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Abstract

Let C(X) be the algebra of all real-valued continuous functions on a completely regular¥pace
andC*(X) the subalgebra of bounded functions. There is a known correspondence between a certain
class ofz-filters on X and proper ideals i€*(X) that leads to theorems quite analogous to those
for C(X). This correspondence has been generalized by Redlin and Watson to any algebra between
C*(X) andC(X). In the process they have singled out a class of ideals that play a similar geometric
role to that ofz-ideals in the setting of (X). We show that these ideals are just the intersections of
maximal ideals. It is also known that any algedrbetweenC*(X) andC (X) is the ring of fractions
of C*(X) with respect to a multiplicatively closed subset. We make use of this representation to
characterize the functions that belong to all the free maximal ideals e conclude by applying
our characterization to a subalgekifaof C(N) previously studied by Brooks and Plarik.1999
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Introduction

Let C(X) be the algebra of all real-valued continuous functions on a nonempty
completely regular spack, andC*(X) the subalgebra of bounded functions. We study
those subalgebras @f(X) that containC*(X). We shall refer to them aisitermediate
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algebras onX or, simply,intermediate algebrasrhey are sublattices @f(X) and so they

are @-algebras in the sense of Henriksen and Johnsor® Adgebras these intermediate
algebras have been studied by Hager and Henriksen in [7-9], as algebras of functions by
Isbell in [10], aspB-subalgebras of (X) by Plank in [12], just as intermediate algebras

by Byun in [4,13], and by Acharyya in [1], and finally, as rings of fraction€éfX) by
Dominguez et al. in [5].

The correspondences betweegiiilters on X and proper ideals irC(X) provide a
geometric (or topological) description of some algebraic properti€g &f). The algebraic
structure is usually richer than the geometric one, but the geometric descriptions are
powerful tools in the study of (X).

A function is invertible inC (X) if it is never zero, and irC*(X) if it is bounded away
from zero. In an arbitrary intermediate algebtaof course, there is no such geometric
description of invertibility which is independent of the structure of the algabrim [13]

Redlin and Watson associate to egth A a family Z4(f) of zero-sets irX,

ZA(f)={E € Z(X): fglg- =1forsomeg € A},

and show that this family is a-filter on X just when f is not invertible inA. This
correspondencg&, extends to a mapping from the set of proper ideala afto the set of
z-filters onX. For I a proper ideal oA, andF az-filter on X, one writes

zah = J{2aH): fet).
Z NP ={feA Za(H S F).

Za(I) is az-filter on X, andZ;l(]-") is a proper ideal ofA. The proper idealg of A that
satisfyZ;l(ZA(I)) = [ are called3-ideals. They play a similar geometric rolezaédeals
in the classical setting of (X), but the class of3-ideals inC(X) does not agree with
that of z-ideals. As a matter of fact, we shall prove in Section 3 that3Hdeals in any
intermediate algebra are exactly the intersections of maximal ideals (whiteidieals in
C(X) are basically the sums of intersections of maximal ideals).

The theory developed in [13,4] generalizes to any intermediate algebra the development
for C*(X) outlined in [6, 2L], and it provides unified geometric proofs for many results
known separately foilC(X) and C*(X). The same goal is achieved in [5] with an
algebraic treatment, by showing that any intermediate algdbin X is the ring of
fractions of C*(X) with respect to a multiplicatively closed subset. We make use of this
representation to characterize the functions that belong to all the free maximal idgals in
Our characterization is similar to the one given in [1].

Section 1 contains the preliminaries. In Section 2 we desc&ibg’) in some particular
cases, and summarize the basic facts about the #apand Z;l. The main purpose
of Section 3 is to prove that thB-ideals are just the intersections of maximal ideals.
In Section 4 we give a new description of the memberszaf(f), and characterize
the functions that belong to all the free maximal ideals. We conclude by applying our
characterization to a subalgehffaof C (N) previously studied by Brooks and Plank.

An effort has been made to keep the exposition reasonably self-contained.
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1. Preliminaries

Concerning rings of continuous functions we shall basically adhere to the notation
and terminology in [6]. With respect to algebraic concepts the reader may consult [2].
Nevertheless we shall review some notation and preliminary results that will be used
throughout the paper.

We assume that all rings are commutative with identity and that every ring morphism
preserves the identities.

LetY be an intermediate space betwéeandg X. The restriction morphism fror@(Y)
to C(X), which sendg € C(Y) to gl|x, is clearly injective. We shall always s€XY) as
an intermediate algebra on.

1.1. The maximal ideal space of a ring

The prime ideal spacef a ring R is the set Sper of all prime ideals ofR endowed
with the Zariski topology. The closed subsets in SRexre those of the form

V(C)={P € Speck: C C P},

where C is any subset ofR. The maximal ideal spacef R is the subspace Mak
consisting of all maximal ideals iR. Both the prime and maximal ideal spaces are compact
spaces but, in general, they are not Hausdorff spaces.

