and sequences is maintained, with sequences having a 

greater clarity than sets.  For example, we have a much clearer conception of arbitrary 

sequences of points on the Hilbert (or Dedekind, or Cauchy-Cantor) line, or at least of 

bounded strictly monotone sequence, than we do of arbitrary subsets of the line.  And that 

also makes a difference when we come to the conceptions (v) of 2N and (vi) of S(N).   We 

have a clearer conception of what it means to be an arbitrary infinite path through the full 

binary tree than of what it means to be an arbitrary subset of N, but in neither case do we 

have a clear conception of the totality of such paths, resp. sets.  In both cases, our 

conception allows us to reason that there is no enumeration of all infinite paths through 

the binary tree, resp. of all subsets of N, simply by the appropriate diagonal argument.  

But it is an idealization of our conceptions to speak of 2N, resp. S(N), as being definite 

totalities.  And when we step to S(S(N)) there is a still further loss of clarity, but it is just 

the definiteness of that that is needed to make definite sense of CH.    

If the concept in general of the totality of arbitrary subsets of a given infinite set A is not 

definite then how could we sharpen it to make it definite?  Well, we could say that we are 

talking only about those subsets of A that are defined in a certain way⎯but then we are 

no longer talking about arbitrary subsets.  This holds for any proposed sharpening or 

constraint on the concept of being arbitrary in the case of sets.  In other words, the 

concept of the totality of arbitrary subsets of A is essentially underdetermined or vague, 

since any sharpening of it violates what the concept is supposed to be about.  But this is 

also why (almost all) set-theorists themselves reject Gödel’s Axiom of Constructibility,  

V = L, that says all sets in the cumulative hierarchy are successively definable in a 

specific way.   

One argument that is made for accepting the definiteness of the continuum according to 

the set-theoretical point of view is that, as applied to it in its guise as the 

arithmetical/geometric structure of the real line, it is unquestionably needed to develop 
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modern analysis, and modern analysis is used in an essential way in the formulation of 

the laws of physical science and derivation of their consequences.  It may even be argued 

that this shows that the real line in the set-theoretical sense is somehow physically 

exemplified in the real world.   However, a number of case studies support the thesis that 

I advanced in Feferman (1993) that all scientifically applicable mathematics can be 

carried out in a completely predicative way⎯in fact in a certain formal system W that 

has been shown in Feferman and Jäger (1993, 1996)  to be a conservative extension of 

Peano Arithmetic (PA).  The designation ‘W’ is in honor of Hermann Weyl, who got 

predicative analysis underway in his groundbreaking work Das Kontinuum (1918), using 

the open-ended sequential (Cauchy-Cantor) view of the real numbers rather than the 

Dedekind point of view.  Whether or not this thesis will hold for all future applications of 

mathematics to physical science, what this shows is that the argument from the success of 

physics to the reality of the set-theoretical conception of the real numbers is completely 

vitiated. 

Nevertheless, one might argue for an intermediate position between that of conceptual 

structuralism, which rejects the continuum as a definite totality, and the set-theoretical 

account which not only accepts that but also much, much more.  Namely, one may grant 

as a working apparently robust idea the concept of S(N), but nothing higher in the 

cumulative hierarchy.  This would justify the assumption of Dedekind or Cantor 

completeness of the real line with respect to all sets definable by quantification over the 

continuum, thus going far beyond predicative mathematics into the domain of descriptive 

set theory.  In logical terms, that would justify working in a system of strength full 2nd 

order number theory, or “analysis” as it is justly called.   There is no question that all of 

extant scientifically applicable mathematics can be reduced to working in that and in fact 

in its relatively weak subsystem denoted ∏1
1-CA (cf. Simpson 1999, 2010).    

