
Topology and its Applications 98 (1999) 149–165

Intersections of maximal ideals in algebras betweenC∗(X) and
C(X)

Jesús M. Domíngueza,1, J. Gómez Pérezb,∗

a Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Valladolid,
47005 Valladolid, Spain

b Departamento de Matemáticas, Universidad de León, 24071 León, Spain

Received 30 September 1997; received in revised form 8 October 1998

Abstract

LetC(X) be the algebra of all real-valued continuous functions on a completely regular spaceX,
andC∗(X) the subalgebra of bounded functions. There is a known correspondence between a certain
class ofz-filters onX and proper ideals inC∗(X) that leads to theorems quite analogous to those
for C(X). This correspondence has been generalized by Redlin and Watson to any algebra between
C∗(X) andC(X). In the process they have singled out a class of ideals that play a similar geometric
role to that ofz-ideals in the setting ofC(X). We show that these ideals are just the intersections of
maximal ideals. It is also known that any algebraA betweenC∗(X) andC(X) is the ring of fractions
of C∗(X) with respect to a multiplicatively closed subset. We make use of this representation to
characterize the functions that belong to all the free maximal ideals inA. We conclude by applying
our characterization to a subalgebraH of C(N) previously studied by Brooks and Plank. 1999
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Introduction

Let C(X) be the algebra of all real-valued continuous functions on a nonempty
completely regular spaceX, andC∗(X) the subalgebra of bounded functions. We study
those subalgebras ofC(X) that containC∗(X). We shall refer to them asintermediate
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algebras onX or, simply,intermediate algebras. They are sublattices ofC(X) and so they
areΦ-algebras in the sense of Henriksen and Johnson. AsΦ-algebras these intermediate
algebras have been studied by Hager and Henriksen in [7–9], as algebras of functions by
Isbell in [10], asβ-subalgebras ofC(X) by Plank in [12], just as intermediate algebras
by Byun in [4,13], and by Acharyya in [1], and finally, as rings of fractions ofC∗(X) by
Domínguez et al. in [5].

The correspondences betweenz-filters on X and proper ideals inC(X) provide a
geometric (or topological) description of some algebraic properties ofC(X). The algebraic
structure is usually richer than the geometric one, but the geometric descriptions are
powerful tools in the study ofC(X).

A function is invertible inC(X) if it is never zero, and inC∗(X) if it is bounded away
from zero. In an arbitrary intermediate algebraA, of course, there is no such geometric
description of invertibility which is independent of the structure of the algebraA. In [13]
Redlin and Watson associate to eachf ∈A a familyZA(f ) of zero-sets inX,

ZA(f )=
{
E ∈Z(X): fg|Ec = 1 for someg ∈A},

and show that this family is az-filter on X just whenf is not invertible inA. This
correspondenceZA extends to a mapping from the set of proper ideals ofA into the set of
z-filters onX. ForI a proper ideal ofA, andF a z-filter onX, one writes

ZA(I)=
⋃{
ZA(f ): f ∈ I

}
,

Z−1
A (F)= {f ∈A: ZA(f )⊆F

}
.

ZA(I) is az-filter onX, andZ−1
A (F) is a proper ideal ofA. The proper idealsI of A that

satisfyZ−1
A (ZA(I))= I are calledB-ideals. They play a similar geometric role toz-ideals

in the classical setting ofC(X), but the class ofB-ideals inC(X) does not agree with
that of z-ideals. As a matter of fact, we shall prove in Section 3 that theB-ideals in any
intermediate algebra are exactly the intersections of maximal ideals (while thez-ideals in
C(X) are basically the sums of intersections of maximal ideals).

The theory developed in [13,4] generalizes to any intermediate algebra the development
for C∗(X) outlined in [6, 2L], and it provides unified geometric proofs for many results
known separately forC(X) and C∗(X). The same goal is achieved in [5] with an
algebraic treatment, by showing that any intermediate algebraA on X is the ring of
fractions ofC∗(X) with respect to a multiplicatively closed subset. We make use of this
representation to characterize the functions that belong to all the free maximal ideals inA.
Our characterization is similar to the one given in [1].

Section 1 contains the preliminaries. In Section 2 we describeZA(f ) in some particular
cases, and summarize the basic facts about the mapsZA andZ−1

A . The main purpose
of Section 3 is to prove that theB-ideals are just the intersections of maximal ideals.
In Section 4 we give a new description of the members ofZA(f ), and characterize
the functions that belong to all the free maximal ideals. We conclude by applying our
characterization to a subalgebraH of C(N) previously studied by Brooks and Plank.

An effort has been made to keep the exposition reasonably self-contained.
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1. Preliminaries

Concerning rings of continuous functions we shall basically adhere to the notation
and terminology in [6]. With respect to algebraic concepts the reader may consult [2].
Nevertheless we shall review some notation and preliminary results that will be used
throughout the paper.

We assume that all rings are commutative with identity and that every ring morphism
preserves the identities.

LetY be an intermediate space betweenX andβX. The restriction morphism fromC(Y )
to C(X), which sendsg ∈ C(Y ) to g|X , is clearly injective. We shall always seeC(Y ) as
an intermediate algebra onX.

1.1. The maximal ideal space of a ring

Theprime ideal spaceof a ringR is the set SpecR of all prime ideals ofR endowed
with the Zariski topology. The closed subsets in SpecR are those of the form

V (C)= {P ∈ SpecR: C ⊆ P},
whereC is any subset ofR. The maximal ideal spaceof R is the subspace MaxR
consisting of all maximal ideals inR. Both the prime and maximal ideal spaces are compact
spaces but, in general, they are not Hausdorff spaces.

