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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 295, Number 1, May 1986 

REGIONS OF VARIABILITY FOR UNIVALENT FUNCTIONS 

PETER DUREN AND AY$ENUR UNAL 

ABSTRACT. Let S be the standard class of univalent functions in the unit disk, 
and let So be the class of nonvanishing univalent functions g with 9(O) = 1. It is 
shown that the regions of variability {g(r): g E So} and {(1-r2)ft(r): t E S} 
are very closely related but are not quite identical. 

Let S be the class of functions f analytic and univalent in the unit disk D, 
with f(o) = 0 and ft(o) = 1. Let So be the class of analytic univalent functions 
g for which g(z) 78 0 in D and 9(0) = 1. In this paper we compare the regions of 
variability 

w(¢) = {f'(¢) f E s} and Wo(f) = {9(f): 9 E So} 
at a fixed point ¢ E D. Both regions depend only on 1¢1, so it suffices to consider 
W(r) and W0(r) for 0 < r < 1. 

Initially there is no reason to expect the regions W(r) and W0(r) to be related 
at all. There is only the superficial connection suggested by the nonvanishing of 
the derivative of a univalent function. However, we shall offer persuasive evidence 
in support of the conjecture that 

W0(r) = (1-r2)W(r), 0 < r < 1. 
For convenience, we let W(r) = (1-r2)W(r). In §1 we motivate the conjecture 

that W0(r) = W(r), and we present some analytical evidence in its favor. In §2 
we show how the boundaries of the two regions can be calculated, and we display 
samples of numerical data which seem to leave little doubt that the conjecture is 
true. In §3 we apply a variational method to prove that W0(r) c W(r). Then comes 
the surprise: we show in §4 that the conjecture is false. Thus although the two 
regions W0(r) and W(r) share various features and appear "numericaily identical", 
one is in fact a proper subset of the other. 

1. Analytical evidence. The sharp estimates for [f'(r)l are given by the 
classical distortion theorem 

(l + r)3 < If (rl < (1-r)3 ) f C s, 
with equality for the Koebe function k(z) = z(l _ z)-2 and its rotation -k(-z). 
The corresponding inequality for So is [13, 8] 

(l+r) lg(r)l<(l-r) ) gESo) 
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with equtlity for ko(z) = [(1 + z)/(1 _ Z)]2 and ko(-z). Thus the factor (1 - r2) 
converts the first pair of bounds to the second, and the points of maximum and 
minimum moduli for Wo(r) and W(r) = (1- r2)W(r) are the same. 

The two regions also have the same maximum and minimum arguments for 
r < 1/X. The well-known rotation theorem for the class S (see [7, p. 99]) gives 
the sharp bound 

largf'(r)l < 4sin-1r, 0 < r < 1/, 

with equality occurring only for certain rational functions which map D onto the 
complement of a half-line. The corresponding result for So is [11, 12, 9] 

larg g(r) [ < 4 sin-1 r, O < r < 1/X. 

(An independent proof is given in §3.) In fact, a straightforward calculation based 
on the known form of the extremal functions shows that the points of maximum 
and minimum arguments for Wo(r) and W(r) are precisely the same for r < 1/X. 
(More details are given at the end of §3.) Thus the boundaries of the two regions 
actually meet at four points. 

Finally, we observe that the two regions have the same symmetries. Since both 
S and So are preserved under conjugation, the regions W(r) and Wo(r) are both 
symmetric with respect to the real axis. The other symmetry is less obvious, but it 
is easy to show (see [10, p. 263]) that the region log W(r) is symmetric with respect 
to the vertical line x =-log(1-r2). Thus logW(r) is symmetric with respect 
to the i°maginary axis. That logWo(r) has the same symmetry is evident from the 
simple fact that g E So implies 1/9 E SO 

2. Numerical evidence. Several approaches have been taken to describe the 
logarithmic region 

(r) = logW(r) = {logf'(r): f E S} 

Aleksandrov and Kopanev [3, 2] recently applied a novel form of Loewner's method 
to obtain an explicit parametric representation of the boundary curve. The formula 
is complicated but readily amenable to numerical calculation. For O < r < 1/ it 
has the form 

w = - log(l - r2) + 2tan-1 { ( O ) } 

(1) - (eio _ i) tan-l { b(l - C) } _ (eio + i) tan-l { b(l - C) } 

- eio log 1 + bC - 2 log (b + cos 0)2 _ 1 

+ i log b + . 0 - 7r(sgn cos 0 - ei0), 

where 0 is a parameter with O < 0 < 27r, the number c (O < c < 1) is the smallest 
positive root of the cubic equation 

sin 0[(1-r2)x3-(2 - r2)x2] + (1 + r2)x - r2 0 

and 
b = {(1 - c sin2 0)/c(1 - c)}1/2. 
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For 1/ < r < 1 the boundary consists of two symmetric arcs of this form, joined 
by two horizontal line segments. 

