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1 Introduction

Recently, in the paper “Existence Theorems in Probability Theory” [9] we presented
a new approach for applying methods from nonstandard Analysis to solve existence
problems in Probability Theory. We did this in conventional mathematical terms
by introducing a new framework: the neometric spaces.

In the introduction to that paper we discussed the main features of traditional
existence proofs and indicated that the most difficult step was in going from a
sequence of approximations to the existence of a “limit” of such a sequence. Our
methods show how to avoid this difficulty in many cases (see for example the recent
results in [7]). In rough and provocative terms, nonstandard analysis gives us the
limit; it is a mathematical tool which captures in a systematic way the transition
from “discrete to continuous” in mathematics.

This is a very basic feature known to nonstandard practitioners. Many theorems
have been proved in recent years using this natural idea. Good examples are pro-
vided, among others, in the collection [6], the books [1] and [28] and the memoir
[15].

In [16] the second author developed a general method of proving existence the-
orems of the type found in the nonstandard probability literature from his forcing
theorem ([16], Theorem 5.3). After a long series of refinements, we managed to
present this method in conventional mathematical terms in [9]. In that paper, we
merely asked our readers to accept the existence of the so called “rich adapted
spaces”, and never used the words “Nonstandard Analysis” after the introduction.

Our objective in this paper is quite the opposite: we work within nonstandard
analysis to formally prove, as promised in [9], that rich adapted spaces exist. More-
over, we explicitly show how nonstandard analysis provides the inspiration for the
main notions and results presented in [9]. The paper [9] gives a large number of ap-
plications of rich adapted spaces to probability theory. Nonstandard analysis gives
us tools to dig deeper into the structure of subsets of metric spaces. The purpose of
this paper is to refine these tools.

The contents of this paper are as follows. In Section 2 we review the basic
notions concerning neometric spaces from [9]. In Sections 3 and 4 we study these
notions within the nonstandard setting. We give an explicit definition of basic
and neocompact sets that captures the way internal sets are used in nonstandard
probability practice, and then present a huge neometric family which contains all
neometric spaces studied so far. In Section 5 we prove that the huge neometric family
contains rich adapted spaces, and hence that rich adapted spaces exist. Section 6
gives a detailed study of the function spaces related to the existence theorems in
[9]. In Section 7 we consider neometric spaces whose elements are functions from
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a probability space into another neometric space. We finish up in Section 8 with
a stronger theory of κ-neometric spaces which requires a κ-saturated nonstandard
universe where κ is a cardinal greater than ω1.

In other publications we will present other aspects of our work. In [10] we
develop the logical aspects that are behind our results. In [11] we discuss another
nonstandard approach to neometric families which uses long sequences. The paper
[17] gives a general quantifier elimination result showing that for many neometric
families, every neocompact set is a section of a basic set. The paper [18] applies
these results to rich probability spaces and rich adapted spaces. The article [20] is
an overall survey of the program which is carried out in this series of papers.

This research was supported in part by Colciencias, the National Science Foun-
dation, and the Vilas Trust Fund.

2 Neocompact Sets

A family of neocompact sets is a generalization of the family of compact sets, and
retains many of its properties. In this section we review the notions from [9] concern-
ing neocompact families in general. After that we shall concentrate on neocompact
families associated with nonstandard universes.

We use script letters M,N ,O for complete metric spaces which are not neces-
sarily separable, and let ρ, σ, τ be their metrics. Given two metric spaces (M, ρ)
and (N , σ), the product metric is the metric space (M×N , ρ× σ) where

(ρ× σ)((x1x2), (y1, y2)) = max(ρ(x1, y1), σ(x2, y2)).

Definition 2.1 Let M be a collection of complete metric spaces M which is closed
under finite products, and for each M ∈ M let B(M) be a collection of subsets of
M, which we call basic sets. By a neocompact family over (M,B) we mean a
triple (M,B, C) where for each M ∈ M, C(M) is a collection of subsets of M with
the following properties, where M,N ,O vary over M:

(a) B(M) ⊂ C(M);

(b) C(M) is closed under finite unions; that is, if A,B ∈ C(M) then A∪B ∈ C(M).

(c) C(M) is closed under finite and countable intersections;

(d) If C ∈ C(M) and D ∈ C(N ) then C ×D ∈ C(M×N );
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(e) If C ∈ C(M×N ), then the set

{x : (∃y ∈ N )(x, y) ∈ C}

belongs to C(M), and the analogous rule holds for each factor in a finite Carte-
sian product;

(f) If C ∈ C(M×N ), and D is a nonempty set in B(N ), then

{x : (∀y ∈ D)(x, y) ∈ C}

belongs to C(M), and the analogous rule holds for each factor in a finite Carte-
sian product.

The sets in C(M) are called neocompact sets. The neocompact family (M,B, C)
induces a family of metric spaces with extra structure, M = (M,B(M), C(M)),
which we call neometric spaces. A neometric space thus consists of a complete
metric space M ∈ M and two families B(M) and C(M) of subsets of M. The
properties (a)–(f) not only give conditions on single neometric spaces, but also on
finite Cartesian products of neometric spaces.

We call (M,B, C) the neocompact family generated by (M,B) if C(M) is the
collection of all sets obtained by finitely many applications of rules (a)–(f).

Example 2.2 The classical example of a neocompact family is the family (S,B, C)
generated by (S,B) where S is the collection of all complete metric spaces, and for
each M∈ S,B(M) is equal to the set of all compact subsets of M.

It is not hard to see that the family of compact sets is closed under all of the
rules (a)–(f). Thus the collection of neocompact sets C(M) generated by (S,B) is
just the family B(M) of compact sets itself, i.e. every neocompact set is compact.

In fact, the family of compact sets is closed under arbitrary intersections, and
condition (f) holds for arbitrary nonempty sets D. One reason that compact sets are
useful in proving existence theorems is that they have the following property:

If C is a set of compact sets such that any finite subset of C has a nonempty
intersection, then C has a nonempty intersection.

In many cases, all that is needed is the following weaker property.

Definition 2.3 We say that a neocompact family (M,B, C) has the countable
compactness property, or is countably compact, if for each M ∈ M, ev-
ery decreasing chain C0 ⊃ C1 ⊃ · · · of nonempty sets in C(M) has a nonempty
intersection

⋂

n Cn (which, of course, also belongs to C(M)).
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In particular, the classical neocompact family (S,B, C) from Example 2.2 is
countably compact. Two other countably compact neometric families studied in
[9] are the neocompact families associated with a rich probability space and a rich
adapted space. The existence of such spaces will be proved in Section 5. In the
next section we shall construct a much larger neocompact family, the huge family
(H,B, C), which is also countably compact.

Here are the neometric analogues of closed sets, open sets, and continuous func-
tions.

Definition 2.4 Let M,N belong to a neocompact family M.
A set C ⊂ M is neoclosed in M if C ∩ D is neocompact in M for every

neocompact set D in M.
C is neoopen in M if M− C is neoclosed.
Let D ⊂ M. A function f : D → N is neocontinuous from M to N if for

every neocompact set A ⊂ D in M, the restriction f |A = {(x, f(x)) : x ∈ A} of f
to A is neocompact in M×N .

The next result involves a pair of neocompact families.

Proposition 2.5 Let (M,B, C) and (M′,B′, C ′) be two neocompact families such
that M′ ⊂ M, every neocompact set in (M′,B′, C ′) is neocompact in (M,B, C), and
for each M ∈ M′, every set C ∈ C(M) is contained in a set D ∈ C ′(M). Then
every neoclosed set in (M′,B′, C ′) is neoclosed in (M,B, C), and every neocontinuous
function with a neoclosed domain in (M′,B′, C ′) is neocontinuous in (M,B, C).

Proof: SupposeM∈ M′ and A ⊂M is neoclosed in (M′,B′, C ′). Let C ∈ C(M).
Then C is contained in a set D ∈ C ′(M). Therefore A ∩ D ∈ C ′(M), and hence
A ∩D ∈ C(M). It follows that A ∩ C = (A ∩D) ∩ C ∈ C(M). This shows that A
is neoclosed in (M,B, C).

Now suppose M,N ∈ M′, A ⊂M is neoclosed in (M′,B′, C ′), and f : A → N is
neocontinuous in (M′,B′, C ′). Let C ∈ C(M) and C ⊂ A. There is a set D ∈ C ′(M)
such that C ⊂ D ⊂ A. Then the graph F of f |D is neocompact in (M′,B′, C ′) and
hence neocompact in (M,B, C). The graph G of f |C is given by G = F ∩ (C ×N ),
so G is neocompact in (M,B, C) and f is neocontinuous in (M,B, C). 2

We now introduce the notion of a neometric family, which is slightly stronger
than the notion of a neocompact family.

Definition 2.6 We call a neocompact family (M,B, C) a neometric family if the
projection and distance functions in M are neocontinuous. That is, the projection
functions π1 : M×N →M and π2 : M×N → N are neocontinuous, the metric
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space R of reals is contained in some member R of M, and for each M ∈ M the
distance function ρ of M is neocontinuous from M×M into R.

In the classical neocompact family (S,B, C) introduced in Example 2.2, a set is
neoclosed if and only if it is closed, and a function is neocontinuous if and only if
it is continuous. Since the distance and projection functions are continuous for all
metric spaces, (S,B, C) is a neometric family.

It was shown in [9] that the neocompact families associated with a rich proba-
bility space and a rich adapted space are also neometric families.

In [9] we considered existence problems of the form

(∃x ∈ C)f(x) ∈ D (1)

where C is a neocompact set in M, f : E → N is neocontinuous from a neoclosed
set E ⊃ C to N , and D is a neoclosed set in N . We proved a simple but useful
approximation theorem which states that every problem of the form (1) which is
“approximately true” is true. The proof of the approximation theorem used the
following closure property.

Definition 2.7 A neometric family (M,B, C) is said to be closed under diagonal
intersections if the following holds. Let M ∈ M, let An ∈ C(M) for each n ∈ N,
and let limn→∞ εn = 0. Then

A =
⋂

n
((An)εn) ∈ C(M).

In [9] we proved that the neocompact family associated with a rich adapted space
is closed under diagonal intersections, and that the following approximation theorem
holds for rich adapted spaces. The proof there shows that the theorem is true for
every countably compact neometric family closed under diagonal intersections.

Theorem 2.8 (Approximation Theorem) Let (M,B, C) be a countably compact neo-
metric family closed under diagonal intersections. Let A be neoclosed in M and let
f : A → N be neocontinuous from M to N . Let B be neocompact in M and D be
neoclosed in N . Suppose that for each ε > 0,

(∃x ∈ A ∩Bε)f(x) ∈ Dε. (2)

Then (1) holds with C = A ∩B, that is,

(∃x ∈ A ∩B)f(x) ∈ D. 2
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Before leaving this section, we introduce the concept of a neoseparable set, which
is analogous to the classical notion of a closed separable set. Neoseparable sets will
be of particular interest in the nonstandard setting to be presented in this paper.

Definition 2.9 A set A ⊂M is said to be neoseparable in M if A is the closure
of the union of countably many basic subsets of M. In particular, M itself is
neoseparable if some countable union of basic sets is dense in M.

Note that the closure of a countable union of neoseparable sets in M is neosep-
arable in M. Also, if every finite set is basic, every closed separable subset of M is
neoseparable in M.

3 The Huge Neometric Family

In this section we show that nonstandard universes are a rich source of neometric
families. We will construct a huge neometric family (H,B, C) associated with each
nonstandard universe. By restricting this family, one obtains a variety of smaller
neometric families (such as the ones over rich adapted spaces studied in [9]) which
arise naturally in a more classical setting. The notion of a neocompact set we shall
introduce in this section contains as a special case the notion of a neocompact set
in the paper [15].