1.2. Rings of fractions

A multiplicatively closedsubset of a ringR is a subsetS ofR containing the identity and
such thatst ∈ S whenevers, t ∈ S. The set of “fractions”S−1R = {f/s: f ∈ R, s ∈ S},
wheref/s = g/t if rtf = rsg for somer ∈ S, is endowed with a ring structure by defining
addition and multiplication of “fractions” in the usual way. The ringS−1R is said to be
the ring of fractionsof R with respect toS. The canonical ring morphismR→ S−1R,
f 7→ f/1, sends eachs ∈ S to an invertible element inS−1R.

Throughout the paperX will denote a completely regular topological space. As usual
Z(f ) and cozf will denote, respectively, thezero-setand thecozero-setof f ∈ C(X),
i.e., Z(f ) = {x ∈ X: f (x) = 0} and cozf = X − Z(f ). We shall denote byZ(X) the
family of all zero-sets inX. For I ⊆ C(X), we shall writeZ(I) = {Z(f ): f ∈ I }. Thus,
Z(X) = Z(C(X)) = Z(C∗(X)). Finally, for F ⊆ Z(X), we shall writeZ−1(F) = {f ∈
C(X): Z(f ) ∈F}. A proper idealI of C(X) will be called az-ideal if Z−1(Z(I))= I .

Let S be a multiplicatively closed subset ofC∗(X) whose members have void zero-sets.
Each formal quotientf/g ∈ S−1C∗(X) can be identified with the continuous function it
defines onX:

f

g
(x)= f (x)

g(x)
.

In this way the ring of fractionsS−1C∗(X) is an intermediate algebra onX. Even more,
all intermediate algebras onX are of this type. More precisely, letA be an intermediate
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algebra betweenC∗(X) andC(X), and letU(A) be the set of units, or invertible elements,
in A. It is clear thatSA = U(A) ∩ C∗(X) is a multiplicatively closed subset ofC∗(X). It
has been proved in [5, 3.1] thatA is the ring of fractions ofC∗(X) with respect toSA, i.e.,
A= S−1

A C∗(X). The key point is that any functionf ∈ C(X) may be written as a fraction
with both numerator and denominator inC∗(X):

f = f (1+ f
2)−1

(1+ f 2)−1
.

A subalgebraA of C(X) is said to beabsolutely convexif, whenever|f | 6 |g|, with
f ∈ C(X) andg ∈A, thenf ∈A. Any intermediate algebra onX is an absolutely convex
subalgebra ofC(X) and so a sublattice ofC(X) (see [5, 3.3]).

1.3. Maximal ideal spaces as models forβX

The Stone–̌Cech compactification of a completely regular spaceX is a compact
Hausdorff spaceβX containingX as a dense subspace, and characterized by a universal
property: “Every continuous mapping ofX into a compact Hausdorff space can be
continuously extended toβX”.

Both MaxC(X) and MaxC∗(X) are compact Hausdorff spaces, each one containing
a dense copy ofX. The pointx ∈ X is identified with the maximal idealMx = {f ∈
C(X): f (x) = 0} in MaxC(X), and withM∗x = Mx ∩ C∗(X) in MaxC∗(X). These
spaces are models forβX. Each pointp in βX is identified with the maximal idealMp =
{f ∈ C(X): p ∈ clβX Z(f )} in MaxC(X), and withM∗p = {f ∈ C∗(X): f β(p) = 0} in
MaxC∗(X), wheref β denotes the continuous extension off to βX. It is well known that
M∗p is the unique maximal ideal inC∗(X) containingMp ∩C∗(X).

As we have preserved the letterA to denote an intermediate algebra, we shall denote by
Up thez-ultrafilter onX corresponding to the pointp ∈ βX, i.e.,

Up = {Z ∈Z(X): p ∈ clβX Z
}=Z(Mp).

LetA be an intermediate algebra onX. Every prime ideal ofA is contained in a unique
maximal ideal. It is a well-known result that in this situation MaxA is a Hausdorff space.
For anyp ∈ βX, let Mp

A denote the unique maximal ideal ofA containing the prime
idealMp ∩ A. With this notation,Mp

C =Mp andMp
C∗ =M∗p. For x ∈ X, Mx

A = {f ∈
A: f (x)= 0}. The space MaxA is also a model forβX. Each pointp in βX is identified
with the maximal idealMp

A in MaxA.

1.4. The extensionf ∗ and the spaceυfX

If the functionf ∈ C(X) is regarded as a continuous mapping ofX into the one-point
compactificationR∗ =R∪ {∞} of R, it has an extensionf ∗ :βX→R∗. The set of points
in βX wheref ∗ takes real values is denoted byυfX, i.e.,

υfX=
{
p ∈ βX: f ∗(p) 6=∞}.

The spaceυfX is locally compact andσ -compact, and it is the largest subspace ofβX to
whichf can be continuously extended.
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1.5. Singly generated intermediate algebras

Let f ∈ C(X). We shall denote byC∗(X)[f ] the smallest intermediate algebra
containingf , that is,

C∗(X)[f ] =
{

n∑
i=0

gif
i : gi ∈ C∗(X), n= 0,1,2, . . .

}
.

We shall say thatC∗(X)[f ] is asingly generatedintermediate algebra.
Certainlyf ∈ C(υfX), and soC∗(X)[f ] ⊆ C(υfX). In [5, 3.4] it has been shown:
(a) Letc be a real number,c > 1. Every singly generated intermediate algebra onX is

C∗(X)[f ] for somef > c.
(b) If f > c > 1 for somec ∈R, then

C∗(X)[f ] = {g ∈C(X): |g|6 f n for somen ∈N}.
One can easily see that ifA= C∗(X)[f ] for somef > c > 1, then the multiplicatively

closed subsetSA =U(A)∩C∗(X) is the set

SA =
{
g ∈ C∗(X): |g|> 1

f n
for somen ∈N

}
.