1.2. Rings of fractions

A multiplicatively closedubset of aringe is a subsef of R containing the identity and
such thatst € S whenevers, ¢ € S. The set of “fractions’S™ R = {f/s: f € R, s€ S},
wheref/s =g/t if rtf =rsg forsomer € S, is endowed with a ring structure by defining
addition and multiplication of “fractions” in the usual way. The rifg!R is said to be
the ring of fractionsof R with respect taS. The canonical ring morphistR — S~1R,

f +— f/1, sends eache S to an invertible element i1 R.

Throughout the papex will denote a completely regular topological space. As usual
Z(f) and cozf will denote, respectively, theero-setand thecozero-sebf f € C(X),
i.e, Z(f)={x € X: f(x) =0} and cozf = X — Z(f). We shall denote by (X) the
family of all zero-sets inX. For I C C(X), we shall writeZ(I) ={Z(f): f € I}. Thus,
Z(X) = Z(C(X)) = Z(C*(X)). Finally, for F C Z(X), we shall writeZ~1(F) = {f €
C(X): Z(f) € F}. A proper ideall of C(X) will be called az-idealif Z=1(Z(1)) = 1.

Let S be a multiplicatively closed subset 6f(X) whose members have void zero-sets.
Each formal quotient/g € S~1C*(X) can be identified with the continuous function it
defines onX:

f f(x)

=(x)= .

g 8(x)
In this way the ring of fraction§—1C*(X) is an intermediate algebra of. Even more,
all intermediate algebras oXi are of this type. More precisely, let be an intermediate
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algebra betwee@*(X) andC(X), and letU (A) be the set of units, or invertible elements,
in A. Itis clear thatS4 = U(A) N C*(X) is a multiplicatively closed subset 6f*(X). It
has been proved in [5, 3.1] thatis the ring of fractions o€* (X) with respect taS,, i.e.,
A= S;lC*(X). The key point is that any functiofi € C(X) may be written as a fraction
with both numerator and denominatordt (X):

_fa+ At
= ar T
A subalgebraA of C(X) is said to beabsolutely convef, whenever| f| < |g|, with
feC(X)andg € A, thenf € A. Any intermediate algebra oX is an absolutely convex
subalgebra o’ (X) and so a sublattice @ (X) (see [5, 3.3]).

1.3. Maximal ideal spaces as models fox

The Stone€ech compactification of a completely regular spaceis a compact
Hausdorff spacg X containingX as a dense subspace, and characterized by a universal
property: “Every continuous mapping of into a compact Hausdorff space can be
continuously extended t6X".

Both MaxC(X) and MaxC*(X) are compact Hausdorff spaces, each one containing
a dense copy oX. The pointx € X is identified with the maximal idea* = {f €
C(X): f(x)=0}in MaxC(X), and with M** = M* N C*(X) in MaxC*(X). These
spaces are models fgX. Each pointp in 8X is identified with the maximal ideall? =
{feCX): peclgx Z(f)} in MaxC(X), and withM*? = { f € C*(X): fP(p)=0}in
MaxC*(X), wheref# denotes the continuous extensionfofo A X. It is well known that
M*? is the unique maximal ideal i6*(X) containingM” N C*(X).

As we have preserved the lettérto denote an intermediate algebra, we shall denote by
UP thez-ultrafilter onX corresponding to the poingte X, i.e.,

Ur={Z e Z(X): peclgx Z} = Z(MP?).

Let A be an intermediate algebra &h Every prime ideal ofA is contained in a unique
maximal ideal. It is a well-known result that in this situation Mais a Hausdorff space.
For anyp € BX, let M/’j denote the unique maximal ideal @f containing the prime
ideal M? N A. With this notation, M = M? and M}, = M*P. Forx € X, M} ={f €
A: f(x) =0}. The space MaA is also a model fog X. Each pointp in X is identified
with the maximal ideal/} in Max A.

1.4. The extensioyi* and the space s X

If the function f € C(X) is regarded as a continuous mappingxofnto the one-point
compactificatiolR* = R U {oo} of R, it has an extensiofi* : 8X — R*. The set of points
in BX where f* takes real values is denoted byX, i.e.,

veX ={peBX: f*(p)#oo}.
The spacevs X is locally compact and -compact, and it is the largest subspace &f to
which f can be continuously extended.
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1.5. Singly generated intermediate algebras

Let f € C(X). We shall denote byC*(X)[f] the smallest intermediate algebra
containingf, that is,

C*(X)[f]= Zgifi: gi €C*(X), n=0,1, 2}
i=0
We shall say tha€* (X)[ /] is asingly generateihtermediate algebra.
Certainly f € C(vyX), and soC*(X)[ f1< C(vsX). In[5, 3.4] it has been shown:
(a) Letc be areal number, > 1. Every singly generated intermediate algebraXois
C*(X)[f] forsomef > c.
(b) If f > c > 1forsomec € R, then

C*X)[f1={g e C(X): |g| < f" for somen € N}.