We assume throughout that (V (Ξ), V (∗Ξ),∗ ) is an ω1-saturated nonstandard
universe, where the base set Ξ is some large set which contains the universe of every
structure under consideration. We assume familiarity with the basic notions from
nonstandard analysis, including the transfer principle, the overspill principle, and
the notion of an internal set. ω1-saturation is the principle that for any internal set
S, any countable family of internal subsets of S which has the finite intersection
property has a nonempty intersection. For each finite hyperreal number x ∈ ∗R, the
standard part st(x) is defined as the unique real number which is infinitely close
to x. Elements of V (Ξ) will be called standard.

In the remainder of this paper we shall frequently use the notions of a ∗metric
space, and a ∗probability measure, which are obtained from the corresponding
standard notions by transfer. Thus a ∗metric space is a structure (M̄, ρ̄) where M̄
is an internal set and ρ̄ is an internal function ρ̄ : M̄ × M̄ → ∗R which satisfies the
transfer of the usual rules for a metric. The product of two ∗metric spaces is defined
in the natural way.

If X,Y ∈ M̄ , we write X ≈ Y if ρ̄(X,Y ) ≈ 0. The standard part of an element
X ∈ M̄ is the equivalence class

oX = {Y ∈ M̄ : X ≈ Y }.
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If x = oX, we say that X lifts x.
The nonstandard hull construction is a well-known method from [26] which pro-

duces a complete metric space from a ∗metric space and a distinguished point.

Definition 3.1 Consider a ∗metric space (M̄, ρ̄) and a point c ∈ M̄ . The galaxy
of c is the set G(M̄, c) of all points X ∈ M̄ such that ρ̄(X, c) is finite. By the
nonstandard hull of M̄ at c we mean the metric space (H(M̄, c), ρ) where

H(M̄, c) = {oX : X ∈ G(M̄, c)}, ρ(oX,o Y ) = st(ρ̄(X, Y )).

Note that any two points b, c ∈ M̄ such that ρ̄(b, c) is finite have the same galaxies
and nonstandard hulls, G(M̄, b) = G(M̄, c) and H(M̄, b) = H(M̄, c).

The neometric spaces in our huge family H will be the closed subspaces of non-
standard hulls. We first need some more definitions.

Given a set B ⊂ G(M̄, c), the standard part of B is the set

oB = {oX : X ∈ B}

of standard parts of elements of B. In the opposite direction, for a set A ⊂ H(M̄, c),
the monad of A is the set

monad(A) = {X : oX ∈ A}.

By a Σ0
1 (Π0

1) set we mean the union (intersection) of countably many internal
subsets of the galaxy G(M̄, c).

Observe that every countable subset of G(M̄, c) is Σ0
1, and hence every countable

subset of H(M̄, c) is the standard part of a Σ0
1 set.

For an internal set B ⊂ G(M̄, c) and a hyperreal ε > 0, we write

ρ̄(X, B) = inf{ρ̄(X, Y ) : Y ∈ B}, Bε = {X : ρ̄(X,B) ≤ ε}.

Proposition 3.2 For each ∗metric space M̄ and distinguished point c ∈ M̄ , the
galaxy G(M̄, c) is a Σ1

0 set, and the monad of the nonstandard hull H(M̄, c) is the
galaxy G(M̄, c).

Proof: The galaxy G(M̄, c) is the union of the countable chain of internal sets

Bm = {X ∈ M̄ : ρ̄(X, c) ≤ m}.

The nonstandard hull H(M̄, c) is the standard part of the galaxy, and each point of
M̄ which is infinitely close to a point in G(M̄, c) already belongs to G(M̄, c). 2
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Definition 3.3 The huge neometric family (H,B, C) for the nonstandard uni-
verse (V (Ξ), V (∗Ξ),∗ ) is defined as follows. H is the class of all metric spaces (M, ρ)
such that M is a closed subset of some nonstandard hull H(M̄, c). For each M∈ H,
the collections of basic and neocompact subsets of M are

B(M) = {A ⊂M : A = oB for some internal set B ⊂ G(M̄, c)},

C(M) = {A ⊂M : A = oB for some Π0
1 set B ⊂ G(M̄, c)}.

Example 3.4 (The neometric family of nonstandard hulls)

The nonstandard hull H(M̄, c) belongs to H for every ∗metric space M̄ and
point c ∈ M̄ . For each finite hyperreal r ≥ 0, the set {oX : ρ̄(X, c) ≤ r} is basic in
H(M̄, c). It follows that for each real r, the closed ball {x ∈ H(M̄, c) : ρ(x, c) ≤ r}
is neocompact in H(M̄, c). Moreover, the whole space H(M̄, c) is neoseparable, and
has the even stronger property of being the union of a countable chain of basic sets.
The family of all nonstandard hulls is closed under finite Cartesian products, and is
thus a neometric subfamily of the huge neometric family H.

Example 3.5 In this example we show that the standard neometric family (S,B, C)
from Example 2.2 may be regarded as a subfamily of (H,B, C).

Hereafter, S is the family of all standard complete metric spaces. Given (M, ρ) ∈
S, we may consider the ∗metric space (∗M,∗ ρ). We abuse notation by identifying
x,∗ x, and o∗x for each x ∈ M . Thus M is a closed subset of the nonstandard hull
H(∗M,x) where x is any element of M , and hence M itself belongs to the huge
family H.

We shall return to this example in the next section.
Note that the standard part of the union of two sets is the union of the standard

parts, and therefore B(M) is closed under finite unions. Moreover, finite Cartesian
products of basic sets are basic, and every finite subset of M is basic. On the other
hand, the following example shows that the intersection of two basic sets need not
be basic.

Example 3.6 (A set which is neocompact but not basic).

Let N̄ be the set of positive hyperintegers with the discrete metric where any
pair of distinct points has distance one, and let M̄ be the internal unit interval ∗[0, 1]
with the usual ∗metric. Then M̄ × N̄ has only one galaxy, and the standard part of
a point (X, n) is ( oX, n). Let

A = {(0, n) : n ∈ N̄}, B = {(1/n, n) : n ∈ N̄}.
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Then A and B are internal and have basic standard parts oA and oB. However,

oA ∩ oB = {(0, n) : n is infinite},

and by overspill this cannot be the standard part of an internal subset of M̄ × N̄ .
Thus oA ∩ oB is neocompact but not basic.

The following lemma is a useful tool in dealing with standard parts of Π0
1 sets,

and will give us a characterization of the monad of a neocompact set.

Lemma 3.7 Let An, n ∈ N, be a decreasing chain of internal subsets of M̄ . Then
⋂

n
(oAn) = o(

⋂

n
An) = o(

⋂

n
(An

1/n)).

Proof: We first prove that
⋂

n
(oAn) ⊂ o(

⋂

n
An).

Let x ∈ ⋂

n(oAn). Let X lift x. Then for each n ∈ N there exists Yn ∈ An such that
oYn = x, and hence ρ̄(X, Yn) ≈ 0 and ρ̄(X, Yn) ≤ 1/n. By ω1-saturation, there exists
Y ∈ ⋂

n An such that ρ̄(X,Y ) ≤ 1/n for all n ∈ N, so oY = x and x ∈ o(
⋂

n An).
The inclusion

o(
⋂

n
An) ⊂ o(

⋂

n
((An)1/n))

is trivial, and the inclusion

o(
⋂

n
((An)1/n)) ⊂

⋂

n
(oAn)

follows easily from ω1-saturation. 2

Corollary 3.8 A set C ⊂ M is neocompact if and only if monad(C) is a Π0
1 set.

In fact, if C = o(
⋂

n Cn) where 〈Cn〉 is a decreasing chain of internal sets, then

monad(C) =
⋂

n
((Cn)1/n). 2

We call the representation of monad(C) in the above corollary a neocompact
normal form for the monad of C.

The next proposition shows that the definition of the family (H,B, C) is unam-
biguous, i.e., that B(M) and C(M) depend only on the metric space M and not
on the galaxy G(M̄, c) in the ∗metric space M̄ . The proof uses Lemma 3.7 and the
fact that for each M∈ H, the monad of M can be recovered from M.

11



Proposition 3.9 Let M ∈ H and suppose that G(M̄, c) and G(N̄ , d) are galaxies
in ∗metric spaces such that M is a closed subset of both nonstandard hulls H(M̄, c)
and H(N̄ , d). Then the collections of basic sets B(M) and neocompact sets C(M)
are the same for H(M̄, c) as for H(N̄ , d).

Proof: Each point x ∈M is a standard part of point X ∈ M̄ and a point Y ∈ N̄ ,
that is,

x = oX = {Z ∈ M̄ : Z ≈ X} = oY = {Z ∈ N̄ : Z ≈ Y }.

Therefore the monad of M is equal to the union

monad(M) =
⋃

{x : x ∈M}.

Thus monad(M) ⊂ M̄ ∩ N̄ , and M̄ ∩ N̄ is nonempty. The intersection of M̄ and N̄
is a ∗metric space with respect to both ∗metrics ρ̄ and σ̄. Moreover, ρ̄ and σ̄ must
be infinitely close to each other on monad(M). If A is basic in M with respect to
(M̄, c), then A = oB with respect to ρ̄ for some internal set B ⊂ monad(M), so
A = oB with respect to σ̄ and A is basic in M with respect to (N̄ , d).

Now suppose that A is neocompact in M with respect to (M̄, c). Then By
Corollary 3.8, monad(A) =

⋂

n Bn with respect to ρ̄ where each Bn is an internal
subset of M̄ and

⋂

n Bn ⊂ G(M̄, c). Then

monad(A) =
⋂

n
[Bn ∩ N̄ ]

with respect to ρ̄. Then
monad(A) =

⋂

n
[Bn ∩ N̄ ]

with respect to σ̄, so A is neocompact in M with respect to (N̄ , σ̄). 2

Corollary 3.10 (i) If M,N ∈ H and C ⊂ M∩N , then C is basic, neocompact,
or neoseparable in M if and only if it is basic, neocompact, or neoseparable in N .

(ii) Let M,N ∈ H and M⊂ N . If C is neoclosed in N , then C∩M is neoclosed
in M. If f : D → K is neocontinuous from N to K, then the restriction f |(D∩M)
is neocontinuous from M to K. 2

In view of this corollary, we may call a set C basic, neocompact, or neoseparable
if it is basic, neocompact, or neoseparable in any M∈ H such that M⊃ C.

Theorem 3.11 (H,B, C) is a neometric family with the countable compactness
property.
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Proof: It is clear that H is closed under finite Cartesian products, and that
every basic set is neocompact, so (a) holds. Properties (b) and (d) are trivial, and
property (c) follows easily from ω1-saturation.

To prove the existential quantifier property (e), let C be neocompact in M×N .
We show that the set

D = {x ∈M : (∃y ∈ N )(x, y) ∈ C}

is neocompact in M. By Corollary 3.8, monad(C) =
⋂

n Cn where 〈Cn〉 is a decreas-
ing chain of internal subsets of M̄ × N̄ . Let X ∈ M̄ and x = oX. Using Lemma 3.7
we see that the following are equivalent:

x ∈ D

(∃y ∈ N )(x, y) ∈ C

(∃Y ∈ N̄)(x,o Y ) ∈ C

(∃Y ∈ N̄)(X, Y ) ∈
⋂

n
Cn

(∀n)(∃Y ∈ N̄)(X, Y ) ∈ Cn

X ∈
⋂

n
Dn, where Dn = {Z : (∃Y ∈ N̄)(Z, Y ) ∈ Cn}.

Since N̄ is internal, each set Dn is internal. Therefore D = o(
⋂

n Dn) is neocom-
pact in M. We now prove property (f), the universal quantifier property. Let C be
neocompact in M×N and B be nonempty and basic in N . We must show that
the set

D = {x ∈M : (∀y ∈ B)(x, y) ∈ C}
is neocompact in M. Since B is basic, B = oA where A is an internal subset of N̄ .
Again, monad(C) =

⋂

n Cn where 〈Cn〉 is a decreasing chain of internal subsets of
M̄× N̄ . Let X ∈ M̄ and x = oX. As in the preceding paragraph, we see that x ∈ D
if and only if X ∈ ⋂

n Dn, where

Dn = {Z : (∀Y ∈ A)(Z, Y ) ∈ Cn}.