2. Thez-filters ZA(I) and the idealsZ−1
A (F)

We summarize the basic facts about the mapsZA andZ−1
A . We include some definitions

and results selected from papers of Byun, Redlin and Watson (see [13,4]).

Definition 2.1. LetA be an intermediate algebra onX, andE a cozero-set inX. We shall
say that a functionf ∈A is regularonE (with respect toA) if there exists a functiong in
A such thatfg|E = 1.

Lemma 2.2. LetA be an intermediate algebra onX. Letf , g be two functions inA, and
E, F two cozero-sets inX.

(a) If f is regular onE andF ⊆E, thenf is regular onF .
(b) If f is regular on bothE andF , thenf is regular onE ∪ F .
(c) If f (x)> ε > 0 for all x ∈E, thenf is regular onE.
(d) If f is regular onE and0< f (x)6 g(x) for all x ∈E, theng is regular onE.
(e) If f is regular onE andg is regular onF , thenfg is regular onE∩F , andf 2+g2

is regular onE ∪ F .

Proof. See [13, Lemma 1]. 2
Let A be an intermediate algebra onX, andf ∈ A. Following Redlin and Watson we

define

ZA(f )=
{
E ∈Z(X): f is regular onEc

}
.
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For I ⊆A, andF ⊆Z(X), we write

ZA(I)=
⋃{
ZA(f ): f ∈ I

}
,

Z−1
A (F)= {f ∈A: ZA(f )⊆F

}
.

When the intermediate algebra isC(X) orC∗(X), we shall writeZC orZC∗ , to simplify
the notation.

The next lemma is an easy consequence of the previous one.

Lemma 2.3. LetA be an intermediate algebra onX, and letf , g be two functions inA.
(a) ZA(f )=ZA(f n) for all n ∈N.
(b) ZA(fg)⊆ZA(f )∩ZA(g).
(c) ZA(f 2+ g2)⊇ZA(f )∪ZA(g).
(d) If |f |6 |g|, thenZA(f )⊆ZA(g). In particular,ZA(f )=ZA(|f |).

Proposition 2.4. LetA be an intermediate algebra onX, f a function inA, I a proper
ideal ofA, andF a z-filter onX.

(a) ZA(f ) is a z-filter onX if and only iff is not a unit ofA.
(b) ZA(I) is a z-filter onX.
(c) Z−1

A (F) is a proper ideal ofA.

Proof. See [13, Theorems 1–3]. Although a proof of (c) can be found in [13, Theorem 3],
let us give a shorter one.

If f ∈Z−1
A (F) andg ∈A, thenZA(fg)⊆ZA(f )⊆F , whencefg is inZ−1

A (F). Now
let f andg be two functions inZ−1

A (F). To see thatf + g is in Z−1
A (F) we must show

thatZA(f + g)⊆ F . LetE ∈ ZA(f + g). There existsh ∈ A such that(f + g)h= 1 on
Ec. Let us consider the zero-sets:

E1=
{
x ∈X: |f (x)h(x)|6 1

3

}
,

E2=
{
x ∈X: |g(x)h(x)|6 1

3

}
.

If x ∈Ec , thenx ∈ (E1 ∩E2)
c. HenceE ⊇ E1 ∩E2. By Lemma 2.2(c),E1 ∈ ZA(f h)⊆

ZA(f ) ⊆ F , and similarlyE2 ∈ F . Therefore,E1 ∩ E2 ∈ F , and soE ∈ F . Finally, as
∅ /∈F , there are no units inZ−1

A (F), so thatZ−1
A (F) is a proper ideal. 2

A two-way correspondence between thez-filters onX and the proper ideals inA has
been established. Let us point out that we are generalizing the theory forC∗(X) (as outlined
in [6, 2L]), which is far more complicated than the one forC(X).

Let f ∈C(X) andε > 0. Following Gillman and Jerison we define

Eε(f )=
{
x ∈X: |f (x)|6 ε}.

For I ⊆ C∗(X), andF ⊆Z(X), we write

E(I)= {Eε(f ): f ∈ I, ε > 0
}
,

E−1(F)= {f ∈ C∗(X): Eε(f ) ∈F for all ε > 0
}
.
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LetA be an intermediate algebra onX, andf ∈ A. It follows from Lemma 2.2(c) that,
for anyε > 0,Eε(f ) ∈ ZA(|f |)= ZA(f ). Suppose now thatf ∈ C∗(X) andE ∈ Z(X).
It is almost evident thatE ∈ ZC∗(f ) if and only if E ⊇ Eε(f ) for someε > 0. To see
that this cannot be generalized to a general intermediate algebra, takeX = N and define
f (n) = 1/n. The functionf is invertible onX and so∅ ∈ ZC(f ), but noEε(f ) is the
empty set. We shall get the right generalization in Proposition 4.2.

Let I be any proper ideal ofC∗(X). Taking into account thatE(I) is az-filter (see [6,
2L.5]), it follows from the previous statements thatZC∗(I)=E(I).

Let f ∈ C(X), without any additional assumption onf . We are going to describe the
members ofZA(f ) whenA is the smallest intermediate algebra containingf .

Proposition 2.5. Let f ∈ C(X), A= C∗(X)[f ] andE ∈ Z(X). The following conditions
are equivalent:

(1) E ∈ZA(f ).
(2) E ⊇Eε(f ), for someε > 0.