One can easily see that4f = C*(X)[ f] for somef > ¢ > 1, then the multiplicatively
closed subsefs = U(A) N C*(X) is the set

1
Sa= {g eC*(X): gl = I for somen eN}.

2. Thezilters Z4(I) and the idealsZ ;™ (F)

We summarize the basic facts about the mﬁpsandzgl. We include some definitions
and results selected from papers of Byun, Redlin and Watson (see [13,4]).

Definition 2.1. Let A be an intermediate algebra an andE a cozero-set irX. We shall
say that a functiorf € A is regularon E (with respect tad) if there exists a functiog in
A such thatfg|g = 1.

Lemma 2.2. Let A be an intermediate algebra aX. Let f, g be two functions im, and
E, F two cozero-sets iX.

(@) If fisregularonE and F C E, thenf is regular onF.

(b) If £ is regular on bothE and F, then f is regular onE U F.

(c) If f(x)>e>0forall x € E, thenf is regular onE.

(d) If fisregularonE andO < f(x) < g(x) forall x € E, theng is regular onE.

(e) If f isregular onE andyg is regular onF, thenfg is regular onE N F, and 2+ g2

is reqularonE U F.

Proof. See [13, Lemma 1]. O

Let A be an intermediate algebra ofy and f € A. Following Redlin and Watson we
define

ZA(f)={E € Z(X): fisregularoE*}.
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ForI C A, andF C Z(X), we write
zah = J{2aH): Fet},
Z MNP ={feA Za(H) S F).

When the intermediate algebraigX) or C*(X), we shall writeZ¢ or Z¢+, to simplify
the notation.
The next lemma is an easy consequence of the previous one.

Lemma 2.3. Let A be an intermediate algebra axi, and let f, g be two functions im.
(@) Za(f)=Z24(f") foralln eN,.
(b) Z4(f8) S Za(f) N Z2a(g).
(©) Za(f2+8H 2 Za(f) U Za(e).
(d) If [ <lgl, thenZa(f) € Za(g). In particular, Z4(f) = Z4(l f]).

Proposition 2.4. Let A be an intermediate algebra oK, f a function inA, I a proper
ideal of A, and.F a z-filter on X.

(&) Z4(f) is az-filter on X if and only if f is not a unit ofA.

(b) Z4(I) is az-filter on X.

(c) Z;l(]-") is a proper ideal ofA.

Proof. See [13, Theorems 1-3]. Although a proof of (c) can be found in [13, Theorem 3],
let us give a shorter one.

If feZ,1(F)andg € A, thenZ4(fg) C Z4(f) C F, whencefg isin Z;*(F). Now
let £ andg be two functions inZ;(F). To see thatf + ¢ is in Z,*(F) we must show
thatZ4(f +g) S F.LetE € Z4(f + g). There exists: € A such that(f + g)h =1 on
E*€. Let us consider the zero-sets:

Er={xeX: |[f()hx)|< 3},
Ez={x e X: |g(0)h()] < 3}.

If x € E°, thenx € (E1N E2)°. HenceE 2 E1 N Ez. By Lemma 2.2(C)E1 € Z4(fh) C
Za(f) € F, and similarlyE> € F. Therefore,E1 N E> € F, and soE € F. Finally, as
@ ¢ F, there are no units ilZ;l(f), SO thatZ;l(f) is a properideal. O

A two-way correspondence between thélters on X and the proper ideals id has
been established. Let us point out that we are generalizing the thed@y & (as outlined
in [6, 2L]), which is far more complicated than the one &(X).

Let f € C(X) ande > 0. Following Gillman and Jerison we define

E.(f)={xeX:|f(x)|<e}.

Forl C C*(X),andF C Z(X), we write
E(I)={E:(f): fel, e>0},
E7YF)={f e C*(X): E.(f) e Fforalle > 0}.
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Let A be an intermediate algebra éfh and f € A. It follows from Lemma 2.2(c) that,
foranye > 0, E.(f) € Z4(f]) = Za4(f). Suppose now that € C*(X) andE € Z(X).
It is almost evident thak € Z¢+«(f) if and only if E 2 E.(f) for somes > 0. To see
that this cannot be generalized to a general intermediate algebraytakd and define
f(n) =1/n. The functionf is invertible onX and sod € Z¢(f), but noE.(f) is the
empty set. We shall get the right generalization in Proposition 4.2.

Let I be any proper ideal of *(X). Taking into account thak (1) is az-filter (see [6,
2L.5]), it follows from the previous statements tt&t« (1) = E(I).

Let f € C(X), without any additional assumption gf We are going to describe the
members of£4 (f) whenA is the smallest intermediate algebra containfhg

Proposition 2.5. Let f € C(X), A= C*(X)[f]and E € Z(X). The following conditions
are equivalent

(1) E € Za(f).

(2) E D E.(f), for somes > 0.