Since A is internal, each set Dn is internal. (This is where we need the fact that B
is basic). Therefore D = o(

⋂

n Dn) is neocompact in M. This shows that (H,B, C)
is a neocompact family.

For each M ∈ H, the distance function ρ on M is neocontinuous because for
each neocompact set C in M×M with monad

⋂

n Cn, the graph of ρ|C is equal to
the neocompact set

⋂

n

o{(X, Y, Z) ∈ M̄ × M̄ × ∗R : (X,Y ) ∈ Cn and |ρ̄(X, Y )− Z| ≤ 1/n}.
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The countable compactness property for (H,B, C) is an immediate consequence of
ω1-saturation. 2

It follows that all the properties of countably compact neometric families proved
in [9] hold for the huge neometric family. For example, all neoclosed sets are closed.

We conclude this section by briefly considering two other neometric families
based on (H,B). Let (H,B, C0) be the neocompact family generated by (H,B), and
let (H,B, C1) be the neocompact family where C1(M) is the set of all C ∈ C(M)
such that C is contained in some basic B ∈ B(M). The proof of the preceding
theorem shows that (H,B, C0) and (H,B, C1) are also countably compact neometric
families. Moreover, for each M∈ H we have

C0(M) ⊂ C1(M) ⊂ C(M).

The second inclusion is trivial, and the first inclusion holds because each of the
rules (a)–(f) for neocompact sets preserves the property of a set being contained in
a basic set. The following question is open: Does C0(M) = C1(M) for all M ∈ H?
That is, can every neocompact subset of a basic set be obtained from basic sets by
repeated applications of the rules (a)–(f)? Later on we shall give an example where
C1(M) 6= C(M).

4 Neocompact, Neoseparable, and Neoclosed Sets

In this section we study neocompact sets, neoclosed sets, neoseparable sets, and neo-
continuous functions in the huge neometric family (H,B, C). We assume throughout
this section that M and N are closed subsets of the nonstandard hulls H(M̄, c) and
H(N̄ , d), and thus belong to H. In the paper [11] we shall give alternative nonstan-
dard characterizations of the neocompact, neoclosed, and neoseparable sets in H,
using sequences indexed by the hyperintegers.

We begin with a simple sufficient condition for being neoclosed.

Proposition 4.1 For any Π0
1 set B ⊂ M̄ , the set D = M∩ oB is neoclosed in M.

Proof: Let B =
⋂

n Bn and let C be a neocompact set in M with monad(C) =
⋂

n Cn, where 〈Bn〉 and 〈Cn〉 are decreasing chains of internal subsets of M̄ . Then
A = o(

⋂

n(Bn ∩ Cn)) is neocompact in M, and A ⊂ D ∩ C. If x ∈ D ∩ C, then x
has a lifting X ∈ B. Moreover, since x ∈ C, X ∈ monad(C), so X ∈ ⋂

n(Bn ∩ Cn)
and x ∈ A. Therefore A = D ∩ C and hence D is neoclosed in M. 2

In the paper [15], a set D was defined to be neoclosed in M if it satisfies the
condition of the preceding proposition, that D = M∩ oB for some Π0

1 set B. Our
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present notion of neoclosed is weaker, and the above proposition shows that any set
which is neoclosed in the sense of [15] is neoclosed in our present sense.

Corollary 3.8 gave us a characterization of the monad of a neocompact set in
the huge neometric family. The next result is an analogous characterization of the
monad of a neoseparable set. Observe that forM∈ H, a set A ⊂M is neoseparable
in M if and only if A is the closure in M of a set B ⊂ M which is the standard
part of a Σ0

1 set.

Proposition 4.2 A set B ⊂ G(M̄, c) is the monad of a neoseparable set if and only
if B can be written in the form

B =
⋂

n

⋃

m
((Bm)1/n)

where 〈Bm〉 is an increasing chain of internal subsets of G(M̄, c).

Proof: Every Σ0
1 subset of a galaxy G(M̄, c) can be written in the form

⋃

m Bm

where 〈Bm〉 is an increasing chain of internal sets. Since
⋂

n

⋃

m
((Bm)1/n) =

⋂

n
((

⋃

m
Bm)1/n)

and o(
⋃

m Bm) =
⋃

m(oBm),
⋂

n
⋃

m((Bm)1/n) is the monad of the closure of
⋃

m(oBm),
and the result follows from the preceding observation. 2

If A is neoseparable, we call the representation

monad(A) =
⋂

n

⋃

m
((Bm)1/n)

in the above proposition a neoseparable normal form for the monad of A.
The next proposition will lead to a characterization of the basic sets in terms of

the neoseparable and neocompact sets.

Proposition 4.3 (i) If C is neocompact in M, and D ⊂ C is neoseparable, then
D ⊂ B ⊂ C for some basic set B.

(ii) Let D is neoseparable in M, and let C ⊂ D be neocompact. Then there is a
sequence of basic sets Bn ⊂ D such that

C =
⋂

n
((Bn)1/n).

15



Proof: (i) Let monad(C) have neocompact normal form
⋂

n((C̄n)1/n), and let
monad(D) have neoseparable normal form

⋂

n
⋃

m(D̄m)1/n. Then for each m and n,
D̄m ⊂ (C̄n)1/n. By ω1-saturation there is an internal set E such that

⋃

m
D̄m ⊂ E ⊂

⋂

n
((C̄n)1/n).

Then B = oE ⊂ C. Since E ⊂ monad(M), B is basic. Moreover, oD̄m ⊂ B for
each m, and B is closed, so D ⊂ B.

(ii) We have

monad(C) =
⋂

n
((Cn)1/n) =

⋂

n
En =

⋂

n
((En)2/n)

for some decreasing chain 〈Cn〉 of internal subsets of G(M̄, c), where En = (Cn)1/n.
Let

monad(D) =
⋂

n

⋃

m
((Dm)1/n)

be a neoseparable normal form, where Dm is an increasing chain of basic sets. Then
for each n,

⋂

k

Ek ⊂
⋃

m
((Dm)1/n).

By saturation there exist k = k(n) ≥ n and m = m(n) such that Ek ⊂ (Dm)1/n.
Then

monad(C) =
⋂

n
Ek(n) =

⋂

n
(Ek(n) ∩ (Dm(n))1/n)

⊂
⋂

n
((Ek(n))1/n ∩ (Dm(n))1/n) ⊂ monad(C).

Therefore C =
⋂

n((Bn)1/n) where Bn is the basic set

Bn = o(Ek(n))1/n ∩Dm(n). 2

Corollary 4.4 A set C ⊂ M is basic if and only if it is both neocompact and
neoseparable.

Proof: If C is both neocompact and neoseparable, then C is basic by Proposition
4.3. If C is basic, then C is closed and is the standard part of a set which is both
Σ0

1 and Π0
1, so C is both neocompact and neoseparable. 2

Corollary 4.5 If C is neocompact in M then every separable subset of C is con-
tained in a basic subset of C.
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Proof: Every closed separable subset of C is neoseparable, and is contained in a
basic subset of C by Proposition 4.3. 2

Corollary 4.6 For every neocompact set C and neoseparable set D such that C ⊂
D, there exists a sequence of internal sets Bn ⊂ monad(D) such that

monad(C) =
⋂

n
((Bn)1/n). 2

Note that this representation of the monad of a neocompact set differs from the
representation in Corollary 3.8, where 〈Bn〉 was a decreasing chain of internal sets
but Bn was not necessarily included in monad(D).

We now prove an important closure property of the huge neometric family. In
the paper [9] we gave a variety of applications of this property to stochastic analysis.

Theorem 4.7 The huge neometric family (H,B, C) is closed under diagonal inter-
sections. That is, whenever M∈ H, An is neocompact in M for each n ∈ N, and εn

is a sequence of reals such that limn→∞ εn = 0, the set A =
⋂

n(An)εn is neocompact.

Proof: By [9], Proposition 4.14, each set (An)εn is neoclosed, so A is neoclosed.
Thus it suffices to prove that A is contained in a neocompact set. Since An is
neocompact, we have An = o(Bn) for some Π0

1 subset Bn =
⋂

m Bmn of the monad
of M. Then

A =
⋂

k

((Ak)εk) =
⋂

k

((o(Bk))εk) ⊂
⋂

k

o((Bk)2εk) ⊂ o
⋂

k

((Bk)3εk) = oB.

B is a Π0
1 set because for each k,

(Bk)3εk = (
⋂

m
(Bmk))3εk =

⋂

m
((Bmk)3εk).

We show that oB ⊂M, and hence oB is neocompact in M.
Let X ∈ B and let x = oX. For each k ∈ N there exists Yk ∈ Bk such that

ρ̄(X,Yk) ≤ 4εk. Then yk = oYk ∈ M and limk→∞ yk = x in H(M̄, c). Since M is
closed in H(M̄, c), x ∈M. Thus oB ⊂M as required. 2

Corollary 4.8 Every compact set C ⊂M is basic.

Proof: Let C be compact. Then C is closed and separable, so C is neoseparable.
Moreover, C is totally bounded, that is, there is a countable increasing chain of
finite subsets Cn of C such that C =

⋂

n((Cn)1/n). Each finite set is basic, so C is
neocompact by the preceding theorem. Therefore C is basic by Corollary 4.4. 2

With the preceding corollary as a starting point, we can show how the standard
neometric family fits within the huge neometric family. We need a lemma about
standard parts of Π0

1 subsets of ∗M where M is a standard complete metric space.
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Lemma 4.9 Let M be a standard complete metric space. For any Π0
1 set A which

is contained in the monad of M in ∗M, oA is compact.

Proof: Let A =
⋂

n An where An is a decreasing chain of internal sets. Let
C = oA. C is neocompact in the huge neometric family by definition, and therefore
C is closed. Since any countably compact metric space is compact, it suffices to
show that C is countably compact. Let {Bn : n ∈ N} be a countable open covering
of C. Let Dmn be the set of all x such that for some r > 1/m, the r-ball centered at
x is included in Bn. Then each Dmn is open, and Bn contains the closure of Dmn.
For any X ∈ A with standard part x, there exist m,n, r such that r > 1/m and
the r-ball centered at x is included in Bn. By transfer, the r-ball centered at ∗x is
included in ∗Bn, and hence there exists s > 1/m such that the s-ball centered at
X is included in ∗Bn. Therefore X ∈ ∗Dmn, so {∗Dmn : m,n ∈ N} covers A. By
ω1-saturation, some finite subset of {∗Dmn : m,n ∈ N} covers A. Since Bn contains
the closure of Dmn, some finite subset of {Bn : n ∈ N} covers C, as required. 2

Proposition 4.10 Let S be the class of all standard complete metric spaces, and
for M ∈ S let

B(M) = C(M) = {C ⊂ M : C is compact}.
Then S ⊂ H, and for each M ∈ H, B(M) and C(M) are the same with respect to S
as with respect to H.

Proof: We have already observed in Example 3.5 that S ⊂ H. Let M ∈ S.
The preceding lemma shows that every subset of M which is basic in H is compact.
Corollary 4.8 shows that every compact set is basic in H. 2

We now turn to the separable members of S.

Proposition 4.11 Let M be a standard complete metric space, that is, M ∈ S.
The following are equivalent:

(i) M is separable.
(ii) M is neoseparable in H.

Proof: We have already observed that (i) implies (ii). Suppose M is neoseparable,
with normal form

monad(M) =
⋂

n
(
⋃

m
(Bm)1/n).