Proof. It follows from Lemma 2.2(c) that (2) implies (1). Now we shall prove the converse.
Let E ∈ ZA(f ), and assume that (2) does not hold. Consequently, there is a sequence
(xn) in Ec such that limn→∞ f (xn) = 0. SetD = {x1, x2, . . .}, andDk = {xk, xk+1, . . .}
for k ∈ N. As Z(f ) ⊆ E, f is never zero onD, and sof (D) cannot be compact.
ThereforeD cannot be compact either, that is, there existsp ∈ clβX D − D. Hence
p ∈ clβX Dk , and sof ∗(p) ∈ clR∗ f (Dk). As this happens for anyk ∈ N, f ∗(p) = 0.
SinceE ∈ZA(f ), there existsg ∈A= C∗(X)[f ] such thatfg = 1 onEc. Both functions
f and g are in C(υfX), asC∗(X)[f ] ⊆ C(υfX), and certainlyp ∈ υfX; therefore
(fg)∗(p) = f ∗(p)g∗(p). Finally, on the one hand,(fg)∗(p) = 0, sincef ∗(p) = 0, but,
on the other hand,(fg)∗(p)= 1, asp ∈ clβX D andfg = 1 onD ⊆Ec. Of course, this is
a contradiction. 2

Let A be an intermediate algebra onX, andf ∈ A. If E ∈ ZA(f ), thenfg = 1 in Ec

for someg ∈A, and so

Z(f )⊆ {x ∈X: f (x)g(x) 6= 1
}⊆E.

We conclude that any member ofZA(f ) is a zero-set-neighborhood ofZ(f ). To see that,
in general, the converse does not hold takeX = N and definef (1) = 0, f (n) = 1/n for
n 6= 1. SinceX is a discrete space,Z(f ) is a zero-set-neighborhood of itself. Nevertheless
Z(f ) /∈ZC∗(f ).

Theorem 2.6. For X a normal space andf ∈ C(X), the members ofZC(f ) are the zero-
set-neighborhoods ofZ(f ).

Proof. Let E be a zero-set-neighborhood ofZ(f ). Let U be an open set such that
Z(f )⊆ U ⊆ E. The function 1/f :Uc→ R has a continuous extensionh ∈ C(X). Since
fh= 1 onEc, it follows thatE ∈ZC(f ). 2
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3. B-ideals as intersections of maximal ideals

The next lemma is immediate from the definitions ofZA andZ−1
A .

Lemma 3.1 [4, 1.5].LetA be an intermediate algebra onX, I a proper ideal ofA, and
F a z-filter onX.

(a) Z−1
A (ZA(I))⊇ I .

(b) ZA(Z−1
A (ZA(I)))=ZA(I).

(c) ZA(Z−1
A (F))⊆F .

(d) Z−1
A (ZA(Z−1

A (F)))= Z−1
A (F).

Byun and Watson note in [4] that the inclusions in (a) and (c) may be proper, although
in the classical setting ofC(X) one always has the equalityZ(Z−1(F))=F . Let us insist
that this development is not a generalization of that carried out in the study ofC(X).

Definition 3.2. Let A be an intermediate algebra onX, andI a proper ideal ofA. It is
said thatI is aB-ideal if ZA(f )⊆ ZA(I) impliesf ∈ I . This condition is equivalent to
Z−1
A (ZA(I))= I .

Let us recall that an idealI of a ringR is said to be aradical ideal if f is in I whenever
f n is in I for somen ∈ N. Any radical ideal is an intersection of prime ideals (see [2,
1.14] or [6, 0.18]). It is evident that each maximal ideal is aB-ideal. It follows from Lem-
ma 2.3(a) that anyB-ideal is a radical ideal, and so it is an intersection of prime ideals.
It is also immediate that any intersection ofB-ideals is aB-ideal. From all the above-
mentioned, one deduces that any intersection of maximal ideals is aB-ideal.

Notice that theB-ideals ofC∗(X) are thee-ideals studied in [6], where they are
characterized as the intersections of maximal ideals. In Theorem 3.13 we shall generalize
this characterization to any intermediate algebra.

For p ∈ βX, letOp be the intersection of the prime ideals ofC(X) contained inMp ,
andEp the intersection of the primez-filters onX contained inUp . With this notation,
Ep =Z(Op). ForA an intermediate algebra onX, we shall denote byOp

A the intersection
of the prime ideals ofA contained inMp

A . It is known that, in general,Mp
A 6=Mp ∩ A.

Next we shall see thatOp
A has a better behavior in this respect. First we need an elementary

lemma taken from [11, 1.4].

Lemma 3.3. LetC be a ring, andA a subring ofC. For every prime idealQ of A, there
exists a prime idealP ofC such thatP ∩A⊆Q.

Proof. For the sake of completeness let us repeat the short argument in [11]. The set
S = A − Q is a multiplicatively closed subset ofC, and 0/∈ S. According to [6, 0.16]
there exists a prime idealP in C such thatP ∩ S = ∅. ThenP ∩A⊆Q. 2
Proposition 3.4. LetA be an intermediate algebra onX. For anyp ∈ βX,

O
p
A =Op ∩A.
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Proof. If P is a prime ideal inC(X) contained inMp, thenP ∩A is a prime ideal inA,
andP ∩A⊆Mp ∩A⊆Mp

A. SoOp
A ⊆Op ∩A. Let us prove the other inclusion. LetQ be

a prime ideal ofA contained inMp
A . We should show thatOp ∩A⊆Q. By the previous

lemma, there exists a prime idealP in C(X) such thatP ∩A⊆Q. ThenP ⊆Mp , since
P ∩A is a prime ideal ofA contained inMp

A . ThereforeOp ∩A⊆ P ∩A⊆Q. 2
Remark 3.5. The previous result, forA= C∗(X), can be seen in [6, 7J].