Proof. Itfollows from Lemma 2.2(c) that (2) implies (1). Now we shall prove the converse.
Let E € Z4(f), and assume that (2) does not hold. Consequently, there is a sequence
(xp) In E€ such that lim_,» f(x,) = 0. SetD = {x1, x2, ...}, and Dy = {xg, Xk+1, - ..}

for k e N. As Z(f) C E, f is never zero onD, and so f(D) cannot be compact.
Therefore D cannot be compact either, that is, there existg clgx D — D. Hence

p € Clgx Di, and so f*(p) € clr= f(Dy). As this happens for any € N, f*(p) = 0.
SinceE € Z4(f), there existg € A = C*(X)[ f] such thatfg = 1 on E. Both functions

f andg are inC(vsX), as C*(X)[f] € C(vyX), and certainlyp € vy X, therefore
(fo)*(p) = f*(p)g*(p). Finally, on the one hand,fg)*(p) = 0, sincef*(p) = 0, but,

on the other hand fg)*(p) =1, asp eclgx D and fg =1 onD C E€. Of course, this is

a contradiction. O

Let A be an intermediate algebraoh andf € A. If E € Z4(f),thenfg=1in E¢
for someg € A, and so

Z(f) S {xeX: f(0)gx) #1} CE.

We conclude that any member 8f (f) is a zero-set-neighborhood @f( ). To see that,
in general, the converse does not hold take- N and definef (1) =0, f(n) = 1/n for
n # 1. SinceX is a discrete spac&(f) is a zero-set-neighborhood of itself. Nevertheless

Z(f) & Zc+(f).

Theorem 2.6. For X a normal space ang' € C(X), the members of¢(f) are the zero-
set-neighborhoods & (f).

Proof. Let E be a zero-set-neighborhood &f(f). Let U be an open set such that
Z(f) CU C E. The function ¥f :U¢ — R has a continuous extensiare C(X). Since
fh=1onE¢, itfollowsthatE € Zc(f). O
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3. B-ideals as intersections of maximal ideals
The next lemma is immediate from the definitionsZhf andZZl.

Lemma 3.1 [4, 1.5].Let A be an intermediate algebra oK, I a proper ideal ofA, and
F az-filter on X.

@ 2;N2a) 21.

(b) Za(Z;H(Za(D)) = Za(D).

(€) Za(Z M) S F.

d) 2,1 CaE ) = 274,

Byun and Watson note in [4] that the inclusions in (a) and (c) may be proper, although
in the classical setting af (X) one always has the equalig(Z~1(F)) = F. Let us insist
that this development is not a generalization of that carried out in the studyof.

Definition 3.2. Let A be an intermediate algebra dfi and/ a proper ideal ofA. It is
said that/ is aB-ideal if Z4(f) € Z4(I) implies f € I. This condition is equivalent to
2N Ea) =1.

Let us recall that an idedl of a ring R is said to be aadical ideal if f is in I whenever
f™"isin I for somen € N. Any radical ideal is an intersection of prime ideals (see [2,
1.14] or [6, 0.18)). It is evident that each maximal ideal i8-ideal. It follows from Lem-
ma 2.3(a) that any-ideal is a radical ideal, and so it is an intersection of prime ideals.
It is also immediate that any intersection Bfideals is a3-ideal. From all the above-
mentioned, one deduces that any intersection of maximal ideal8-isleal.

Notice that theB-ideals of C*(X) are thee-ideals studied in [6], where they are
characterized as the intersections of maximal ideals. In Theorem 3.13 we shall generalize
this characterization to any intermediate algebra.

For p € BX, let O? be the intersection of the prime ideals@fX) contained inM?,
and&? the intersection of the primefilters on X contained iri/?. With this notation,

EP =Z(0P). For A an intermediate algebra on, we shall denote by)/’j the intersection

of the prime ideals ofd contained inMY. It is known that, in generali/} = M? N A.

Next we shall see tha? ) has a better behavior in this respect. First we need an elementary
lemma taken from [11, 1.4].

Lemma 3.3. Let C be aring, andA a subring ofC. For every prime ideal of A, there
exists a prime ideaP of C suchthatP N A C Q.

Proof. For the sake of completeness let us repeat the short argument in [11]. The set
S = A — Q is a multiplicatively closed subset @f, and 0¢ S. According to [6, 0.16]
there exists a prime ided in C suchthatt N S=¢@. ThenPNAC Q. O
Proposition 3.4. Let A be an intermediate algebra axi. For anyp € X,
ol =0"nA.
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Proof. If P is a prime ideal inC(X) contained inM”, thenP N A is a prime ideal in4,
andPNACMPNAC M/’j. Soij C 0PN A. Letus prove the other inclusion. L& be
a prime ideal of4 contained inM 7. We should show thaD” N A C Q. By the previous
lemma, there exists a prime idelin C(X) such thatP N A € Q. ThenP € M7, since
P N Ais aprime ideal ofA contained inM . ThereforeO’ NAC PNAC Q. O

Remark 3.5. The previous result, fod = C*(X), can be seenin [6, 7J].
The following lemma will be useful later.
Lemma 3.6 [4, 3.1].Let A be an intermediate algebra ok, and 7 a proper ideal ofA.
Then
ZA(I) = Ze+ (1 N CH(X)).