Then for each m, Bm is an internal subset of monad(M). Let Cm = o(Bm). By the
Lemma 4.9, Cm is compact, and hence Cm has a countable dense subset. Moreover,
⋃

m Cm is dense in M . Therefore M is separable. 2
The next result characterizes the neocompact sets in terms of the neoclosed sets

in a neoseparable M.
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Proposition 4.12 Let M be neoseparable. A set C is neocompact in M if and only
if C is neoclosed in M and every countable covering of C by neoopen sets in M has
a finite subcover.

Proof: The condition that every countable covering of C by neoopen sets has a
finite subcover is equivalent to the condition that for every decreasing chain 〈Dn〉
of neoclosed sets such that each Dn meets C, the intersection

⋂

n Dn meets C.
By the countable compactness property, if C is neocompact then C is neoclosed in

M and every countable covering of C by neoopen sets inM has a finite subcovering.
Suppose that C is neoclosed in M and every countable covering of C by neoopen
sets in M has a finite subcovering. Since M is neoseparable, there is an increasing
chain of basic sets Bm such that M =

⋂

k
⋃

m(Bm)1/k. For each m and k let Dm,k be
the neoclosed set {x ∈ M : ρ(x, Bm) ≥ 1/k} in M. Then for each k,

⋂

m Dm,k = ∅.
Therefore there exists m(k) such that C ∩Dm(k),k = ∅, and hence C ⊂ (Bm(k))1/k.
Thus C is contained in the set E =

⋂

k((Bm(k))1/k), and E ⊂ M. By closure
under diagonal intersections, E is neocompact. Since C is neoclosed in M, C is also
neocompact. 2

Proposition 4.12 holds for any neometric family with the countable compactness
and diagonal intersection properties, because these two properties were the only
ones which were used in the proof.

Proposition 4.13 (i) Suppose M is a countable union of basic sets (for example,
M = H(M̄, c)). Then C(M) is the smallest collection of sets which contains B(M)
and is closed under countable intersections.

(ii) Let M be neoseparable. Then C(M) is the smallest collection of sets which
contains B(M) and is closed under diagonal intersections.

Proof: (i) C(M) clearly contains B(M) and is closed under countable inter-
sections. Let M =

⋃

n Bn where each Bn is basic, and let C ∈ C(M), so that
monad(C) =

⋂

n Cn where each Cn is internal. For each n we have Bn = oAn where
An is internal. We may take the An to be increasing and the Cn to be decreasing.

We claim that C ⊂ Bk for some k ∈ N. Suppose not. Then for each k there exists
xk ∈ C−Bk. Let Xk be a lifting of xk. Then for some εk > 0, Xk ∈ Ck− (Ak)εk . By
saturation there exists X ∈ ⋂

k(Ck − (Ak)εk). Let x = oX. Then x ∈ C but x /∈ Bk

for each k ∈ N, contradicting the assumption that C ⊂M. This proves the claim.
We now claim that

C = o(
⋂

n
(Cn ∩ Ak)).
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It is clear that C contains the right side. Suppose x ∈ C. Then x ∈ Bk, so x has
a lifting X ∈ Ak. Since X ∈ monad(C),X ∈ Cn for each n ∈ N. This proves our
second claim. Finally, by Lemma 3.7,

o(
⋂

n
(Cn ∩ Ak)) =

⋂

n

o(Cn ∩ Ak).

Therefore C is the intersection of a countable chain of basic sets o(Cn ∩ Ak) in M,
and (i) is proved.

(ii) By Theorem 4.7, C(M) contains B(M) and is closed under diagonal inter-
sections. Let C ∈ C(M). By Proposition 4.3 (ii) there is a sequence of basic sets
Bn ∈ B(M) such that C is equal to the diagonal intersection

⋂

n((Bn)1/n). 2
We conclude this section with a useful necessary and sufficient condition for

neocontinuity in the huge neometric family.

Definition 4.14 Let C ⊂ M. An internal function F : M̄ → N̄ is said to be a
uniform lifting of a function f : C → N if oF (X) = f(x) whenever X lifts x ∈ C.
f : C → N is said to be uniformly liftable from M into N if it has a uniform
lifting.

Uniformly liftable total functions on spaces of random variables were studied in
[15].

Theorem 4.15 Let C ⊂ M. Every uniformly liftable function f : C → N is
neocontinuous from M to N in the huge neometric family.

Proof: Let F uniformly lift f and let A ⊂ C be neocompact in M. By Corollary
3.8, the monad of A has a neocompact normal form

monad(A) =
⋂

n
((Bn)1/n).

The sequence 〈Fn〉 where Fn = F |((Bn)1/n) is a decreasing chain of internal sets,
and

F |(monad(A)) =
⋂

n
Fn.

Since F uniformly lifts f , whenever X ∈ monad(A) and x = oX we have o(X, F (X)) =
(x, f(x)). Therefore o(

⋂

n Fn) = f |A. This shows that f |A is neocompact, so f is
neocontinuous. 2

Example 4.16 Let M be a standard Banach space, and consider the nonstandard
hull H(∗M, 0) of the galaxy of 0 in ∗M . The norm function x 7→ ‖x‖, the addition
function (x, y) 7→ x+ y, and the scalar multiplication function x 7→ αx, α ∈ R, have
uniform liftings and hence are neocontinuous in the huge neometric family H.
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Theorem 4.17 Let C ⊂ M be neocompact. Then a function f : C → N is
neocontinuous from M to N if and only if f is uniformly liftable.

Proof: One direction follows from Theorem 4.16. For the other direction, suppose
f : C → N is neocontinuous from M to N . Then the graph G of f is neocompact
in M×N . The monad of G is a Π0

1 set, so that monad(G) =
⋂

n Gn where 〈Gn〉 is a
decreasing chain of internal subsets of M̄ × N̄ . For each n ∈ N let An be the set of
all internal functions F from M̄ into N̄ such that for each m ≤ n, and each X ∈ M̄,
if (∃Y )(X,Y ) ∈ Gm then (X,F (X)) ∈ Gm. Since 〈Gn〉 is a decreasing chain, we see
from the transfer of the axiom of choice that 〈An〉 is a decreasing chain of nonempty
internal sets. Therefore there exists F ∈ ⋂

n An. Then F is an internal function from
M̄ into N̄ and for each X ∈ monad(C), we have (X,F (X)) ∈ monad(G). Thus F
is a uniform lifting of f . 2

Corollary 4.18 If f : C → N is neocontinuous from M to N and A ⊂ C is basic,
then f(A) is basic.

Proof: The restriction of f to A has a uniform lifting F . Let A = oĀ where Ā is
internal. Then F (Ā) is internal and f(A) = oF (Ā). 2

5 Rich Adapted Spaces

In [9] we studied an important example of a neocompact family, built upon the metric
spaces L0(Ω,M) of random variables from an adapted space Ω into a separable
metric space M . The adapted space Ω was said to be rich if the corresponding
neocompact family has the countable compactness property. In this section we
review these notions and, as promised in [9], show that rich adapted spaces exist
(and in fact are obtained from the Loeb measure construction).

Given a probability space (Ω, P,G) and a metric space M , a function x : Ω → M
is called G-measurable if x−1(U) ∈ G for every open set U ⊂ M , and L0(Ω, M) is
the set of all G-measurable functions from Ω into M , identifying functions which are
equal P -almost surely. ρ0 is the metric of convergence in probability on L0(Ω,M),

ρ0(x, y) = inf{ε : P [ρ(x(·), y(·)) ≤ ε] ≥ 1− ε}.

An atom of a probability space Ω is a set A of positive measure such that every
measurable subset of A has measure either 0 or P [A]. A measurable set B ⊂ Ω is
atomless in Ω if no subset of B is an atom of Ω. The probability space Ω is said
to be atomless if the set B = Ω is atomless in Ω.
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Throughout this section we let M = (M,ρ) and N = (N, σ) be complete separa-
ble metric spaces. The space of Borel probability measures on M with the Prohorov
metric

d(µ, ν) = inf{ε : µ(K) ≤ ν(Kε) + ε for all closed K ⊂ M}
is denoted by Meas(M). It is again a complete separable metric space, and con-
vergence in Meas(M) is the same as weak convergence. Each measurable function
x : Ω → M induces a measure law(x) ∈ Meas(M). The function

law : L0(Ω,M) → Meas(M)

is continuous, and in fact,

d(law(x), law(y)) ≤ ρ0(x, y).

Moreover, if Ω is atomless, then for each M the function law maps the set of all
G-measurable x ∈ L0(Ω,M) onto Meas(M). A useful condition for compactness in
Meas(M) is Prohorov’s theorem, that a closed set C ⊂ Meas(M) is compact if and
only if it is tight.

Definition 5.1 Let Ω = (Ω, P,G) be a probability space, and let MΩ be the family
of all the metric spaces M = L0(Ω,M) where M is a standard complete separable
metric space. A subset B of M will be called basic with respect to the probability
space Ω, in symbols B ∈ BΩ(M), if either

1. B is compact, or

2. B = law−1(C) for some compact C ⊂ Meas(M).

We say that a C ⊂ M ∈ MΩ is neocompact with respect to the probability
space Ω, in symbols C ∈ CΩ(M), if C belongs to the neocompact family generated
by the basic sets with respect to Ω. Thus (MΩ,BΩ, CΩ) is the neocompact family
generated by (MΩ,BΩ). We say that Ω is a rich probability space if Ω is atomless,
and the family of neocompact sets with respect to Ω has the countable compactness
property.

We now review the notion of a Loeb probability space (e.g. see [22] and [16]). A
∗probability space

Ω̄ = (Ω, P̄ , Ḡ)

is an element of the set ∗A where A is the set of all σ-additive probability spaces in
the standard universe. Note that Ω is an internal set, Ḡ is a finitely additive algebra
of sets, and P̄ is a finitely additive function from Ḡ into the hyperreal interval ∗[0, 1].
The Loeb space associated with Ω̄ is obtained from the following result of Loeb [23].
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Proposition 5.2 Let Ω̄ = (Ω, P̄ , Ḡ) be a ∗probability space. There is a unique σ-
additive probability space

Ω = (Ω, P,G),

called the Loeb space of Ω̄, such that G is the completion of the σ-algebra generated
by Ḡ and P (A) = oP̄ (A) for each A ∈ Ḡ. 2

Note that both Ω̄ and Ω have the same sample set, also denoted by Ω.

Definition 5.3 Let Ω̄ be a ∗probability space. A function X : Ω → ∗M will be called
Ḡ-measurable if X is internal and X−1(U) ∈ Ḡ for each ∗open set U ⊂ ∗M . Let
SL0(Ω,M) be the ∗metric space of all Ḡ-measurable functions X : Ω → ∗M with the
∗metric

ρ̄0(X, Y ) = ∗ inf{ε : P̄ [∗ρ(X(ω), Y (ω)) ≥ ε] ≤ ε}.
In the space SL0(Ω,M), the distance between any two points is at most one, so all
points belong to the same galaxy. We say that X ∈ SL0(Ω,M) is a lifting of a
function x : Ω → M , in symbols oX = x, if X(ω) has standard part x(ω) ∈ M for
P -almost all ω ∈ Ω. If X ∈ SL0(Ω,M) is a lifting of some x, we say that X is
near-standard and write X ∈ ns0(Ω,M).

A function x ∈ L0(Ω, M) is simple if it has finite range, and a function X ∈
SL0(Ω,M) is ∗simple if it has ∗finite range. If M is separable, then every G-
measurable function is a ρ0-limit of simple functions.

The following is a well known fundamental result in Loeb measure theory.