With the help of an Apple II computer, Unal [171 exponentiated the curve (1) 
to give a numerical description of the boundary of W(r) for various values of r. 
The results indicate that W(r) is a convex region for r < p, where .245 < p < .25. 
For r > p the minimum real part in W(r) is attained at exactly two different 
(complex conjugate) points. The corresponding problem for the region W0(r) was 
previously treated by Duren and Schober [8, 9], who found an analogous critical 

radius p0 .249. These results suggest the possibility that p = po. 

On the other hand, the boundary of W0(r) is described by the elliptic modular 
function A(r), normalized so that A(0) = 1, A(1) = x, and A(x) = 0t This 
function has a fundamental region Q which lies in the upper half-plane above the 
circle 1r- 2 1 = 2 and between the vertical lines Re{r} = 0,1. It is well known (see 
[1, p. 273]) that A maps Q conformally onto the upper half-plane. The modular 
function ,u = 1/(1- A) has the same property, with ,u(0) = x, ,u(1) = 0, and 
,u(x) = 1. If,u is initially defined only in Q, it may be continued analytically by 
Schwarz reflection to the entire upper half-plane. 

The complete elliptic integral of the first kind is 

1 

K(r) = y [(1 - x2)(1 - r2x2)]-1/2 dx 0 < r < 1. 
o 

The regiontW0(r) can now be described as follows [15, 11, 12, 14]. 

THEOREM A. W0(r) = {H(T): Im{T} > v(r)} where 

v(r) = K(\/1- r2)/2K(r). 

It is easy to see that v(r) decreases as r increases, and that v(1/X) = 1/2. For 
r < 1/, the boundary of W0(r) is a simple closed curve whose upper half has 
the parametric representation w = ,u(t + iv(r)), 0 < t < 1. For r > 1/, the 
boundary curve has one or more self-intersections on the real axis. 

The calculation of the elliptic modular function is facilitated by its representation 
in terms of theta functions (see [4, pp. 355, 374]): 

>(T) = {02 (q)/03 (q) }4, q = ei 

where 
00 00 

02(q) = 2ql/4 E qn(n+l)) 03(q) = 1 + 2 E qn2 
n=l n=l 

These formulas allow the numerical calculation of the boundary of W0(r). Unal [17] 
again used the Apple II to compute the upper outer part of the boundary curve for 
many different values of r. In each case the boundary of W0(r) was seen to agree 
closely with that of W(r) suggesting that the two curves are actually identical. 
Brief tables of points on the two curves, rounded off to three decimal places, are 
displayed below. 
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-{(l-r2)f'(r): W E s} 

2.227 + i 0.214 
1.799 + i 0.831 
1.465 + i 0.963 
1.301 + i 0.977 
1.114 + i 0.956 
0.897 + i 0.876 
0.699 + i 0.727 
0.532 + i 0.481 
0.489 + i 0.360 
0.465 + i 0.253 
0.446 + i 0.068 

8.728 + i 1.790 
6.784 + i 4.640 
4.653 + i 5.685 
2.556 + i 5.749 
0.896 + i 5.096 
0.695 + i 3.052 
0.832 + i 2.163 
0.585 + i 1.027 
0.036 + i 0.274 
0.028 + i 0.197 
0.099 + i 0.074 
0.111 + i 0.016 

80.414 + i 8.587 
73.345 + i 30.102 
65.364 + i 41.470 
55.322 + i 50.520 
39.175 + i 58.638 
29.566 + i 60.794 
22.465 + i 61.283 
15.607 + i 60.847 
5.043 + i 58.314 

- 2.378 + i 54.930 
15.011 + i 44.375 
22.601 + i 29.512 
18.453 + i 5.039 
14.361 + i 1.002 

= {g(r): 9 E So } 

2 
2.226 + i 0.218 
1.800 + i 0.830 
1.464 + i 0.963 
1.302 + i 0.977 
1.105 + i 0.954 
0.901 + i 0.878 
0.699 + i 0.727 
0.532 + i 0.480 
0.489 + i 0.360 
0.465 + i 0.253 
0.446 + i 0.066 