3. A proposed logical framework for what’s definite (and what’s not) 

According to the finitists, the natural numbers form an incompleted or indefinite totality 

and the general operations of universal and existential quantification over the natural 

numbers are not to be admitted in reasoning about them except in bounded form.  The 

intuitionists share the finitists’ general point of view about the natural numbers but regard 
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unbounded quantification over them as meaningful though not when combined with 

classical logic.  According to the predicativists, the natural numbers form a definite 

totality, but not the collection of “all” sets of natural numbers.  Nevertheless systems of 

predicative analysis have been formulated using quantification with respect to variables 

for such sets within classical logic.  Finally, we have the case of set theory, in which 

according to practically all points of view⎯including that of the mathematical 

practitioners from the very beginning to the present as well as both the philosophical 

defenders and critics⎯sets in general form an indefinite totality, otherwise the universe 

of all sets would be a set and thus give rise to Russell’s Paradox.   All of this poses 

questions about the proper formulation of axiomatic systems in which some of the 

domains involved are conceived to form indefinite totalities, while others, or parts of 

them, are considered to be definite totalities.  There has been much interesting 

philosophical discussion in recent years about the problems raised by absolute generality 

(cf. Rayo and Uzquiano 2006) both in its unrestricted sense and more specifically as 

applied to set theory.  

My main concern here is rather to see what precisely can be said about certain ways of 

construing in formal terms the distinction between definite and indefinite concepts.   One 

way of saying of a statement φ that it is definite is that it is true or false; on a deflationary 

account of truth that’s the same as saying that the Law of Excluded Middle (LEM) holds 

of φ, i.e. one has φ∨¬φ. Since LEM is rejected in intuitionistic logic as a basic principle, 

that suggests the slogan, “What’s definite is the domain of classical logic, what’s not is 

that of intuitionistic logic.”  In the case of predicativity, this would lead us to consider 

systems in which quantification over the natural numbers is governed by classical logic 

while only intuitionistic logic may be used to treat quantification over sets of natural 

numbers or sets more generally.  And in the case of set theory, where every set is 

conceived to be a definite totality, we would have classical logic for bounded 

quantification while intuitionistic logic is to be used for unbounded quantification. The 

formal study of systems of the latter kind goes back at least to a Wolf(1974) and 
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Friedman (1980) and has most recently been carried on in the paper, Feferman (2010b).12  

The general pattern of the studies there is that we start with a system T formulated in 

fully classical logic, then consider an associated system SI-T formulated in a mixed, 

semi-intuitionistic logic, and ask whether there is any essential loss in proof-theoretical 

strength when passing from T to SI-T.  In the cases that are studied, it turns out that there 

is no such loss, and moreover, there can be an advantage in going to such an SI-T; 

namely, we can beef it up to a semi-constructive system SC-T without changing the 

proof-theoretical strength, by the adjunction of certain principles that go beyond what is 

admitted in SI-T, because they happened to be verified in a certain kind of functional 

interpretation of the intuitionistic logic.   

For example, if one starts with S equal to the classical system KPω of admissible set 

theory (including the Axiom of Infinity), the associated system SI-KPω has the same 

axioms as KPω, and is based on intuitionistic logic plus the law of excluded middle for 

all bounded (i.e. Δ0) formulas.  But the beefed up system SC-KPω proves the Full Axiom 

of Choice Scheme for sets, 

          ∀x ∈ a ∃y φ(x,y) → ∃r [Fun(r) ∧∀x ∈a φ(x, r(x))], 

where φ(x, y,…) is an arbitrary formula of the language of set theory.  That in turn 

implies the Full Collection Axiom Scheme,  

∀x ∈ a ∃y φ(x,y) → ∃b ∀x ∈a ∃y ∈b φ(x,y)  

for φ an arbitrary formula, while this holds only for ∑1 formulas in SI-KPω.  

In addition, SC-KPω contains some other non-intuitionistic principles that can, 

nevertheless, be given a semi-constructive interpretation.   The main result in Feferman 

(2010b) is that all of these systems are of the same proof-theoretical strength, KPω ≡ SI-

KPω ≡ SC- KPω.  Moreover, the same result holds when we add the power set axiom 

                                                
12 See also the slides Feferman (2009b) for the conference in honor of Harvey Friedman’s 
60th birthday.   
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Pow as providing a definite operation on sets, or just its restricted form Pow(ω) asserting 

the existence of the power set of ω.  