Proposition 5.4 (Loeb [23], Anderson [3]) Let Ω̄ be a ∗probability space. For any
x : Ω → M , the following are equivalent:

(i) x is Loeb measurable, i.e. x ∈ L0(Ω,M).
(ii) x has a lifting X ∈ ns0(Ω,M).
(iii) For each infinite n ∈ ∗N, x has a ∗simple lifting X ∈ ns0(Ω,M) whose range

has ∗cardinality at most n.
(iv) x is a limit of simple functions with respect to ρ0.
Moreover, whenever x = oX and y = oY , we have ρ0(x, y) = oρ̄0(X, Y ), so that

ρ̄0 is a uniform lifting of ρ0, and ns0(Ω,M) is the monad of L0(Ω,M) in SL0(Ω,M).

We shall need the following property of atomless Loeb probability spaces, which
is called saturation and proved in [14], Corollary 4.5.

Proposition 5.5 Let Ω be an atomless Loeb probability space. Suppose Γ is another
probability space, and M and N are complete separable metric spaces. For any
random variables x ∈ L0(Ω,M) and (x̄, ȳ) ∈ L0(Γ,M × N) such that law(x) =
law(x̄), there exists y ∈ L0(Ω, N) such that law(x, y) = law(x̄, ȳ). 2
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We now look at the space L0(Ω,M) within the huge neometric family.

Theorem 5.6 Let Ω̄ be a ∗probability space. The set L0(Ω,M) is neoseparable with
respect to the ∗metric ρ̄0 on SL0(Ω,M), and the metric space M = (L0(Ω,M), ρ0)
belongs to the huge neometric family H.

Proof: Let {m0,m1, . . .} be a countable dense subset of M , and let Mn be the
finite set Mn = {m0,m1, . . . , mn}. Then ∗(Mn) = Mn, so every Ḡ-measurable
function X ∈ SL0(Ω,Mn) is near-standard, that is, SL0(Ω,Mn) ⊂ ns0(Ω,M). On
the other hand, every G-measurable function x ∈ L0(Ω,Mn) has a lifting X ∈
SL0(Ω,Mn). Therefore the standard part of SL0(Ω,Mn) is the basic set L0(Ω,Mn).
Since

⋃

n Mn is dense in M , and measurable functions with values in M can be
approximated in ρ0 by simple functions, the countable union

⋃

n L0(Ω,Mn) of basic
sets is dense in the closed set L0(Ω,M). This shows that L0(Ω,M) is neoseparable.
2

Proposition 5.7 ([15], Propositions 2.4 and 2.7) Let Ω̄ be a ∗probability space.
The function law from L0(Ω,M) into Meas(M) has a uniform lifting LAW from
SL0(Ω,M) into ∗Meas(M). Moreover, for each X ∈ SL0(Ω,M), we have X ∈
ns0(Ω,M) if and only if LAW(X) is near-standard in ∗Meas(M). 2

Corollary 5.8 Let Ω be a Loeb probability space. For each M ∈ MΩ, every set
C ∈ C(M) is contained in a set D ∈ BΩ(M).

Proof: Let C ∈ C(M). Since the law function is uniformly liftable, it is neo-
continuous in (H,B, C). Then law(C) is neocompact in (H,B, C) and separable,
so law(C) is compact. Thus C is contained in the set D = law−1(law(C)), which
belongs to BΩ(M). 2

We now turn to adapted spaces. In the classical literature one usually considers
adapted spaces with time indexed by the set N of natural numbers or the set [0,∞]
of nonnegative extended reals. The paper [9] worked with adapted spaces with time
indexed by the set B of dyadic rationals in [0,∞], and used results about B-adapted
spaces to draw conclusions about [0,∞]-adapted spaces. Here we shall take a more
general approach where time is indexed by an arbitrary linearly ordered set.

Let 〈L,≤〉 be a subset of an internal linear ordering 〈L̄,≤〉. For convenience
we also assume that L contains a least element 0 and a greatest element ∞. For
example, L can be any standard linear ordering with a first and last element, such
as [0,∞],B, or N ∪ {∞}, or any internal linear ordering such as ∗[0,∞], ∗B, or
∗N ∪ {∞}. We say that Ω = (Ω, P,Gt)t∈L is an L-adapted space if Gt is a σ-
algebra of subsets of Ω for each t ∈ L, Gs ⊂ Gt whenever s < t in L, and P is a
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complete probability measure on G∞. We shall write G = G∞, so that (Ω, P,G) is
the probability space associated with the adapted space Ω.

Definition 5.9 Let E and F be σ-subalgebras of G∞ with E ⊂ F . F is said to be
atomless over E if for every U ∈ F of positive probability, there is a set V ⊂ U in
F such that

0 < P [V |E ] < P [U |E ]

on a set of positive probability. Following [14], we say that an L-adapted space Ω is
atomless if (Ω, P,G0) is an atomless probability space, and Gt is atomless over Gs

whenever s < t in L.

Definition 5.10 Let Ω = (Ω, P,Gt)t∈L be an L-adapted space, and let MΩ be the
family of all the metric spaces M = L0(Ω,M) where M is a standard complete
separable metric space. A subset B of M will be called basic with respect to Ω, in
symbols B ∈ BΩ,L(M), if either

1. B is compact, or

2.

B = {x ∈ law−1(C) : x is Gt-measurable}

for some compact C ⊂ Meas(M) and t ∈ L.

In the case that t = ∞, 5.10.2 says that the set

B = law−1(C)

is basic for each compact C ⊂ Meas(M).
We let (MΩ,BΩ,L, CΩ,L) be the neometric family generated by (MΩ,BΩ,L).
We say that an L-adapted space Ω is rich if Ω is atomless and the neocompact

family
(MΩ,BΩ,L, CΩ,L)

has the countable compactness property.
By an L-adapted Loeb space we mean an L-adapted space Ω = (Ω, P,Gt)t∈L

such that (Ω, P,G) is a Loeb probability space, Gs ⊂ Gt whenever s < t ∈ L, and
each Gt is a σ-algebra generated by an internal subalgebra Ḡt of Ḡ. We also write
Ḡ = Ḡ∞.

By applying Proposition 5.4 to the Loeb probability space (Ω, P,Gt), we obtain
the following lifting theorem for adapted Loeb spaces.
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Corollary 5.11 Let Ω be an L-adapted Loeb space and let t ∈ L. A random variable
x ∈ L0(Ω,M) is Gt-measurable if and only if x has a Ḡt-measurable lifting. 2

We now wish to show that every atomless L-adapted Loeb space is rich. To do
this we first prove a pair of lemmas about Loeb probability spaces, and then use
the lemmas to show that the basic sets in an L-adapted Loeb space are basic in the
huge neometric family.

Lemma 5.12 Let Ω̄ be a ∗probability space whose associated Loeb space Ω is atom-
less. Then there is an infinitesimal ε such that every ∗atom of Ω̄ has P̄ −measure
at most ε.

Proof: If Ω̄ is ∗atomless then the result holds trivially for every infinitesimal
ε ≥ 0. Suppose Ω̄ has at least one ∗atom. Every ∗atom of Ω̄ has infinitesimal
P̄−measure, because if A is a ∗atom of Ω̄ and α = o(P̄ (A)) > 0, then A would be
an atom of Ω with Loeb measure α. Since Ω̄ is internal, the set of P̄ -measures of
∗atoms of Ω̄ has a ∗supremum ε > 0. Then ε must be infinitesimal and every ∗atom
of Ω̄ has P̄ -measure at most ε. 2

Lemma 5.13 Let Ω be an atomless Loeb probability space. Let x ∈ M ∈ MΩ.
There is a lifting X of x and an infinitesimal ε such that every y ∈M with law(y) =
law(x) has a lifting Y where LAW(Y ) is within ε of LAW(X) in ∗Meas(M).

Proof: By the preceding lemma, we may choose an infinitesimal ε large enough
so that every ∗atom of Ω̄ has P̄ -measure less than ε2. By Proposition 5.4, x has a
∗simple lifting X ∈ ns0(Ω,M) whose range has ∗cardinality at most 1/ε.

Suppose y ∈M and law(y) = law(x). Let Z be a lifting of y. Let d be the metric
of Meas(M). We claim that for each positive n ∈ N, there exists Yn ∈ SL0(Ω,M)
such that

ρ̄0(Yn, Z) ≤ 3/n (3)

and
∗d(LAW(Yn), LAW(X)) ≤ ε. (4)

We now prove this claim. There is a finite set A = {a1, . . . , ak} ⊂ M such that
x(ω) ∈ A1/n with probability greater than 1− 1/n. For i = 1, . . . , k let

Ai = {b ∈ M : ρ(b, ai) ≤ 1/n},

Bi = Ai − (A1 ∪ · · · ∪ Ai−1),

B0 = M − (A1 ∪ · · · ∪ Ak).
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Then B0, . . . , Bk partitions M and P [x(ω) ∈ B0] ≤ 1/n. Since law(y) = law(x), we
also have

P [y(ω) ∈ Bi] = P [x(ω) ∈ Bi]

for each i.
We now introduce corresponding internal subsets of ∗M . For each δ > 0 and

i = 1, . . . , k, let
Ci,δ = {b ∈ ∗M : ∗ρ(b, ai) ≤ (1/n) + δ},

Di,δ = Ci,δ − (C1,δ ∪ · · · ∪ Ci−1,δ),

D0,δ = ∗M − (C1,δ ∪ · · · ∪ Ck,δ).

By induction on i, one can show that for all sufficiently large infinitesimal δ, we have
X(ω) ∈ Di,δ if and only if x(ω) ∈ Bi and Z(ω) ∈ Di,δ if and only if y(ω) ∈ Bi for
P -almost all ω. Pick such an infinitesimal δ. Since each ∗atom of Ω has P̄ -measure
less than ε2, there is an internal partition E0, . . . , Ek of Ω such that for each i ≤ k,
Z(ω) ∈ Di,δ if and only if ω ∈ Ei for P -almost all ω, and

|P̄ [Ei]− P̄ [X(ω) ∈ Di,δ]| ≤ ε2.

Again using the fact that all ∗atoms have ∗measure ≤ ε2, it follows that there is a
∗simple function Yn ∈ SL0(Ω, M) such that:

For each i, range(Yn|Ei) = Di,δ ∩ (range(X)) (5)

For each b ∈ range(X), P̄ [Yn(ω) = b] is within ε2 of P̄ [X(ω) = b]. (6)

Since the range of X has ∗cardinality at most 1/ε, condition (6) holds. Whenever
i ≤ k, ω ∈ Ei, and Z(ω) ∈ Di,δ, we have

(∗ρ(Yn(ω), Z(ω)) ≤ 2((1/n) + δ).

Moreover, P̄ [E0] ≤ 1/n. Therefore

P̄ [∗ρ(Yn(ω), Z(ω)) ≤ 3/n] ≥ 1− 3/n,

so condition (5) holds and the claim is proved.
By saturation, there exists Y ∈ SL0(Ω,M) such that ρ̄0(Y, Z) ≈ 0 and condition

(6) holds. Then Y is a lifting of y with the required property, and the proof is
complete. 2

Theorem 5.14 Let Ω be an L-adapted Loeb space, and let M = L0(Ω,M) ∈ MΩ.
Then BΩ,L(M) ⊂ B(M), that is, every basic set in (MΩ,BΩ,L) is basic in (H,B, C).
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Proof: We have already shown that M belongs to H. Let B ∈ BΩ,L(M). If B is
compact, then B ∈ B(M) by Corollary 4.8. Assume that B is not compact, so that

B = {x ∈M : law(x) ∈ C and x is Gt-measurable}

for some compact set C ⊂ Meas(M) and some t ∈ L.
Suppose first that C is a one-element set, C = {c}. Let x ∈ B and let X be

a Ḡt-measurable lifting of x. By Lemma 5.13, there is an infinitesimal ε such that
every y ∈ B has a lifting Y which belongs to the internal set

D = {Y : Y is Ḡt-measurable and ∗d(LAW(Y ), LAW(X)) ≤ ε}.

It follows that B = oD, so B ∈ B(M). The family B(M) is closed under finite
unions, and thus we have B ∈ B(M) whenever the set C is finite.