5 
8.774 + i 1.633 
6.859 + i 4.576 
4.657 + i 5.679 
2.537 + i 5.738 
0.908 + i 5.095 
0.686 + i 3.065 
0.827 + i 2.278 
0.592 + i 1.042 
0.037 + i 0.275 
0.028 + i 0.198 
0.099 + i 0.073 
0.111 + i 0.016 

.8 
80.445 + i 8.335 
73.442 + i 29.856 
65.358 + i 41.377 
55.208 + i 50.466 
40.392 + i 58.050 
30.183 + i 60.488 
21.869 + i 61.010 
15.510 + i 60.528 
5.307 + i 58.026 

2.270 + i 54.526 
15.151 + i 43.417 
22.579 + i 27.002 
18.432 + i 5.860 
14.332 + i 1.534 
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3. Proof of inclusion. We shall now prove that every support point of the 
logarithmic region 

£0(r) = logW0(r) = {logg(r): 9 E So} 

lies in the region 

(r) = logW(r) = {log[(1 - r2)f'(r)]: f E S}. 
The inclusion rO(r) c £(r) then follows from the convexity of £(r), hence of £(r). 

The convexity of £(r) and the geometric properties of the extremal functions 
were found by Grad [10] and Pfluger [16]. They used variational methods to study 
the extremal problem 

(2) max Re{ei¢ log h'(r) }. 

A version of Pfluger's elegant argument is presented in [17]. The results are sum- 
marized in the following theorem. 

THEOREM B. The region £(r) is convex for O < r < 1 and strictly convex for 
r < 1/X. The extremal problem (2) has a unique solution unless ei¢ = ii and 
r > 1/X. Each extremal function maps D onto the complement of a system r of 
analytic arcs which are trajectories of the quadratic differential (7). There are three 
cases: 

(i) If ei¢ = i1, or if ei¢ = ii and r < 1/, then r is a half-line; 
(ii) If et¢ + i1 or ii, then r lies on an analytic arc which spirals into either O 

or f(r), where f is the extremal function; 
(iii) If ei¢ = ii and r > 1/, then there are infinitely many extremal functions. 

In each instance r has a fork or a corner at f (r)/2. 

We are now prepared to prove the inclusion theorem. 

THEOREM 1 zo(r) c £(r) and so Wo(r) C W(r) for O < r < 1. 
PROOF. Fix r (O < r < 1) and a point ei¢ of unit modulus. By the compactness 

of So U {1}, there is a function 9 E So which solves the extremal problem 

(3) maSx Re{ei¢ log h(r) }. 

Thus logg(r) is a support pOiIlt of the region £0(r), and every support point is so 
obtained by a suitable choice of ei. In view of the convexity of £(r), we need only 
show that logg(r) E £(r). 

The method of boundary variation, as developed for So in [8], shows that 9 maps 
D onto the complement of an analytic arc ro extending from 0 to x and satisfying 

w(w - 1) (w-Bo) Bo = g(r) 

Note that ro is a single unbranched arc because the quadratic differential has a 
simple pole at infinity and no zeros. Since g E So) it is clear that 0 E ro. Thus ro 
must terminate at the origin, because the quadratic differential has a simple pole 
there. 
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Parametrizing ro by w = g(eit), we conclude that 

(5) R(z) = g(z) [g(z) _ 1] [gAz)-jBo] > ° 

for lZl = 1. This function R(z) is analytic and nonvanishing in D except for a 
simple pole at z = r and a simple zero at z = 0. On the unit circle, its only possible 
singularities or zeros are at the points eit and ei: where g(eit) = 0 and g(eid) = x. 
But g has a double zero at eit and a double pole at eid, so it is easily seen that 
R is analytic and nonvanishing at these points. By Schwarz reflection, R can be 
continued analytically to the whole plane, and it has the structure R(z) = R(l/z). 
The continued function has a simple pole at 1/r and a simple zero at x. 

It follows that R is a rational function of the form 

(6) (z - r)(1 - rz) 
where A is a positive constant. Equating the expressions (5) and (6) for R(z) and 
letting z tend to 0, we find A= ei¢rg'(O). Letting z tend to r, we obtain 

A = ei¢r(1-r2 )9' (r)/Bo 

Equating the two expressions for A, we obtain 

g(r) = (1-r2 )9/ (r)/g' (O) . 

On the other hand, the function f = (9-1)/9'(0) belongs to S and ft(r) = 

g'(r)/g'(O). Thus g(r) = (1- r2)f'(r) for some f E S, and we have proved that 
logg(r) C £(r). This completes the proof. 