Now the choice of KPω ± Pow(resp. Pow(ω)) and the associated semi-constructive 

systems for initial consideration rather than ZFC ± Pow(resp. Pow(ω)) is dictated by the 

idea that we should only accept the Separation and Replacement schemes for definite 

properties.  And since our idea of quantification as a definite logical operation is that it is 

only to range over definite totalities, at first sight only those formulas in which 

quantification is restricted to sets are to be admitted to those schemes.  In particular, in 

view of the discussion at the end of the preceding section it should be of particular 

interest to investigate what properties and statements are definite in the specific case of 

the semi-constructive version of KPω + Pow(ω). 

In general, given one of the semi-constructive systems SC-T under consideration, one 

would like to establish that if a formula φ(x) is definite in the sense that  ∀x[φ(x)∨¬φ(x)] 

is provable there, then φ is at least equivalent to a Δ1 formula and hence is absolute for 

end-extensions.  I conjecture that that is the case for the systems of SC-KPω and its 

extensions by Pow(ω) and even full Pow, but have not yet found a proof.  My guess is 

that that can be done using a detailed analysis of the functional interpretations used in 

establishing the results about the proof-theoretical strength of these systems in my 

(2010b) paper.  

Similarly, a statement φ should be considered definite in this framework for a given semi-

constructive system SC-T if LEM holds for φ, i.e. φ ∨¬φ, can be proved there.  In pure 

intuitionistic systems we have the disjunction property, that if φ ∨ψ is proved then either 

φ or ψ is provable; but we don’t have such a result for the semi-constructive systems 

considered. For, every arithmetical statement satisfies the LEM in our system but we 

certainly can’t prove or disprove every such statement in the system.  But we could hope 

to show that if LEM is provable for φ then it must at least be equivalent to a Δ1 sentence.  

Turning to statements of classical set theory that are of mathematical interest, one would 

like to know which of them make essential use of full non-constructive reasoning and 
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which can already be established on semi-constructive grounds.  My guess is that a great 

deal⎯including all of classical DST⎯can already be done in SC-KPω + Pow(ω).   

Turning finally to the Continuum Hypothesis (CH), that, in particular, is certainly 

meaningful in SCS + (Pow(ω)) and formally it is a definite statement in SCS + (Pow), i.e. 

one can prove CH ∨ ¬CH there.  As with the semi-intuitionists, one can regard the 

conception of the set of all subsets of ω as clear enough, but not that of arbitrary subset of 

that, and the meaning of CH depends essentially on quantifying over all such subsets.  

Presumably, CH is not definite in SCS + (Pow(ω)), and it would be interesting to see why 

that is so. 13 My own view, voiced elsewhere, is that CH is what I have called an 

essentially vague statement, which says something like: there is no way to sharpen it to a 

definite statement without essentially changing the meaning of the concepts involved in 

it.  But to formulate that idea more precisely within the semi-constructive framework, 

some stronger notion than formal definiteness may be required.  

References 

Benacerraf, P. (1965), What numbers could not be, Phil. Review 74, 47-73, reprinted in 
Benacerraf and Putnam (1983), 272-294.  

Benacerraf, P. and H. Putnam (eds.) (1983) Philosophy of Mathematics. Selected 
Readings, 2nd edn., Cambridge Univ. Press, Cambridge.   

Browder, F. E. (1976) (ed.), Mathematical Developments arising from Hilbert Problems, 
Proc. Symposia in Pure Mathematics 28, Amer. Math. Soc., Providence, RI.  

Chihara, C. S. (2004), A Structural Account of Mathematics, Clarendon Press, Oxford.  
 
Feferman, S. (1993), Why a little bit goes a long way: Logical foundations of 
scientifically applicable mathematics, in PSA 1992, Vol. 2, Philosophy of Science 
Association, East Lansing; reprinted as Ch. 14 in Feferman (1998).  
 
Feferman, S. (1996), Gödel’s program for new axioms. Why, where, how and what?,  in 
(P. Hajek, ed.) Gödel '96, Lecture Notes in Logic 6 (1996), 3-22. 
  

                                                
13 One would not expect CH would to be unique in this respect; any statement that makes 
essential use of the assumed totalities S(S(N)) would be a candidate for such a result.  