Proof. The argument in [4, 3.1] needs some correction. It is enough to se€jtia) <
Ze«(INC*(X)), as the other inclusion is obvious. For afig I and anyE € Z4(f), there
existsg € A such thatfg =1 onE®. Leth = fg andu = 1/(1+ h?). Both functions: and

hu are inC*(X), hencehu = fgu € I N C*(X). Finally, by Lemma 2.2(C)E € Z¢+(hu),
sincehu > 1/2 0nE°. O

We observe next that the mappiy does not distinguish between different prime
ideals ofA contained in the same maximal ideal. First we consider the gas&€*(X).
Lemma 3.7 [6, 7R].Foranyp € 8X,

ZC*(OP ﬂC*(X)) =Zc«(M*P) =EP.

Theorem 3.8. Let A be an intermediate algebra oXi. For anyp € X,
Z4(08) = ZaMp) =¢7.
Proof. We shall see thaf? = Z4(0%) € Za(ME) C €P.
(1) Z4(0F) = Zc+(05 N C* (X)) = Zc+(0P N C*(X)) = EP.
(2) ZaME) = Zc+«(MENCH(X)) C Ze+(M*P) =EP. O
Corollary 3.9. Let A be an intermediate algebra aXi. For anyp € 8X,
z7eEr =z ur) = My,

Proof. It is enough to observe thaw} < z;1(€P) ¢ z,;wP), and then take into
account the maximality af/}. O

Corollary 3.10. Let A be an intermediate algebra oki, and p a point of BX. If 7 is a
primez-filter on X contained iri/?, then

zZ N F) =M.
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Proof. SinceF CUP andF is a primez-filter, £» € F. SoM% = 21 P) € 21 (F).
By the maximality ofM %, we conclude thaMf; = Z;l(f). O

Now we may obtain Plank’s geometric description of the functionMjh
Let A be an intermediate algebradh p € X, andf € MZ. For anye > 0,
Eo(f) € Za(f) S Za(M}) CUP.
Hencep e clgx E-(f), and sof*(p) < e. Thereforef*(p) = 0.
Proposition 3.11 (see [12,6, 7D]).Let A be an intermediate algebra oX. For any
p EBX,
MY ={feA: (fg)*(p)=0 foreveryg € A}.
Proof. It is easy to see that the set on the right is a proper idedl,@&nd we have just

shown that the idedlflg is contained in that set. Now take into account the maximality of
M?. O
A

Next we shall prove that thB-ideals are precisely the intersections of maximal ideals.
Lemma 3.12. Anyz-filter on X is an intersection of prime-filters.

Proof. For F a z-filter on X, the z-ideal Z~1(F) is an intersection of prime ideals, and

so it is the intersection of the prime ideals that are minimal between those containing it.
Each one of these minimal prime ideals is-aleal, by [6, 14.7]. ThereforeZ ~1(F) is an
intersection of prime-ideals, and sd is an intersection of prime-filters. O

Theorem 3.13.Let A be an intermediate algebra oK. The B-ideals of A are just the
intersections of maximal ideals.

Proof. Itis known that any intersection of maximal ideals4fs a3-ideal of A. We prove
the converse. According to Lemma 3.13ddeal of A is an ideal of the fornﬁ;l(]-"), F
being az-filter on X. Since anyz-filter on X is an intersection of prime-filters (by the
previous lemma), the result follows from Corollary 3.101

Remark 3.14. It is well known that, forp € 8 X,
OP ={feC(X): peintgxclgx Z(f)}.
We shall see that, foA an intermediate algebra dhandp € 8X,
Ok ={f e A: peintgxclgx Za(f)},

where chx Z4(f) is the set of cluster points &4 (f) in BX, that s,

Clgx Za(f) = ﬂ{clﬂx E: E e Z4(f))}.
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This geometric description of the functions @, will provide an alternative proof to
Proposition 3.4. Our argument will involve some knowledge of the Zariski topology on the
prime ideal space of a ring.

Recall that, forR a ring andf € R,

V(f)={P € Specr: f € P}.

Let M be a maximal ideal of a rin@, and denote by) (M) the intersection of the prime
ideals contained iM. It is not difficult to check (see [11, 1.1]) that

O(M)={f € R: V(f) is aneighborhood af/ in Speck}.
Moreover, if(| Speck = [ MaxR, then
O(M)={f € R: V(f) "MaxR is a neighborhood a#/ in MaxR}.