The following lemma will be useful later.

Lemma 3.6 [4, 3.1].LetA be an intermediate algebra onX, andI a proper ideal ofA.
Then

ZA(I)=ZC∗
(
I ∩C∗(X)).

Proof. The argument in [4, 3.1] needs some correction. It is enough to see thatZA(I) ⊆
ZC∗(I ∩C∗(X)), as the other inclusion is obvious. For anyf ∈ I and anyE ∈ZA(f ), there
existsg ∈A such thatfg = 1 onEc. Leth= fg andu= 1/(1+h2). Both functionsu and
hu are inC∗(X), hencehu= fgu ∈ I ∩C∗(X). Finally, by Lemma 2.2(c),E ∈ZC∗(hu),
sincehu> 1/2 onEc . 2

We observe next that the mappingZA does not distinguish between different prime
ideals ofA contained in the same maximal ideal. First we consider the caseA= C∗(X).

Lemma 3.7 [6, 7R].For anyp ∈ βX,

ZC∗
(
Op ∩C∗(X))=ZC∗(M∗p)= Ep.

Theorem 3.8. LetA be an intermediate algebra onX. For anyp ∈ βX,

ZA(Op
A)=ZA(Mp

A)= Ep.

Proof. We shall see thatEp =ZA(Op
A)⊆ZA(Mp

A)⊆ Ep .
(1) ZA(Op

A)=ZC∗(Op

A ∩C∗(X))=ZC∗(Op ∩C∗(X))= Ep .
(2) ZA(Mp

A)=ZC∗(Mp
A ∩C∗(X))⊆ZC∗(M∗p)= Ep . 2

Corollary 3.9. LetA be an intermediate algebra onX. For anyp ∈ βX,

Z−1
A (Ep)=Z−1

A (Up)=Mp

A.

Proof. It is enough to observe thatMp

A ⊆ Z−1
A (Ep) ⊆ Z−1

A (Up), and then take into
account the maximality ofMp

A . 2
Corollary 3.10. LetA be an intermediate algebra onX, andp a point ofβX. If F is a
primez-filter onX contained inUp , then

Z−1
A (F)=Mp

A.
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Proof. SinceF ⊆ Up andF is a primez-filter, Ep ⊆ F . SoMp
A = Z−1

A (Ep)⊆ Z−1
A (F).

By the maximality ofMp
A , we conclude thatMp

A =Z−1
A (F). 2

Now we may obtain Plank’s geometric description of the functions inM
p
A .

LetA be an intermediate algebra onX, p ∈ βX, andf ∈Mp
A . For anyε > 0,

Eε(f ) ∈ZA(f )⊆ZA(Mp
A)⊆ Up.

Hencep ∈ clβX Eε(f ), and sof ∗(p)6 ε. Thereforef ∗(p)= 0.

Proposition 3.11 (see [12,6, 7D]).Let A be an intermediate algebra onX. For any
p ∈ βX,

M
p

A =
{
f ∈A: (fg)∗(p)= 0 for everyg ∈A}.

Proof. It is easy to see that the set on the right is a proper ideal ofA, and we have just
shown that the idealMp

A is contained in that set. Now take into account the maximality of
M
p
A. 2
Next we shall prove that theB-ideals are precisely the intersections of maximal ideals.

Lemma 3.12. Anyz-filter onX is an intersection of primez-filters.

Proof. ForF a z-filter onX, thez-idealZ−1(F) is an intersection of prime ideals, and
so it is the intersection of the prime ideals that are minimal between those containing it.
Each one of these minimal prime ideals is az-ideal, by [6, 14.7]. Therefore,Z−1(F) is an
intersection of primez-ideals, and soF is an intersection of primez-filters. 2
Theorem 3.13.Let A be an intermediate algebra onX. TheB-ideals ofA are just the
intersections of maximal ideals.

Proof. It is known that any intersection of maximal ideals ofA is aB-ideal ofA. We prove
the converse. According to Lemma 3.1, aB-ideal ofA is an ideal of the formZ−1

A (F), F
being az-filter onX. Since anyz-filter onX is an intersection of primez-filters (by the
previous lemma), the result follows from Corollary 3.10.2
Remark 3.14. It is well known that, forp ∈ βX,

Op = {f ∈C(X): p ∈ intβX clβX Z(f )
}
.

We shall see that, forA an intermediate algebra onX andp ∈ βX,

O
p

A =
{
f ∈A: p ∈ intβX clβXZA(f )

}
,

where clβXZA(f ) is the set of cluster points ofZA(f ) in βX, that is,

clβXZA(f )=
⋂{

clβX E: E ∈ZA(f )
}
.



J.M. Domínguez, J.Gómez Pérez / Topology and its Applications 98 (1999) 149–165 159

This geometric description of the functions inOp
A will provide an alternative proof to

Proposition 3.4. Our argument will involve some knowledge of the Zariski topology on the
prime ideal space of a ring.

Recall that, forR a ring andf ∈R,

V (f )= {P ∈ SpecR: f ∈ P }.
LetM be a maximal ideal of a ringR, and denote byO(M) the intersection of the prime

ideals contained inM. It is not difficult to check (see [11, 1.1]) that

O(M)= {f ∈R: V (f ) is a neighborhood ofM in SpecR
}
.

Moreover, if
⋂

SpecR =⋂MaxR, then

O(M)= {f ∈R: V (f ) ∩MaxR is a neighborhood ofM in MaxR
}
.