 



 27 

Feferman, S. (1998), In the Light of Logic, Oxford University Press, New York.  

Feferman, S. (2009a), Conceptions of the continuum, Intellectica 51, 169-189. 

Feferman, S. (2009b) What’s definite? What’s not?, slides for talk at Harvey Friedman 
60th birthday conference, Ohio State Univ., May 16, 2009, 
http://math.stanford.edu/~feferman/papers/whatsdef.pdf  . 

Feferman, S. (2010a), Conceptual structuralism and the continuum, slides for talk at Phil 
Math Intersem 2010 Université Paris 7-Diderot, 6/08/10 (revision of slides for talk at 
VIIIth International Ontology Congress, San Sebastián, 10/01/08). 
http://math.stanford.edu/~feferman/papers/Conceptual_Structuralism.pdf  . 

Feferman, S. (2010b), On the strength of some semi-constructive theories, in Feferman 
and Sieg (2010), 109-129. 

Feferman, S. and G. Jäger (1993), Systems of explicit mathematics with non-constructive 
µ-operator, I, Annals of Pure and Applied Logic 65, 243-263. 

Feferman, S. and G. Jäger (1993), Systems of explicit mathematics with non-constructive 
µ-operator, II, Annals of Pure and Applied Logic 79, 37-52. 

Feferman, S., Parsons, C., and Simpson, S. G. (2010) (eds.), Kurt Gödel. Essays for his 
centennial, Lecture Notes in Logic 33, Assoc. for Symbolic Logic, Cambridge Univ. 
Press, Cambridge.   

Feferman, S. and W. Sieg (eds.) (2010), Proofs, Categories and Computations.  Essays in 
honor of Grigori Mints, College Publications, London. 

Feferman, S. and T. Strahm (2000), The unfolding of non-finitist arithmetic, Annals of 
Pure and Applied Logic 104, 75-96. 

Friedman, H. (1980), A strong conservative extension of Peano Arithmetic, in (J. 
Barwise, et al., eds.) The Kleene Symposium, North-Holland, Amsterdam, 113-122.   

Gödel, K. (1938), The consistency of the axiom of choice and of the generalized 
continuum hypothesis, Proc. National Academy of Sciences, USA 24, 556-557; reprinted 
in Gödel (1990), 26-27. 

Gödel, K. (1940), The Consistency of the Axiom of Choice and of the Generalized 
Continuum Hypothesis with the Axioms of Set Theory, Annals of Mathematics Studies 3, 
Princeton Univ. Press, Princeton; reprinted in Gödel (1990), 33-101. 

Gödel, K. (1947), What is Cantor’s continuum problem?, American Mathematical 
Monthly 54, 515-525; errata 55, 151; reprinted in Gödel (1990), 240-251  
 
Gödel, K. (1964). What is Cantor’s continuum problem?, revised and expanded version 
of Gödel (1947), in Benacerraf and Putnam (1964), 258-273, reprinted in Gödel (1990), 
254-270. 
 



 28 

Gödel, K. (1990) Collected Works, Vol. II: Publications 1938-1974 (S. Feferman, et al., 
eds.), Oxford University Press, New York. 
 
Hellman, G. (1989), Mathematics Without Numbers, Oxford University Press, Oxford. 
 
Hellman, G. (2005), Structuralism, in Shapiro (2005), 536-562. 
 
Isaacson, D. (2008), The reality of mathematics and the case of set theory, in (Z. Novak 
and A. Simonyi, eds.), Truth, Reference, and Realism, Central European University 
Press, Budapest, 1-64. 
 
Jaffe, A. M. (2006), The millennium grand challenge in mathematics, Notices Amer. 
Math. Soc. 53, no. 6, 652-660.  
  
Kanamori, A. (1997), The Higher Infinite, Perspectives in Mathematical Logic, Springer, 
Berlin.   

Koellner, P. (2010), On the question of absolute undecidability, in Feferman, Parsons and 
Simpson (2010), 189-225. 