Next we apply this result to the case of an intermediate algebpé. dret A be such an
algebra, ang’ € A. If we identify MaxA with 8 X, then

V(f)NMaxA={peBX: feM}

According to Corollary 3.9,f € M% if and only if Z4(f) € U” or, equivalently,p €
clgx Z4(f). Hence,

V(f)NMaxA =clgx Z4(f).
Also, [ SpecA =(MaxA = {0}. Therefore,
ol =ow?)
={f € A: clgx Z4(f) is a neighborhood of in AX}
={feA: peintgxclgx Za(f)}.

Of course, ddx Zc (f) =clgx Z(f). But, for f in an arbitrary intermediate algeb#a f
Z(f)=9and f is not a unit ofA, then ckx Z4(f) # clgx Z(f). So that, in general, the
inclusion ckx Z(f) € clgx Z4(f) may be proper. Nevertheless, according to the above
geometric description otDZ, the algebraic equality

of=07nA, foreveryp e BX,
is equivalent to the following geometric one:
intgx Clgx Za(f) =intgx clgx Z(f), foreveryf e A.

Let us give a direct proof of the latter equalityMfis an open neighborhood pfin X
that is contained in gly Z4(f), thenV N X € () Z4(f). We already know that, for any
e>0,E:(f) € Z4(lf]) = Z4(f). So that

(24 S {Ee(): e>0} S Z(f).
ThereforeV N X C Z(f), and sop € intgx clgx Z(f). This shows that
in'[lgx C|/3x Za(f) < intﬂx C|/3x Z(f).

The other inclusion is immediate.
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4. Intersection of all the free maximal ideals

Let A be an intermediate algebra oxi. We shall temporarily denote byip the

intersection of all the free maximal idealsin i.e.,
Ap=({M%: pepX —X}.

Our main purpose in this section is to achieve a topological description of the functions
in Ar. In the extreme cases = C*(X) or A = C(X), the functions that belong to all the
free maximal ideals have already been described, though imposing some conditiéons on
It is an easy exercise [6, 7F] to see that the intersection of all the free maximal ideals in
C*(X) is the setlC (X) of all functions inC(X) that vanish at infinity (i.e., alf in C(X)
such that{x € X: | f(x)| > 1/n} is compact for every € N). On the other hand, it is not
a trivial result that, forX realcompact, the intersection of all the free maximal ideals in
C(X) is the setlCk (X) of all continuous functions with compact support (see [6, 8.19]).

Let us show how the extreme cases delimit our object. We shall see that

Cxk(X) SC(X)F SAF S C*(X)F = Coo(X).

Let f € Cx(X), andp € BX — X. Clearly, p € clgx Z(f) or, equivalently,f € M?.
This shows thatCk (X) € C(X)r. Assume now thaB is an intermediate algebra on
containingA. It only rest to prove thaBr € Ar. We have already seen that(p) = 0 for
fe M/’j. So that, forf € Ap, f* vanish onX — X, and sof € Coo(X) C C*(X). Thus,
Ap € C*(X).Finally,if f € Br andp € BX — X, thenf € M} and alsof € C*(X) C 4,
sothatf e My N A € M%. This shows thaBr C Af.

For our purpose, it will be useful to take into account the representation of the
intermediate algebra as a ring of fractions of *(X). Let us recall that it/ (A) is the set
of units of A andS, = U(A) N C*(X), thenA = S;lC*(X).

Lemma 4.1. Let A be an intermediate algebra oXi, andS4 = U(A) N C*(X). Then

A={f€C(X)Z VRS

for someg € SA}.

Proof. If |f] < |1/g| for someg € Sa, then f € A, since A is an absolutely convex
subalgebra ofC(X) and Vg € A. Conversely, iff € A, then(1+ 51 e S, and
IFIS1+f2=1/A+ ) O

Next we shall give a new description of the zero-set&i{( f).
For f, g € C(X), it will be useful to write
Eg(f)={xeX: |f0)|<IgWl},
ES(f)={xeX: |f(x)|>gx)l}.
Proposition 4.2. Let A be an intermediate algebra oK, E € Z(X), and f € A. The

following statements are equivalent
(1) E € Za(f).
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(2) 11> gl on E€, for someg € S4.
(3) ED Eq(f), forsomeg € S4.

Proof. Assume that € Z4(f). Then there existd € A such thatf4 =1 on E€. By the
previouslemmal| < |1/g|, forsomeg € S4. Hence| f| = |1/ k| > |g| on E€. This shows

that (1) implies (2). Next we shall prove that (2) implies both (1) and (3). Suppose that
|f1 > gl on E€, for someg € S4. On the one hand, singgis a unit ofA, g is regular on

E€ and, by Lemma 2.2(d} € Z4(f). On the other handt 2 {x € X: |f(x)| < |g(x)|}

and, asg is never zero, the last set contaifnse X: | f(x)| < |%g(x)|} = Eg/2(f). Thus

E D Eg/2(f) and, indeed%g € Sa. Finally, itis clear that (3) implies (2). O

We shall use the concept obmallset.