Next we apply this result to the case of an intermediate algebra onX. LetA be such an
algebra, andf ∈A. If we identify MaxA with βX, then

V (f )∩MaxA= {p ∈ βX: f ∈Mp
A

}
.

According to Corollary 3.9,f ∈ Mp
A if and only if ZA(f ) ⊆ Up or, equivalently,p ∈

clβXZA(f ). Hence,

V (f )∩MaxA= clβXZA(f ).

Also,
⋂

SpecA=⋂MaxA= {0}. Therefore,

O
p
A =O(Mp

A)

= {f ∈A: clβXZA(f ) is a neighborhood ofp in βX
}

= {f ∈A: p ∈ intβX clβXZA(f )
}
.

Of course, clβXZC(f )= clβX Z(f ). But, forf in an arbitrary intermediate algebraA, if
Z(f )= ∅ andf is not a unit ofA, then clβXZA(f ) 6= clβX Z(f ). So that, in general, the
inclusion clβX Z(f ) ⊆ clβXZA(f ) may be proper. Nevertheless, according to the above
geometric description ofOp

A, the algebraic equality

O
p
A =Op ∩A, for everyp ∈ βX,

is equivalent to the following geometric one:

intβX clβXZA(f )= intβX clβX Z(f ), for everyf ∈A.
Let us give a direct proof of the latter equality. IfV is an open neighborhood ofp in βX

that is contained in clβXZA(f ), thenV ∩X ⊆⋂ZA(f ). We already know that, for any
ε > 0,Eε(f ) ∈ZA(|f |)=ZA(f ). So that⋂

ZA(f )⊆
⋂{

Eε(f ): ε > 0
}⊆Z(f ).

Therefore,V ∩X ⊆Z(f ), and sop ∈ intβX clβX Z(f ). This shows that

intβX clβXZA(f )⊆ intβX clβX Z(f ).

The other inclusion is immediate.
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4. Intersection of all the free maximal ideals

Let A be an intermediate algebra onX. We shall temporarily denote byAF the
intersection of all the free maximal ideals inA, i.e.,

AF =
⋂{

M
p
A: p ∈ βX−X}.

Our main purpose in this section is to achieve a topological description of the functions
in AF . In the extreme casesA= C∗(X) orA= C(X), the functions that belong to all the
free maximal ideals have already been described, though imposing some conditions onX.
It is an easy exercise [6, 7F] to see that the intersection of all the free maximal ideals in
C∗(X) is the setC∞(X) of all functions inC(X) that vanish at infinity (i.e., allf in C(X)
such that{x ∈X: |f (x)|> 1/n} is compact for everyn ∈N). On the other hand, it is not
a trivial result that, forX realcompact, the intersection of all the free maximal ideals in
C(X) is the setCK(X) of all continuous functions with compact support (see [6, 8.19]).

Let us show how the extreme cases delimit our object. We shall see that

CK(X)⊆ C(X)F ⊆AF ⊆ C∗(X)F = C∞(X).
Let f ∈ CK(X), andp ∈ βX − X. Clearly,p ∈ clβX Z(f ) or, equivalently,f ∈Mp .

This shows thatCK(X) ⊆ C(X)F . Assume now thatB is an intermediate algebra onX
containingA. It only rest to prove thatBF ⊆AF . We have already seen thatf ∗(p)= 0 for
f ∈Mp

A. So that, forf ∈AF , f ∗ vanish onβX−X, and sof ∈ C∞(X)⊆ C∗(X). Thus,
AF ⊆ C∗(X). Finally, if f ∈ BF andp ∈ βX−X, thenf ∈Mp

B and alsof ∈C∗(X)⊆A,
so thatf ∈Mp

B ∩A⊆Mp

A . This shows thatBF ⊆ AF .
For our purpose, it will be useful to take into account the representation of the

intermediate algebraA as a ring of fractions ofC∗(X). Let us recall that ifU(A) is the set
of units ofA andSA =U(A)∩C∗(X), thenA= S−1

A C∗(X).

Lemma 4.1. LetA be an intermediate algebra onX, andSA =U(A)∩C∗(X). Then

A=
{
f ∈ C(X): |f |6

∣∣∣∣1g
∣∣∣∣ for someg ∈ SA

}
.

Proof. If |f | 6 |1/g| for someg ∈ SA, then f ∈ A, sinceA is an absolutely convex
subalgebra ofC(X) and 1/g ∈ A. Conversely, iff ∈ A, then (1 + f 2)−1 ∈ SA, and
|f |6 1+ f 2= 1/(1+ f 2)−1. 2

Next we shall give a new description of the zero-sets inZA(f ).
Forf,g ∈ C(X), it will be useful to write

Eg(f )=
{
x ∈X: |f (x)|6 |g(x)|},

Eg(f )= {x ∈X: |f (x)|> |g(x)|}.
Proposition 4.2. Let A be an intermediate algebra onX, E ∈ Z(X), and f ∈ A. The
following statements are equivalent:

(1) E ∈ZA(f ).
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(2) |f |> |g| onEc, for someg ∈ SA.
(3) E ⊇Eg(f ), for someg ∈ SA.

Proof. Assume thatE ∈ZA(f ). Then there existsh ∈A such thatf h= 1 onEc. By the
previous lemma,|h|6 |1/g|, for someg ∈ SA. Hence|f | = |1/h|> |g| onEc. This shows
that (1) implies (2). Next we shall prove that (2) implies both (1) and (3). Suppose that
|f |> |g| onEc , for someg ∈ SA. On the one hand, sinceg is a unit ofA, g is regular on
Ec and, by Lemma 2.2(d),E ∈ZA(f ). On the other hand,E ⊇ {x ∈X: |f (x)|< |g(x)|}
and, asg is never zero, the last set contains{x ∈ X: |f (x)|6 |12g(x)|} = Eg/2(f ). Thus
E ⊇Eg/2(f ) and, indeed,12g ∈ SA. Finally, it is clear that (3) implies (2).2

We shall use the concept of asmallset.