We now return to the general case where C is a compact set. We first prove that
B ∈ C(M). For each n ∈ N let B̄n be the internal set

B̄n = {X ∈ LAW−1((∗C)1/n) : X is Ḡt-measurable}.

By a classical result of Robinson, a subset C of a standard metric space is compact
if and only if C = o(∗C) (e.g. see [29]). Then by Lemma 3.7, C = o(

⋂

n((∗C)1/n)).
Therefore by Proposition 5.7 and Corollary 5.11,

B = o(
⋂

n
(B̄n)),

so B ∈ C(M).
We now show that B is neoseparable in (H,B, C). Since C is compact, there is

an increasing chain 〈Cn〉 of finite subsets of C such that C =
⋂

n((Cn)1/n). We have
already shown that for each of the finite sets Cn, the set

Bn = {x ∈ law−1(Cn) : x is Gt-measurable}

belongs to B(M). Since B is closed and Bn ⊂ B, B contains the closure of
⋃

n Bn.
To prove the opposite inclusion, let x ∈ B. Then x is a random variable on the
atomless Loeb space

Ωt = (Ω, P,Gt).

We have law(x) ∈ C, so we may choose αn ∈ Cn such that d(law(x), αn) ≤ 1/n.
Put α0 = law(x). By the Skorokhod representation theorem (see [8], p. 102), there
is a random variable y on some probability space with values in MN such that
law(yn) = αn for each n, and yn → y0 almost everywhere. Then law(y0) = law(x).
By Proposition 5.5, there is a random variable z on Ωt with values in MN such that
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z0 = x and law(z) = law(y). Then law(zn) = αn for each n, and ρ0(zn, x) → 0.
Moreover, zn is Gt-measurable, so zn ∈ Bn and x is in the closure of

⋃

n Bn as
required. Therefore B is both neocompact and neoseparable, and hence B belongs
to B(M) by Corollary 4.4. 2

Theorem 5.15 Every atomless L-adapted Loeb space Ω is rich. Thus for each
standard linearly ordered set L, rich L-adapted spaces exist.

Proof: Let M = L0(Ω,M) ∈ MΩ. By Theorem 5.14, BΩ,L(M) ⊂ B(M).
It follows that CΩ,L(M) ⊂ C(M). By Theorem 3.11, the huge neometric family
(H,B, C) has the countable compactness property. It follows that the neometric
family (MΩ,BΩ,L, CΩ,L) has the countable compactness property. 2

Taking L to be the one-point linear order, we get the corresponding result for
probability spaces.

Corollary 5.16 Every atomless Loeb probability space is rich. 2

The paper [9] contains many examples of neocompact and neoclosed sets and
neocontinuous functions in the neometric family (MΓ,BΓ, CΓ) where Γ is a rich B-
adapted space. Let Ft be the right continuous filtration Ft =

⋂

s>t Gs obtained
from Ω. Then, for example, the set of Ft-adapted processes in L0(Γ, C([0, 1],M)) is
neoclosed, and the conditional expectation function x 7→ E[x|Ft] is neocontinuous
from each uniformly integrable subset of L0(Γ,R) into the space L0(Γ, L1([0, 1],R))
of stochastic processes. It follows from Theorem 5.14 that for a rich B-adapted
Loeb space, all these examples also have the corresponding property in the huge
neometric family.

Corollary 5.17 Let Ω be an atomless L-adapted Loeb space. Every neocompact set,
neoclosed set, neoseparable set, and neocontinuous function with neoclosed domain
in (MΩ,BΩ,L, CΩ,L) is also neocompact, neoclosed, neoseparable, or neocontinuous,
respectively, in the huge neometric family (H,B, C).

Proof: By Theorem 5.14, Corollary 5.8, and Proposition 2.5 2

It was shown in [9], Example 5.7, that a rich B-adapted space is nowhere right
continuous, that is, Ft 6= Gt for each t ∈ B. Similarly, a rich R+-adapted space
is nowhere right continuous. Each B-adapted space ΩB = (Ω, P,G,Gt)t∈B has a
corresponding right continuous R+-adapted space ΩR = (Ω, P,G,Ft)t∈R+ . The
example from [9] shows that ΩR can never be rich.

The paper [14] introduced the notion of adapted distribution and the related
notion of a saturated adapted space, and it was shown that for each B-adapted
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Loeb space ΩB, the associated right continuous adapted space ΩR is saturated. The
paper [18] explains the relationship between rich and saturated adapted spaces. It
is shown that for a countable subset L of R+, an L-adapted space is rich if and only
if it is saturated. Moreover, if ΩB is a rich B-adapted space, then the associated
right continuous adapted space ΩR is saturated.

We conclude this section by looking at a particularly well behaved example of a
B-adapted Loeb space.

Example 5.18 (The hyperfinite adapted space).

Let Ω0 be a hyperfinite set with more than one element, let N be an infinite
hyperinteger, and let BN be the hyperfinite set of all multiples of 2−N between 0
and 2N . Then B is a subset of BN . Let Ω = (Ω0)BN be the hyperfinite set of all
internal functions from BN into Ω0, let Ḡ be the algebra of all internal subsets of Ω,
and let P̄ be the counting probability measure on Ḡ, which gives each element of Ω
the same weight. If ω, υ ∈ Ω and t ∈ BN , we write ω ∼t υ if ω(s) = υ(s) for all s ≤ t
in BN . For 0 < t < ∞ in B let Ḡt be the algebra of all internal subsets U of Ω such
that U is closed under the equivalence relation ∼t. Finally, pick an infinitesimal
ι ∈ BN and let Ḡ0 be the algebra of all internal subsets U of Ω such that U is
closed under ∼ι. Since Ḡ is the algebra of all internal subsets of Ω, SL0(Ω,M) is
the set of all internal functions X : Ω → ∗M . By the hyperfinite adapted space
determined by Ω0 and ι we mean the B-adapted Loeb space (Ω, P,G,Gt)t∈B.

Hyperfinite adapted spaces have been studied extensively in the literature, for
example in [2], [15], [19], and [1].

One may wonder why we did not simply take ι = 0, so that Ḡ0 is just the algebra
of all internal U closed under ∼0. The problem with this choice is that it would
make the algebra G0 be finite when Ω0 is finite. We wish to allow the possibility
that (Ω, P,G0) is atomless even when Ω0 is finite, as in the next proposition.

Proposition 5.19 ([2]) Let Ω be the hyperfinite adapted space determined by Ω0

and ι.
(i) Gt is atomless over Gs for each t > s in B.
(ii) If either Ω0 is infinite or Nι is infinite then (Ω, P,G0) is atomless, and Ω is

an atomless B-adapted space.
(iii) If either Ω0 is infinite or Nι is infinite then the hyperfinite adapted space Ω

determined by Ω0 and ι is rich.

Proof: By Proposition 5.19 and Theorem 5.15. 2
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6 Function Spaces with Separable Targets

In this section we shall continue to let Ω̄ be a ∗probability space with associated
Loeb probability space Ω, and let M, N, . . . be complete separable metric spaces.

We shall introduce another neometric family, whose underlying metric spaces are
the spaces of Loeb measurable functions f from Ω into M such that the distance of f
from any element of M is Loeb integrable. In the case that M = R, the underlying
metric space is just the space of Loeb integrable functions from Ω into R. We shall
identify each element b ∈ M with the constant function Ω×{b}, which is an element
of both L0(Ω,M) and ns0(Ω, M). If X : Ω → ∗R is ∗measurable with respect to
P̄ , Ē[X] denotes the ∗expected value of X with respect to P̄ . If x : Ω → R is Loeb
integrable, E[x] is the expected value of x with respect to P .

We let L1(Ω,M) be the metric space of all x ∈ L0(Ω,M) such that ρ(x(·), a) is
Loeb integrable for each a ∈ M , with the metric

ρ1(x, y) = E[ρ(x(·), y(·))],

integrating with respect to the Loeb measure P on Ω.
We have L1(Ω,M) ⊂ L0(Ω,M) as sets of equivalence classes of functions, but

some care is needed because the two spaces have different metrics.
Recall that a function F : Ω → ∗R is said to be S-integrable if F is internal,

Ē[|F (ω)|] is finite, and

oĒ[|F (ω)|] = lim
n→∞

oĒ[min(|F (ω)|, n)].

Loeb [23] showed that a function f ∈ L0(Ω,R) is integrable with respect to P if
and only if f has an S-integrable lifting F , in which case E[f(ω)] = oĒ[F (ω)].

Definition 6.1 Let ρ̄1 be the ∗metric on the set SL0(Ω,M) defined by

ρ̄1(X,Y ) = Ē[∗ρ(X(·), Y (·))].

(We allow the possibility that ρ̄1(X, Y ) = ∞, but this possibility could be avoided
by truncating ρ̄1 at a sufficiently small infinite hyperreal number J .) Let SL1(Ω,M)
be the set of all X ∈ SL0(Ω,M) such that ∗ρ(X(·), a) is S-integrable for each a ∈ M .
We let ns1(Ω,M) be the set

ns1(Ω,M) = ns0(Ω,M) ∩ SL1(Ω,M).

In the following lemma we collect some easy consequences of the triangle inequal-
ity.
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Lemma 6.2 Let Ω be a Loeb probability space and M a complete separable metric
space.

(i) If X ∈ L0(Ω,M) and ∗ρ(X(·), a) is S-integrable for some a ∈ M , then
∗ρ(X(·), b) is S-integrable for every b ∈ M .

(ii) If X,Y ∈ SL1(Ω,M), then ∗ρ(X(·), Y (·)) is S-integrable and ρ̄1(X,Y ) is
finite.

(iii) If X ∈ SL1(Ω,M), Y ∈ SL0(Ω, M), and ρ̄1(X,Y ) ≈ 0, then Y ∈ SL1(Ω,M).
(iv) SL1(Ω,R) is the set of all S-integrable X ∈ SL0(Ω,R). 2

We need the following known result from Loeb integration theory, which is anal-
ogous to Proposition 5.4 (see [1] or [28]).

Proposition 6.3 For any x ∈ Ω → M , the following are equivalent:
(i) x ∈ L1(Ω,M).
(ii) x has a lifting in ns1(Ω,M).
(iii) For each infinite n ∈ ∗N, x has a ∗simple lifting X ∈ ns1(Ω,M) whose range

has ∗cardinality at most n.
(iv) x is a limit of simple functions with respect to ρ1.
Moreover, whenever X lifts x and Y lifts y in ns1(Ω,M), we have

ρ1(x, y) = oρ̄1(X, Y ),

so that ρ̄1 is a uniform lifting of ρ1, and ns1(Ω,M) is the monad of L1(Ω,M) in
(SL0(Ω,M), ρ̄1). 2

Theorem 6.4 The set L1(Ω,M) is neoseparable with respect to the ∗metric ρ̄1 on
SL0(Ω, M), and the metric space (L1(Ω,M), ρ1) belongs to the huge neometric family
H.

Proof: The argument is similar to the proof of Theorem 5.6. Let {m0,m1, . . .} be
a countable dense subset of M , and let Mn be the finite set Mn = {m0,m1, . . . , mn}.
Then L1(Ω,Mn) is a basic set for each n ∈ N. Every integrable function x ∈
L1(Ω,M) can be approximated in the metric ρ1 by functions in L1(Ω,Mn), so
L1(Ω,M) is the closure of the countable union

⋃

n L1(Ω,Mn) of basic sets, and
hence is neoseparable. 2

The remaining results in this section give relationships between the neometric
spaces L1(Ω,M) and L0(Ω,M) in the huge family H. These results will show that
the study of the neometric spaces L1(Ω,M) can be reduced to the study of uniformly
integrable sets in the neometric spaces L0(Ω,M). This reduction allowed us to get
by without introducing the neometric spaces on L1(Ω,M) at all in the paper [9].
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For r ∈ R and n ∈ N we let tailn(r) = r if r ≥ n, tailn(r) = 0 if r < n. Choose
an element b ∈ M which will remain fixed throughout our discussion. We say that a
subset C of L1(Ω, M) is uniformly integrable if there is a sequence an such that
for each x ∈ C,

lim
n→∞

an = 0 and E[tailn(ρ(x(·), b))] ≤ an for all n ∈ N. (7)

Uniform integrability does not depend on the choice of the element b ∈ M .
We recall a well known characterization of S-integrability.