Definition 4.3. Let E be a subset oK. It is said thatE is asmall set if every zero-set
contained inE is compact.

Following Redlin and Watson, we write
K={Eez(X): E°is small.
One can easily see that
K= {u’: pepx—x},
and so

ZH0) =({ME: pepx —X}.

Theorem 4.4 (see also [1, Theorem 2.2])et A be an intermediate algebra aXi, and let
Sa=U(A)NC*(X). Afunctionf € Aisin ﬂ{Mﬁ": peBX—X}yifandonlyifES(f) is
compact for every € S4.

Proof. Assume thatE$(f) is not compact for somg € S4. Then there existy €
Cclgx E8(f) such thatp ¢ X. By Proposition 4.2E,2(f) € Z4(f). Sinceg is never zero,
the zero-set&é(f) and E, 2( f) are disjoint, and so their closuresgiX are disjoint too.
As p eclgy ES(f),itfollowsthatp ¢ clgx Eg/2(f). HenceZ, (f) is not contained itd/”
or, equivalently,f ¢ M.

Suppose now thai 8 ( f) is compact for every € S4. We shall see thaf4 (f) € K. Let
E be a zero-setir€4(f). By Proposition 4.2, there existse S4 such that f| > |g| on
E€,and soE€ C E8(f). SinceE8(f) is compact, any zero-set containedifiis compact
too. ThereforeE€ issmall. O

Remark 4.5. Let A be an intermediate algebra df, and f € A. If 4 is a unit of 4,
and ES(f) is compact for everyg € S4, then E"(f) is compact too. Notice that, for
h a unit of A, the functiong = h2/(1 + h?) is a bounded unit, an¢g| < |k|. Hence
g€ Sa=U(A)NC*(X), andE"(f) € ES(f).
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It follows from the previous theorem that
m{M*”: pEBX — X} =Coo(X),

whereC (X) denotes the set of functions ((X) that vanish at infinity.
Next we shall pay some attention to the case C(X).

Corollary 4.6 [6, 4E.2]. A functionf € C(X) isin (\{M?: p € BX — X} if and only if
every zero-set disjoint from ( f) is compact.

Proof. Assume there exists a honcompact zero@t) disjoint from Z(f), and take
g=(hl+1f) AL Ifx € Z(h), then|g(x)| < | f(x)|, whenceZ (h) C ES(f). SinceZ(h)
is not compactEs$ (f) cannot be compact either. Conversely, suppose now/tkai/?
forsomep € BX — X, thatis,p ¢ clgx Z(f). There existd € C*(X) such thatz (h?) is a
neighborhood op in B X disjoint fromZ(f). ThenZ(h) is a zero-set disjoint fro ( f),
and it is not compact becaupec clgx Z(h). O

Now we shall recover the classical result [6, 8.19]. Recall thatX) is the set of all
functions inC (X) with compact support.

Corollary 4.7. If X is a realcompact space, then
ﬂ{MP: peBX—X}=Cr(X).

Proof. The inclusionCk (X) € ({MP?: p € BX — X} always holds. Letf € C(X) such
that f ¢ Ck (X). SinceX is realcompact, there is a noncompact closed subséX thatis
completely separated from( f) (as it is shown in [6, 8.19]), and so there is a noncompact
zero-set containing and disjoint fromZ(f). Hencef ¢ (\{MP?: pe BX — X}. O

For a singly generated intermediate algebra, the characterization of the functions in all
the free maximal ideals can be simplified a bit more, as it is shown in the next corollary.
Let f,1 € C(X), with/ > 0andZ() =¢. Forn € N, we shall write

Fo(f) = {xeX: Lf ()] = }

"(x)
Corollary 4.8. Let A be a singly generated intermediate algebra®nA = C*(X)[/],
withl > ¢ > 1. A functionf € A is in ﬂ{M/’j: p € BX — X} if and only if F,(f) is
compact for allz € N.

Proof. Assume thatf ﬂ{Mf": p € BX — X}. The function 1" isin S4, andF,, (f) =
EY"(f). By Theorem 4.4F,(f) is compact. Conversely, suppose now tiat 1) is
compact for alk. Let g be a function inS4. According to Section 1.9g| > 1/1" for some
n. Then

ES(fy={xeX: |f@)|=1gW)I} < {x eX:|f) = } = F. (),

I"(x)
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and the last set is compact. Heng&( 1) is compact too. It follows from Theorem 4.4 that
feNiMy: peBX—X}. O

Remark 4.9 (see [1, 3.4]). LetX be a locally compact and-compact, but not compact
space, and ldtbe as in the corollary. If we further assume that aperfectmapping (i.e.,
I=Y(K) is compact for each compakt C R), then the function ¢! belongs to all the free
maximal ideals ofC*(X)[/], yet it does not belong t6'k (X).

Next we shall examine the classical intermediate algebr studied by Brooks and
Plank in [3,12], respectively.