Definition 4.3. Let E be a subset ofX. It is said thatE is a small set if every zero-set
contained inE is compact.

Following Redlin and Watson, we write

K= {E ∈ Z(X): Ec is small
}
.

One can easily see that

K=
⋂{
Up: p ∈ βX−X},

and so

Z−1
A (K)=

⋂{
M
p
A: p ∈ βX−X}.

Theorem 4.4 (see also [1, Theorem 2.2]).LetA be an intermediate algebra onX, and let
SA =U(A)∩C∗(X). A functionf ∈A is in

⋂{Mp

A: p ∈ βX−X} if and only ifEg(f ) is
compact for everyg ∈ SA.

Proof. Assume thatEg(f ) is not compact for someg ∈ SA. Then there existsp ∈
clβX Eg(f ) such thatp /∈X. By Proposition 4.2,Eg/2(f ) ∈ZA(f ). Sinceg is never zero,
the zero-setsEg(f ) andEg/2(f ) are disjoint, and so their closures inβX are disjoint too.
Asp ∈ clβX Eg(f ), it follows thatp /∈ clβX Eg/2(f ). HenceZA(f ) is not contained inUp
or, equivalently,f /∈Mp

A.
Suppose now thatEg(f ) is compact for everyg ∈ SA. We shall see thatZA(f )⊆K. Let

E be a zero-set inZA(f ). By Proposition 4.2, there existsg ∈ SA such that|f |> |g| on
Ec, and soEc ⊆Eg(f ). SinceEg(f ) is compact, any zero-set contained inEc is compact
too. Therefore,Ec is small. 2
Remark 4.5. Let A be an intermediate algebra onX, andf ∈ A. If h is a unit ofA,
andEg(f ) is compact for everyg ∈ SA, thenEh(f ) is compact too. Notice that, for
h a unit of A, the functiong = h2/(1+ h2) is a bounded unit, and|g| 6 |h|. Hence
g ∈ SA =U(A)∩C∗(X), andEh(f )⊆Eg(f ).
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It follows from the previous theorem that⋂{
M∗p: p ∈ βX−X}= C∞(X),

whereC∞(X) denotes the set of functions inC(X) that vanish at infinity.
Next we shall pay some attention to the caseA= C(X).

Corollary 4.6 [6, 4E.2].A functionf ∈ C(X) is in
⋂{Mp: p ∈ βX −X} if and only if

every zero-set disjoint fromZ(f ) is compact.

Proof. Assume there exists a noncompact zero-setZ(h) disjoint from Z(f ), and take
g = (|h| + |f |)∧ 1. If x ∈ Z(h), then|g(x)|6 |f (x)|, whenceZ(h)⊆Eg(f ). SinceZ(h)
is not compact,Eg(f ) cannot be compact either. Conversely, suppose now thatf /∈Mp

for somep ∈ βX−X, that is,p /∈ clβX Z(f ). There existsh ∈C∗(X) such thatZ(hβ) is a
neighborhood ofp in βX disjoint fromZ(f ). ThenZ(h) is a zero-set disjoint fromZ(f ),
and it is not compact becausep ∈ clβX Z(h). 2

Now we shall recover the classical result [6, 8.19]. Recall thatCK(X) is the set of all
functions inC(X) with compact support.

Corollary 4.7. If X is a realcompact space, then⋂{
Mp: p ∈ βX−X}= CK(X).

Proof. The inclusionCK(X)⊆⋂{Mp: p ∈ βX −X} always holds. Letf ∈ C(X) such
thatf /∈CK(X). SinceX is realcompact, there is a noncompact closed subsetS ofX that is
completely separated fromZ(f ) (as it is shown in [6, 8.19]), and so there is a noncompact
zero-set containingS and disjoint fromZ(f ). Hencef /∈⋂{Mp: p ∈ βX−X}. 2

For a singly generated intermediate algebra, the characterization of the functions in all
the free maximal ideals can be simplified a bit more, as it is shown in the next corollary.

Let f, l ∈C(X), with l > 0 andZ(l)= ∅. Forn ∈N, we shall write

Fn(f )=
{
x ∈X: |f (x)|> 1

ln(x)

}
.

Corollary 4.8. Let A be a singly generated intermediate algebra onX, A = C∗(X)[l],
with l > c > 1. A functionf ∈ A is in

⋂{Mp
A: p ∈ βX − X} if and only if Fn(f ) is

compact for alln ∈N.

Proof. Assume thatf ∈⋂{Mp
A: p ∈ βX−X}. The function 1/ln is in SA, andFn(f )=

E1/ ln(f ). By Theorem 4.4,Fn(f ) is compact. Conversely, suppose now thatFn(f ) is
compact for alln. Letg be a function inSA. According to Section 1.5,|g|> 1/ln for some
n. Then

Eg(f )= {x ∈X: |f (x)|> |g(x)|}⊆ {x ∈X: |f (x)|> 1

ln(x)

}
= Fn(f ),
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and the last set is compact. HenceEg(f ) is compact too. It follows from Theorem 4.4 that
f ∈⋂{Mp

A: p ∈ βX−X}. 2
Remark 4.9 (see [1, 3.4]). LetX be a locally compact andσ -compact, but not compact
space, and letl be as in the corollary. If we further assume thatl is aperfectmapping (i.e.,
l−1(K) is compact for each compactK ⊆ R), then the function 1/el belongs to all the free
maximal ideals ofC∗(X)[l], yet it does not belong toCK(X).