Lemma 6.5 Let f : Ω → ∗R be internal. The following are equivalent.
(i) f is S-integrable.
(ii) Ē[|f |] is finite and Ē[tailJ(|f |)] ≈ 0 for all infinite J ∈ ∗N.
(iii) Ē[|f |] is finite and limn→∞

o(Ē[tailn(|f |)]) = 0. 2

Theorem 6.6 In the huge neometric family H, a set C ⊂ L1(Ω,M) is basic in
L1(Ω,M) if and only if it is basic in L0(Ω, M) and uniformly integrable.

Proof: Suppose first that C is basic in L1(Ω,M). Then there is an internal
set A ⊂ ns1(Ω,M) such that C = oA with respect to the ∗metric ρ̄1. Then A ⊂
ns0(Ω,M) and C = oA with respect to ρ̄0, so C is basic in L0(Ω,M). For each n let

ān = max{Ē[tailn(ρ̄(X(·), b))] : X ∈ A},

and let an = st(ān). By S-integrability, ān is infinitesimal for each infinite n.
Therefore by overspill, an satisfies condition (7) for all x ∈ C, whence C is uniformly
integrable.

Now suppose C is basic in L0(Ω, M) and uniformly integrable. There is an
internal set A ⊂ ns0(Ω, M) such that C = oA with respect to the ∗metric ρ̄0, and a
sequence 〈an〉 such that (7) holds for all x ∈ C. For each Z ∈ ∗M and J ∈ ∗N let
truncJ,b(Z) = Z if ρ̄(Z, b) ≤ J , truncJ,b(Z) = 0 otherwise. By (7), for each n, J ∈ N,
we have

(∀X ∈ A)Ē[tailn(ρ̄(truncJ,b(X), b))] ≤ 2an. (8)

By overspill, for each n ∈ N, (8) holds for all sufficiently small infinite J ∈ ∗N.
By ω1-saturation, for all sufficiently small infinite J , (8) holds for all n ∈ N, and
therefore truncJ,b(X) is S-integrable for all X ∈ A. Moreover, for each X ∈ A and
infinite J , truncJ,b(X) lifts oX in the ρ̄0 metric. Thus for sufficiently small infinite J ,
the internal set B = {truncJ,b(X) : X ∈ A} has the properties that B ⊂ ns1(Ω,M)
and C = oB with respect to ρ̄1. This shows that C is basic in L1(Ω,M). 2
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Theorem 6.7 In the huge neometric family H, a set C ⊂ L1(Ω,M) is neocompact
in L1(Ω,M) if and only if it is neocompact in L0(Ω,M) and uniformly integrable.

Proof: Suppose first that C is neocompact in L1(Ω,M). Then there is a Π0
1 set

A =
⋂

n An ⊂ ns1(Ω,M) such that C = oA with respect to the ∗metric ρ̄1. The
proof that C is neocompact in L0(Ω,M) and uniformly integrable is similar to the
first paragraph of the preceding proof, but with

ān = max{Ē[tailn(ρ̄(X(·), b))] : X ∈ An}.

Now suppose C is neocompact in L0(Ω, M) and uniformly integrable. There is
a Π0

1 set A =
⋂

n An ⊂ ns0(Ω,M) such that C = oA with respect to the ∗metric ρ̄0,
and a sequence 〈an〉 such that (7) holds for all x ∈ C. Let Bn be the internal set

Bn = {X ∈ (An)1/n : Ē[tailn(ρ̄(X, b))] ≤ 2an}.

Then
⋂

n Bn ⊂ ns1(Ω, M) and C = o(
⋂

n Bn), so C is neocompact in L1(Ω,M). 2

Corollary 6.8 In the huge neometric family H, a set A ⊂ L1(Ω,M) is neoclosed in
L1(Ω,M) if and only if A∩B ∈ C(M) for each uniformly integrable set B ∈ C(M).
2

Now consider the neometric family (MΩ,BΩ, CΩ) of neocompact sets for the prob-
ability space Ω, which was introduced in Definition 5.1.

Corollary 6.9 Suppose C ⊂ L1(Ω,M) and C ∩ D ∈ CΩ(M) for each uniformly
integrable set D ∈ CΩ(M). Then C is neoclosed in L1(Ω,M) with respect to the
huge neometric family H.

Proof: Let B ∈ C(M) be uniformly integrable. It is shown in [9] that B is
contained in a uniformly integrable set which is neoclosed in the family (MΩ,BΩ, CΩ).
By Corollary 5.8, B is also contained in a set in CΩ(M). Taking the intersection,
we see that B is contained in a uniformly integrable set D ∈ CΩ(M). Then C ∩D ∈
CΩ(M), so C ∩D ∈ C(M) and hence C ∩ B = (C ∩D) ∩ B ∈ C(M). Therefore C
is neoclosed in L1(Ω,M). 2

Proposition 6.10 In the huge neometric family H, let C be neocompact in L1(Ω,M)
and let f : C → N . Then f is neocontinuous from L1(Ω,M) to N if and only if f
is neocontinuous from L0(Ω,M) to N .
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Proof: Let G be the graph of f |C. We must show that G is neocompact in
L1(Ω,M) × N if and only if G is neocompact in L0(Ω,M) × N . The implication
from left to right is trivial. For the other direction, suppose that G is neocompact in
L0(Ω, M)×N . Then monad(G) is Π0

1 with respect to L0(Ω, M)×N . Also, C = oD
where D is Π0

1 with respect to L1(Ω,M) and D ⊂ ns1(Ω,M). It follows that

A = monad(G) ∩ (D × N̄)

is a Π0
1 set with respect to L1(Ω,M) × N and G = oA, so G is neocompact in

L1(Ω,M)×N . 2

Corollary 6.11 Let M,N ∈ MΩ, and in the neometric family (MΩ,BΩ, CΩ) let
C ⊂ M be neoclosed and let f : C → N be neocontinuous on each uniformly
integrable subset of C. Then in the huge neometric family H, f is neocontinuous
from L1(Ω,M) to N .

Proof: Let B ⊂ C be neocompact in L1(Ω, C). As in the proof of the last
corollary, there is a uniformly integrable set D ∈ CΩ(M) such that B ⊂ D ⊂ C.
Then f |D is neocontinuous in the neometric family (MΩ,BΩ, CΩ). Therefore in the
huge neometric family H, f |D is neocontinuous from M to N . By the preceding
proposition, f |D is neocontinuous from L1(Ω,M) to N . Then f |B is neocontinuous
from L1(Ω,M) to N . 2

All the preceding notions and results in this section can be readily extended to
the case of the space Lp(Ω,M) where p ∈ [1,∞), with uniform p-integrability in
place of uniform integrability.

Many results involving uniformly integrable sets in the paper [9] can now be rein-
terpreted in terms of the neometric spaces Lp(Ω,M) in the huge neometric family.
For example, the result that the conditional expectation function f(x) = E[x|Ft] is
neocontinuous on each uniformly integrable set shows that f is neocontinuous from
L1(Ω,R) to L1(Ω, L1([0, 1],R)). The result that the set M(Ω,Rd) of martingales
z ∈ L2(Ω, C([0, 1],Rd)) with z(ω, 0) = 0 meets each uniformly 2-integrable neocom-
pact subset of L0(Ω, C([0, 1],Rd)) in a neocompact set shows that the set M(Ω,Rd)
is neoclosed in the neometric space L2(Ω, C([0, 1],Rd)).

7 Function Spaces with Neoseparable Targets

In the literature on nonstandard analysis, one finds spaces of functions which take
values in a neoseparable subspace of a nonstandard hull, rather than in a separable
metric space. See, for example, [25] and [30]. In this section we shall see that
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such spaces are also neoseparable and belong to the huge neometric family. We
shall consider spaces of functions from a Loeb probability space Ω to a neoseparable
metric space M which belongs to the huge neometric family H.

We continue to let Ω̄ be a ∗probability space with associated Loeb probability
space Ω. In this section we suppose that M is a neoseparable subset of some
nonstandard hull H(M̄, c) where (M̄, ρ̄) is a ∗metric space, and ρ is the metric for
M.

Several examples of spaces M ∈ H were given in the preceding sections. The
case that M is a nonstandard hull of a ∗metric space M̄ is of particular interest.

Definition 7.1 A function X : Ω̄ → M̄ is called Ḡ-measurable if X is internal
and X−1(U) ∈ Ḡ for all ∗open sets U ⊂ M̄ . SL0(Ω̄, M̄) is the ∗metric space of all
Ḡ-measurable functions X : Ω → M̄ with the ∗metric

ρ̄0(X,Y ) = ∗ inf{ε : P̄ [ρ̄(X(ω), Y (ω)) ≥ ε] ≤ ε}.

We say that X ∈ SL0(Ω̄, M̄) is a lifting of a function x : Ω → M, in symbols
oX = x, if X(ω) has standard part x(ω) ∈M for P -almost all ω ∈ Ω.

Proposition 5.4 stated three equivalent conditions for a function to belong to
the space L0(Ω,M) of Loeb measurable functions from Ω into a separable metric
space M . In the more general case that M is neoseparable, these conditions are no
longer equivalent. The set of Loeb measurable functions from Ω into M need not
be neoseparable or even contained in a nonstandard hull H(SL0(Ω̄, M̄), c), but we
shall see that the three equivalent conditions lead to three neoseparable spaces.

We shall use the notation L0(Ω,M) for the largest of these spaces, the space of
all functions x : Ω →M such that x has a lifting in SL0(Ω̄, M̄). We give L0(Ω,M)
the metric ρ0 such that ρ0(x, y) = oρ̄0(X, Y ) whenever X,Y ∈ SL0(Ω̄, M̄), X lifts
x, and Y lifts y. As usual, we identify two functions x, y : Ω →M if they are equal
P -almost everywhere.

A function x ∈ L0(Ω,M) is simple if it has finite range, and a function X ∈
SL0(Ω̄, M̄) is ∗simple if it has ∗finite range.

Theorem 7.2 Let (M, ρ) be neoseparable in the huge neometric family H. Then
each of the following three metric spaces are neoseparable and belong to H.

(i) The space N = (L0(Ω,M), ρ0).
(ii) The subspace

N1 = {x ∈ N : x has a ∗simple lifting with respect to ρ̄0}.
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(iii) The subspace

N2 = {x ∈ N : x is a ρ0-limit of simple functions}.

Moreover, N2 ⊂ N1 ⊂ N .

Proof: (i) The monad of M has the neoseparable normal form

monad(M) =
⋂

n

⋃

k

(M̄k)1/n,

where M̄k is an increasing chain of internal subsets of M̄ . Then

N̄k = SL0(Ω̄, M̄k)

is internal. For each X ∈ SL0(Ω̄, M̄), the following are equivalent with respect to
ρ̄0:

oX ∈ N ,
oX(ω) ∈MP -almost surely,

X(ω) ∈
⋂

n

⋃

k

((M̄k)1/n) P -almost surely,

P̄ [X(ω) ∈
⋃

k

((M̄k)1/n)] ≥ 1− 1/n for each n,

(∀n ∈ N)(∃k ∈ N)P̄ [X(ω) ∈ ((M̄k)1/n)] ≥ 1− 1/n,

(∀n ∈ N)(∃k ∈ N)X ∈ ((N̄k)1/n),

X ∈
⋂

n

⋃

k

((N̄k)1/n).