Let H denote the intermediate algebra Nnconsisting of those functiong € C(N)
such that

limsup+/| f(n)] < 1.

n—>oo
For f € C(N), let f(n) = &/[f(n)]. One can see in [12, 7.1] that
feH ifandonlyif FfecC*(N)andf? <1ongN-N,

where f# is the continuous extension gfto SN. Plank also shows there that a function
feHisaunitofH ifandonly if Z(f) =@ andf# =1 ongN — N.

Let us now recover Corollary 2.3.1 in [3], which is obtained there as a consequence of a
theorem that was shown to be wrong by Plank in [12, 7.6].

Corollary 4.10 [3, 2.3.1].A function f € H is in ﬂ{M,’_’,: p € BN — N} if and only if
fP(p) < 1foreveryp e BN —N.

Proof. Plank shows in [12, 7.2] thaf is in ({M}: p € BN — N} if fP(p) <1 for
every p € BN — N. Let us prove the converse. Assume there exists SN — N such
that 72 (p) = 1. We shall exhibit a unit of H such thatE¢( f) is not compact. It follows
from the assumption that there is a sequeagg in N such that| f (n;) — 1| < 1/2*,
andny #nj for k # j. SetD = {n;: k=1,2,...}. We define the functiog as follows:
g(n) = f(n) forn € D, andg(n) = 1 forn ¢ D. Notice thatZ(g) = ¢, sincef is never
zeroonD. Also, g € H, since|g| < |f|v1e H.Nextwe shall see thgf =1 ongN—N.
Fork e N, setDy = {k,k +1,...}. Clearly,g#(q) = 1 if ¢ € clgn(N — D). On the other
hand, ifq € clgy D, theng < clgy Dy, and so

» _ , 1,1
8" (q) eclr g(Dy) =clg f(Dy) C 1—§,1+— )

ok
As this happens for everk € N, gf(g) = 1. This shows, according to Plank’s
characterization of the units df, thatg is such a unit. Certainly, the s&8(f) ={n €

N: | f(n)| > |g(n)|} is not compact because it contains the infinitel3eFinally, it follows
from Theorem 4.4, taking into account Remark 4.5, thatoes not belong to all the free
maximal idealsofd. O
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For any intermediate algebraon X, and any maximal ideal of A, the residue class
field A/M contains a canonical copy @: the set of residual classes of the constant
functions. When this canonical copy &f is the entire fieldA /M, one says thaM is a
real maximal ideal ofA. We shall denote by, X the set of all real maximal ideals af.
The spaceas4 X can be identified to the space of those pointg k= Max A to which all
the functions inA can be continuously extended, i.e.,

vaX = ﬂ{qu: f € Al
HenceA C C(va X). With this notationuc X = vX (the Hewitt realcompactification of
X) andvc+X = BX. It is well known thatC(X) = C(vX) andC*(X) = C(BX), but, in
general, the inclusiod C C(v4 X) may be proper (see [5, 4.3 and 2.3]).

Definition 4.11. Let A be an intermediate algebra oh Following Redlin and Watson,
we shall say that the spacé is A-compactif the image of the canonical immersion
X — MaxA, x — M}, is the setvy X of all real maximal ideals of.

In view of this definition, theC-compact spaces are the realcompact spaces while
the C*-compact spaces are the compact ones. Clearly, i§ A-compact andB is an
intermediate algebra ok containingA, thenX is B-compact.

Proposition 4.12. Let A be a singly generated intermediate algebraXnA = C*(X)[!],
with Z(l) =@ and1/l € C*(X). The space is A-compactif and only ifl/l € Coo (X).

Proof. Observe that, X = v, X =coz1/0)f. O

Corollary 4.13. The following statements are equivalent
(1) X islocally compact and -compact.
(2) X supports a continuous function that has no zeros, but vanishes at infinity.
(3) X is A-compact, for some singly generated intermediate algebra

Proof. The equivalence of (1) with (2) is well known. The rest follows from the previous
proposition. O

Remark 4.14. Let A be an intermediate algebra dh It was stated in [4, 5.7] that if

X is an A-compact space, then the intersection of all the free maximal ideals i

Ck (X). This is false. LetH be as in Corollary 4.10. On the one hand, the sp¥éd® H -
compact, since the functigy(n) = n is in H andN = v,N. On the other hand, the function
f(n) =n/2" belongs to all the free maximal ideals Bf, since lim,_ o f(n) =1/2> 1.
Neverthelessf ¢ Ck (N). The error was also pointed out by Acharyya, Chattopadhyay
and Ghosh in [1, 3.4]. They considerdd= C*(N)[g] and showed that the function/d
belongs to all the free maximal ideals4n

Note. This work was presented in Morelia, Michoacan, Mexico in the Second Ibero-
American Conference on Topology and its Applications in March 1997. In May 1997 we
found the paper [1] by Acharyya, Chattopadhyay and Ghosh.
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