COROLLARY . For each g E So, 

f 4sin-1r, r= lzl <-, 

argg(z)l < < r2 1 
t+log 1-r2) X r<1. 

This bound is sharp for each r < 1/X but not otherwise. 

PROOF. The bound is a direct consequence of Theorem 1 and the rotation 
theorem for the class S. For r < 1/d the bound is attained by the function 

G( ) ( l+ietaz )2 Of=sin-lr. 

A calculation shows that argG(r) = 4sin-1 r and that G(r) = (1-r2)F'(r), where 
F=(G-1)/G'(0)S.Thus 

F(z)= (1 -zee )2 

In particular, this shows that the points of maximum (and minimum) argument of 
the regions W0(r) and W(r) coincide. To see that the bound is not sharp for any 
r > 1/, we have only to observe that the extremal function 9 for (3) maps D 
onto the complement of an analytic arc, while each extremal function f for (2) has 
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a range C - r, where r is a system of analytic arcs with a fork or a corner. (See 
Theorem B, case (iii).) But the proof of Theorem 1 shows g(r) = (1- r2)f'(r) for 
f = (g - 1)/9'(0) E S, so argf'(r) is maximal if argg(r) = 7r + log(r2/(l-r2)). 
Since the relation f = (9 - 1)/9'(0) would imply that C - f(D) is an analytic arc, 
this is impossible. Thus the bound is never sharp if r > 1/X. 

4. Proof of distinctness. We now show that £0(r) is a proper subset of £(r). 
In fact, it will turn out that the boundaries of the two regions touch only at the 
four common points already identified. In particular, W0(r) C W(r). 

THEOREM 2. £0(r) 7& (r)) 0 < r < 1 

PROOF. If the two regions were identical, they would have the same sup- 
port points. By the proof of Theorem 1, each function 9 E So which maximizes 
Re{ei¢logh(r)} must satisfy g(r) = (1- r2)f'(r), where f = (9 - 1)/9'(0) E S. 
This function f E s solves the corresponding extremal problem (2) if and only if 
the boundary of £0(r) touches that of £(r) in the direction e-i. If this is the case, 
then a standard variational argument (see [7, 6]) shows that f maps D onto the 
complement of a system r of analytic arcs which satisfy the differential equation 

W2 (W-B)2 

In fact, r consists of a single unbranched analytic arc unless r > 1/ and ei¢ = ii, 
as Theorem B asserts. 

On the other hand, the extremal function g E So for problem (3) maps D onto 
the complement of an analytic arc ro which extends from 0 to x and satisfies (4). 
The relation f = (9-1)/9'(0) gives 9 = 1 + g'(O)f. Because g(z) 78 0, it follows 
that S = -1/9'(0) is a value omitted by f. Thus g = 1- f/, where S E r. But 
now it is clear that S = wo) the finite tip of r, since ro terminates at the origin. In 
other words, g = 1- f/wo. This relation allows us to transform (4) into a second 
differential equation for r 

(8) w(w-wo)(E-w) dw2 > 0 

If et¢ 78 i1 or ii, then by Theorem B the arc r has an analytic continuation 
to a full trajectory r of (7) which spirals into a double pole at either 0 or B. The 
extension r will not satisfy (8), because this quadratic differential has a simple 
pole at wo) and so the trajectory terminates there. However, r - r is an orthogonal 
trajectory of (8), meaning that the quadratic differential is negative there. To see 
this, introduce a local analytic parametrization w = ey(t) of r and note that the 
function of t induced by (8) is analytic on an interval and real on half of the interval, 
so it must be real on the whole interval. (See for instance [5] for a more detailed 
explanation of this principle.) 

Thus both expressions (7) and (8) are real on r. Dividing (7) by (8) and taking 
the imaginary part, we obtain an algebraic expression for r 

(9) Im {( ( )( B) °) } = °, w E r 
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126 PETER DUREN AND AY$ENUR UNAL 

In other words, r is an algebraic curve satisfying an equation P(u, v) = O, where w = u + iv and P(u, v) is a polynomial in u and v. But this is clearly impossible. 
Indeed, recall that r spirals into either O or B. (See Theorem B, case (ii).) This geo- metric property implies that the polynomial P(u, O) or P(u, Im{B}) has infinitely many roots. 

This contradiction shows that the regions So(r) and £(r) do not coincide for any value of r, and that they have no boundary points in common except for those of maximum and minimum real and (for r < 1/X) imaginary parts. 
ACKNOWLEDGEMENT. The authors wish to thank Glenn Schober and Donald 

Wilken for helpful discussions while this research was in progress. 
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