Therefore the monad of N is equal to
⋂

n
⋃

k(N̄k)1/n, so N is neoseparable.
The above proof gives an explicit representation of N as a neoseparable set; it

shows that N is the ρ0-closure of the standard part of the Σ0
1 set

⋃

k N̄k.
(ii) Argue as in (i) but restrict everything to the internal set of all ∗simple

elements of SL0(Ω̄, M̄).
(iii) To show that the set is neoseparable, argue as in (i) but replace Nk by the

set Jk of all X ∈ Nk such that the range of X has cardinality at most k. The fact
that every limit of simple functions has a ∗simple lifting is a generalization of a result
in [25] and [30]. Let x be a limit of simple functions xn. We may choose xn so that
ρ0(xn, x) ≤ 1/n. For each n choose a simple lifting Xn of xn. By saturation there is
a ∗simple function X such that ρ̄0(Xn, X) ≤ 2/n for each n. It follows that X is a
lifting of x. 2
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In the special case that M is a standard complete separable metric space M , we
have N2 = N1 = N = L0(Ω,M) in the above theorem, and the result reduces to
Theorem 5.6. In the case that Ω̄ is ∗finite, every Ḡ-measurable function X : Ω̄ → M̄
is ∗simple, so N1 = N .

If M is a standard metric space whose cardinality is less than the first real-valued
measurable cardinal, then every Borel probability measure on M has separable sup-
port (cf. [5]), and it follows that for every standard probability space (Ω, P,G), every
G-measurable function X : Ω → M is a ρ0-limit of simple functions. By transfer,
if the cardinality of M̄ is less than the first real-valued measurable cardinal in the
sense of the nonstandard universe, then every Ḡ-measurable function X : Ω̄ → M̄ is
a ρ̄0-limit of ∗simple functions, and hence N1 = N in the above theorem.

We now obtain an analogous result for L1 spaces.

Definition 7.3 Let ρ̄1 be the ∗metric on the set SL0(Ω̄, M̄) defined by ρ̄1(X,Y ) =
Ē[ρ̄(X(·), Y (·))]. For each c ∈ M̄ , let SL1(Ω̄, M̄ , c) be the set of all X ∈ SL0(Ω̄, M̄)
such that ρ̄(X(·), c) is S-integrable.

By a triangle inequality argument, we see that if b and c are in the same galaxy
of M̄ , then

SL1(Ω̄, M̄ , b) = SL1(Ω̄, M̄ , c).

Moreover, SL1(Ω̄, M̄ , c) is closed under the relation ρ̄1(X, Y ) ≈ 0.
Let c be any point in the monad of M. We let L1(Ω,M) denote the metric

space of all functions x : Ω →M such that x has a lifting in SL1(Ω̄, M̄ , c), with the
metric ρ1 such that ρ1(x, y) = oρ̄1(X,Y ) whenever X,Y ∈ SL1(Ω̄, M̄ , c), X lifts x,
and Y lifts y.

Theorem 7.4 Let (M, ρ) be neoseparable in the huge neometric family H. Then
each of the following three metric spaces is neoseparable and belongs to H.

(i) The space K = L1(Ω,M).
(ii) The subspace

K1 = {x ∈ K : x has a ∗simple lifting with respect to ρ̄1}.

(iii) The subspace

K2 = {x ∈ K : x is a limit of simple functions in the ρ1metric}.

Moreover, K2 ⊂ K1 ⊂ K.
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Proof: (i) Let c ∈M. Since M is neoseparable we may take an increasing chain
M̄k of internal subsets of M̄ such that

monad(M) =
⋂

n

⋃

k

(M̄k)1/n,

and M̄k contains c and is contained in the closed ball

{z ∈M : ρ̄(z, c) ≤ k}.

Let N̄k be the internal set SL0(Ω̄, M̄k). We claim that for each X ∈ SL0(Ω̄, M̄), the
following are equivalent:

1. oX ∈ K,

2. X ∈ SL1(Ω̄, M̄ , c) and oX(ω) ∈MP -almost surely,

3. X ∈ SL1(Ω̄, M̄ , c) and (∀n ∈ N)(∃k ∈ N)(ρ̄0(X, N̄k) ≤ 1/n).

4. (∀n ∈ N)(∃k ∈ N)(ρ̄1(X, N̄k) ≤ 1/n).

The equivalence of 1, 2, and 3 follow from the preceding proof. Assume 3, and let
n ∈ N. Whenever j ≤ k we have

ρ̄1(X, N̄k) ≤ Ē[tailj(ρ̄(X, c))] + (j + 1)ρ̄0(X, N̄k).

Take j so that Ē[tailj(ρ̄(X, c))] ≤ 1/2n and k so that (j + 1)ρ̄0(X, N̄k) ≤ 1/2n.
Then ρ̄1(X, N̄k) ≤ 1/n, so 4 holds.

Assume 4. We have
(ρ̄0(X, N̄k))2 ≤ ρ̄1(X, N̄k),

and thus
(∀n ∈ N)(∃k ∈ N)(ρ̄0(X, N̄k) ≤ 1/n).

Since M̄k is contained in the closed ball of radius k centered at c, for all Z ∈ M̄
such that ρ̄(Z, c) ≥ 2k we have

ρ̄(Z, c) ≤ ρ̄(Z, M̄k) + k ≤ ρ̄(Z, M̄k) + ρ̄(Z, c)/2,

and hence ρ̄(Z, c) ≤ 2ρ̄(Z, M̄k). Then

Ē[tail2k(ρ̄(X, c))] ≤ 2ρ̄1(X, N̄k). (9)

It follows from 4 that limk→∞
oρ̄1(X, N̄k) = 0, so the left side of (9) converges to 0

and X ∈ SL1(Ω̄, M̄ , c). This proves 3.
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Therefore
monad(K) =

⋂

n

⋃

k

((N̄k)1/n)

with respect to the ∗metric ρ̄1, so K is neoseparable.
The proof also shows that K is the ρ1-closure of the standard part of the Σ0

1 set
⋃

k N̄k.
The proofs of (ii) and (iii) are similar to the proofs in the preceding theorem. 2

Again, we have K2 = K1 = K if M is a standard complete separable metric
space. Moreover, if Ω̄ is ∗finite or M̄ is smaller than the first real-valued measurable
cardinal in the sense of the nonstandard universe, then K1 = K.

Analogous results hold for Lp spaces where p ∈ [1,∞).

8 κ-Saturated Nonstandard Universes

Throughout this section we let κ be an uncountable regular cardinal. We shall see
that in a κ-saturated nonstandard universe, the huge neometric family is not only
countably compact but has a stronger property called κ-compact. We shall also
introduce the notion of a κ-neoseparable set and obtain analogues of many of our
results on neoseparable sets. The proofs are straightforward generalizations of the
proofs we have given for the case κ = ω1, and will be omitted. Our main reason
for carrying out this generalization is that it extends the theory to spaces L0(Ω,M)
where M is a standard space which is not separable.

Definition 8.1 A κ-neocompact family (M,B, C) is defined in the same way as a
neocompact family except that condition (c) is replaced by

(cκ) C(M) is closed under intersections of fewer than κsets.

Thus a neocompact family is the same as an ω1-neocompact family.
A κ-neometric family is a κ-neocompact family in which the projection and

distance functions are neocontinuous for every M and N .

A collection of sets {Ci : i ∈ I} is said to be downward directed if for all
i, j ∈ I there exists k ∈ I such that Ck ⊂ Ci ∩ Cj. We say that a κ-neocompact
family (M,B, C) has the κ-compactness property if for each M ∈ M, every
downward directed collection {Ci : i ∈ I} of fewer than κ nonempty sets in C(M)
has a nonempty intersection

⋂

n Cn.
A subset C of a metric space M∈ M is said to be κ-separable if C has a dense

subset of size < κ, and κ-neoseparable if it is the closure of the union of a set of
fewer than κ basic sets in M.
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Proposition 8.2 Let (M,B, C) be a κ-neometric family, let M∈ M, and let C be
a κ-separable subset of M. Then C is neocompact in M if and only if C is compact.
2

We assume hereafter that (V (Ξ), V (∗Ξ),∗ ) is a κ-saturated nonstandard universe,
that is, a nonstandard universe such that for any internal set S, any family of fewer
than κ internal subsets of S which has the finite intersection property has a nonempty
intersection. By a Σ0

1(κ) set in a ∗metric space (M̄, ρ̄) we mean the union of fewer
than κ internal subsets of the galaxy G(M̄, c). Π0

1(κ) sets are defined analogously.

Definition 8.3 The κ-huge neometric family (Hκ,Bκ, Cκ) for the κ-saturated
nonstandard universe (V (Ξ), V (∗Ξ),∗ ) is defined as follows. Hκ is the class of
all metric spaces (M, ρ) such that M is a closed subset of some nonstandard hull
H(M̄, c).

For each M∈ Hκ, the collections of basic and neocompact subsets of M are

Bκ(M) = {A ⊂M : A = oB for some internal set B ⊂ G(M̄, c)},

Cκ(M) = {A ⊂M : A = oB for some Π0
1(κ) set B ⊂ G(M̄, c)}.

Theorem 8.4 (Hκ,Bκ, Cκ) is a κ-neometric family with the κ-compactness prop-
erty. 2

Note that a set A ⊂ H(M̄, c) is κ-neoseparable in Hκ if and only if A is the
closure of the standard part of a Σ0

1(κ) set (in the topology of the nonstandard hull
H(M̄, c)).

Proposition 8.5 Every closed κ-separable subset of H(M̄, c) is κ-neoseparable in
Hκ. 2

Proposition 8.6 Let M be a standard complete metric space. The following are
equivalent:

(i) M is κ-separable.
(ii) M is κ-neoseparable in Hκ. 2

A function f : Ω → M is said to be Loeb measurable if f−1(A) is Loeb measurable
for every open set A ⊂ M . L0(Ω, M) is the space of all Loeb measurable functions
from Ω into M with the ρ0 metric. L1(Ω,M) is the set of Loeb integrable functions
with the ρ1 metric. The sets SL0(Ω,M) and SL1(Ω,M) are defined as before where
M is a standard complete metric space. We need the following generalization of
Proposition 5.4 for the case that M is a κ-separable complete metric space.
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Proposition 8.7 Let Ω be a Loeb probability space with a measure P and let M be
a standard κ-separable complete metric space.

(i) (Anderson [3]). If X ∈ ns0(Ω,M) then oX ∈ L0(Ω,M) (that is, oX is Loeb
measurable).

(ii) (Ross [27]). Suppose x ∈ L0(Ω,M). Then x = oX for some X ∈ ns0(Ω,M),
and there is a set A ⊂ Ω of Loeb measure one such that x(A) is separable.

(iii) (Implicit in [3]) If X,Y ∈ ns0(Ω,M) then ρ0(oX,o Y ) = oρ̄0(X, Y ). 2

Theorem 8.8 For every Loeb probability space Ω and standard κ-separable complete
metric space M , the metric space M = L0(Ω,M) is κ-neoseparable in Hκ. 2

Definition 8.9 Let Ω = (Ω, P,Gt)t∈B be an adapted Loeb space in a κ-saturated
nonstandard universe Ξ. Let Mκ,Ω be the set of all metric spaces L0(Ω,M) where
M is a standard complete κ-separable metric space. Ω is a κ-rich adapted space
if the measure P is atomless on G0, Ω admits a Brownian motion with respect to the
filtration Ft, t ∈ R+, and the κ-neocompact family generated by (Mκ,Ω,BΩ) has the
κ-compactness property.

Theorem 8.10 If Ω0 is infinite then the hyperfinite adapted space Ω associated with
Ω0 is a κ-rich adapted space. 2

Theorem 8.11 For every Loeb probability space Ω and standard complete κ-separable
metric space M , the metric space L1(Ω,M) is κ-neoseparable in Hκ. 2
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