Next we shall examine the classical intermediate algebra onN studied by Brooks and
Plank in [3,12], respectively.

Let H denote the intermediate algebra onN consisting of those functionsf ∈ C(N)
such that

lim sup
n→∞

n
√|f (n)|6 1.

Forf ∈ C(N), let f̄ (n)= n
√|f (n)|. One can see in [12, 7.1] that

f ∈H if and only if f̄ ∈C∗(N) andf̄ β 6 1 onβN−N,
wheref̄ β is the continuous extension of̄f to βN. Plank also shows there that a function
f ∈H is a unit ofH if and only ifZ(f )= ∅ andf̄ β = 1 onβN−N.

Let us now recover Corollary 2.3.1 in [3], which is obtained there as a consequence of a
theorem that was shown to be wrong by Plank in [12, 7.6].

Corollary 4.10 [3, 2.3.1].A functionf ∈ H is in
⋂{Mp

H : p ∈ βN − N} if and only if
f̄ β(p) < 1 for everyp ∈ βN−N.

Proof. Plank shows in [12, 7.2] thatf is in
⋂{Mp

H : p ∈ βN − N} if f̄ β(p) < 1 for
everyp ∈ βN − N. Let us prove the converse. Assume there existsp ∈ βN − N such
that f̄ β(p)= 1. We shall exhibit a unitg of H such thatEg(f ) is not compact. It follows
from the assumption that there is a sequence(nk) in N such that|f̄ (nk) − 1| 6 1/2k,
andnk 6= nj for k 6= j . SetD = {nk: k = 1,2, . . .}. We define the functiong as follows:
g(n) = f (n) for n ∈D, andg(n) = 1 for n /∈ D. Notice thatZ(g) = ∅, sincef is never
zero onD. Also,g ∈H , since|g|6 |f |∨1∈H . Next we shall see that̄gβ = 1 onβN−N.
For k ∈ N, setDk = {k, k + 1, . . .}. Clearly,ḡβ (q)= 1 if q ∈ clβN(N−D). On the other
hand, ifq ∈ clβND, thenq ∈ clβNDk , and so

ḡβ(q) ∈ clR ḡ(Dk)= clR f̄ (Dk)⊆
[
1− 1

2k
,1+ 1

2k

]
.

As this happens for everyk ∈ N, ḡβ(q) = 1. This shows, according to Plank’s
characterization of the units ofH , thatg is such a unit. Certainly, the setEg(f ) = {n ∈
N: |f (n)|> |g(n)|} is not compact because it contains the infinite setD. Finally, it follows
from Theorem 4.4, taking into account Remark 4.5, thatf does not belong to all the free
maximal ideals ofH . 2
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For any intermediate algebraA onX, and any maximal idealM of A, the residue class
field A/M contains a canonical copy ofR: the set of residual classes of the constant
functions. When this canonical copy ofR is the entire fieldA/M, one says thatM is a
real maximal ideal ofA. We shall denote byυAX the set of all real maximal ideals ofA.
The spaceυAX can be identified to the space of those points inβX =MaxA to which all
the functions inA can be continuously extended, i.e.,

υAX =
⋂
{υfX: f ∈A}.

HenceA ⊆ C(υAX). With this notation,υCX = υX (the Hewitt realcompactification of
X) andυC∗X = βX. It is well known thatC(X) = C(υX) andC∗(X) = C(βX), but, in
general, the inclusionA⊆ C(υAX) may be proper (see [5, 4.3 and 2.3]).

Definition 4.11. Let A be an intermediate algebra onX. Following Redlin and Watson,
we shall say that the spaceX is A-compactif the image of the canonical immersion
X→MaxA, x 7→Mx

A, is the setυAX of all real maximal ideals ofA.

In view of this definition, theC-compact spaces are the realcompact spaces while
the C∗-compact spaces are the compact ones. Clearly, ifX is A-compact andB is an
intermediate algebra onX containingA, thenX is B-compact.

Proposition 4.12. LetA be a singly generated intermediate algebra onX, A= C∗(X)[l],
withZ(l)= ∅ and1/l ∈C∗(X). The spaceX isA-compact if and only if1/l ∈C∞(X).

Proof. Observe thatυAX = υlX = coz(1/l)β . 2
Corollary 4.13. The following statements are equivalent:

(1) X is locally compact andσ -compact.
(2) X supports a continuous function that has no zeros, but vanishes at infinity.
(3) X isA-compact, for some singly generated intermediate algebraA.

Proof. The equivalence of (1) with (2) is well known. The rest follows from the previous
proposition. 2
Remark 4.14. Let A be an intermediate algebra onX. It was stated in [4, 5.7] that if
X is anA-compact space, then the intersection of all the free maximal ideals inA is
CK(X). This is false. LetH be as in Corollary 4.10. On the one hand, the spaceN is H -
compact, since the functiong(n)= n is inH andN= υgN. On the other hand, the function
f (n)= n/2n belongs to all the free maximal ideals ofH , since limn→∞ f̄ (n)= 1/2> 1.
Nevertheless,f /∈ CK(N). The error was also pointed out by Acharyya, Chattopadhyay
and Ghosh in [1, 3.4]. They consideredA= C∗(N)[g] and showed that the function 1/eg

belongs to all the free maximal ideals inA.

Note. This work was presented in Morelia, Michoacan, Mexico in the Second Ibero-
American Conference on Topology and its Applications in March 1997. In May 1997 we
found the paper [1] by Acharyya, Chattopadhyay and Ghosh.
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