Kreisel, G. (1971), Observations on popular discussions of foundations, in  (D. S. Scott, 
ed.), Axiomatic Set Theory, Proc. Symposia in Pure Mathematics 13, Part I, Amer. Math. 
Soc., Providence, RI, 189-198. 

Levy, A. and R. M. Solovay (1967), Measurable cardinals and the continuum hypothesis, 
Israel J. of Mathematics 5, 234-248.   

Maddy, P. (1997), Naturalism in Mathematics, Oxford University Press, Oxford.    

Maddy, P. (2005), Mathematical existence, Bull. Symbolic Logic 11, 351-376. 

Martin, D. A. (1975), Borel determinacy, Annals of Mathematics 102, 363-371.   

Martin, Donald A. (1976), Hilbert’s first problem: The continuum hypothesis, in Browder 
(1976), 81-92. 

Martin, D. A. and J. Steel (1989), A proof of projective determinacy, J. Amer. Math. Soc. 
2, 71-125.    

Moore, G. H. (1982), Zermelo’s Axiom of Choice: Its origins, development and influence, 
Springer, New York 

Moore, G. H. (1989) Towards a history of Cantor’s continuum problem, The history 
of modern mathematics, vol. I: Ideas and their reception (David E. Rowe and John 
McCleary, eds.), Academic Press, Boston, pp. 78–121. 
 
Moore, G. H. (2011), Early history of the generalized continuum hypothesis: 1878-1938, 
Bull. Symbolic Logic (to appear).   



 29 

Poincaré, H. (1952), Science and Hypothesis, Dover Publications, New York.  (English 
translation of La Science et l’hypothèse, Flammarion, Paris,1902.) 

Rayo, A. and G. Uzquiano (eds.) (2006), Absolute Generality, Clarendon Press, Oxford.   

Resnik, M. (1997), Mathematics as a Science of Patterns, Oxford University Press, 
Oxford. 
   
Searle, J. R. (1995), The Construction of Social Reality, Free Press, New York. 
 
Shapiro, S. (1997), Philosophy of Mathematics: Structure and Ontology, Oxford 
University Press, New York. 
 
Shapiro, S., ed. (2005), The Oxford Handbook of Philosophy of Mathematics and Logic, 
Oxford University Press, Oxford.   
 
Simpson, S. G. (1999), Subsystems of Second Order Arithmetic, Perspectives in 
Mathematical Logic, Assoc. for Symbolic Logic, Springer, Berlin; 2nd edn. (2009), 
Perspectives in Mathematical Logic, Assoc. for Symbolic Logic, Cambridge Univ. Press, 
Cambridge.   
 
Simpson, S. G. (2010), The Gödel hierarchy and reverse mathematics, in Feferman et al. 
(2010), 109-127.   

Steel, J. (2000), Mathematics needs new axioms, Bull. Symbolic Logic 6, 422-433.  

Väänänen, J. (2001), Second-order logic and foundations of mathematics, Bull. Symbolic 
Logic 7, 504-520.   

Weyl, H. (1918), Das Kontinuum. Kritische Untersuchungen über die Grundlagen der 
Analysis, Veit, Leipzig.  (English translation by S. Pollard and T. Bole, The Continuum. A 
Critical Examination of the Foundations of Analysis, Univ. Press of America, Latham 
(1987). 

Wolf, Robert S. (1974), Formally Intuitionistic Set Theories with Bounded Predicates 
Decidable, PhD Dissertation, Dept. of Mathematics, Stanford University.                                  

Woodin, H. (2005a), The continuum hypothesis, in (R. Cori, et al., eds.), Logic 
Colloquium 2000, Lecture Notes in Logic 19, Assoc. for Symbolic Logic, 143-197.   

Woodin, H. (2005b), Set theory after Russell: The journey back to Eden, in (G. Link, 
ed.), One Hundred Years of Russell’s Paradox: Mathematics, Logic, Philosophy, de 
Gruyter Series in Logic and its Applications, de Gruyter, Berlin.   

Zermelo, E. (1930), Über Grenzzahlen und Mengenbereiche. Neue Untersuchungen über 
die Grundlagen der Mengenlehre, Fundamenta Mathematicae 16, 29-47.  

 



 30 

 


