Chapter Fifiteen

Surfaces Revisited

15.1 Vector Description of Surfaces
We look now at the very special case of functions D ® R*, where D1 R?isa

nice subset of the plane. We suppose r is a nice function. As the point (s,t) T D moves
around in D, if we place the tail of the vector r(s,t)at the origin, the nose of this vector
will trace out a surface in three-space. Look, for example at the function D ® R?,
where r(s,t) =si+tj+ (s> +t?)k, and D ={(s,t)T RZ-1£s,t£1}. It shouldn't be
difficult to convince yourself that if the tail of r(s,t) is at the origin, then the nose will be
on the paraboloid z = x? +y?, and for all (s,t)T D, we get the part of the paraboloid
above the square -1£ x,y £1. It is sometimes helpful to think of the function r as

providing a map from the region D to the surface.

=t

The vector function ris called a vector description of the surface. This is, of course,

exactly the two dimensional analogue of the vector description of a curve.
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For a curve, ris a function from a nice piece of the real line into three space; and for a
surface, r is a function from a nice piece of the plane into three space.

Let's look at another example. Here, let

r(s,t) =coss sinti+sins sintj +costk,

for OEt£p and O£ s £ 2p. What have we here? First, notice that

[r(s,t)|”> = (coss sint)® +(sins sint)? + (cost)?
=sin?t (cos’s +sin?s) +cos’ t

=sin®t +cos’t =1

Thus the nose of ris always on the sphere of radius one and centered at the origin.

Notice next, that the variable, or parameter, s is the longitude of r(s,t); and the variable t
is the latitude of r(s,t). (More precisely, tis co-latitude.) A moment's reflection on this

will convince you that as ris a description of the entire sphere. We have a map of the

sphere on the rectangle

L
-2
=
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Observe that the entire lower edge of the rectangle (the line from (0,0)to (2p,0)) is

mapped by r onto the North Pole, while the upper edge is mapped onto the South Pole.

Let r(s,t), (s,t)T D be avector description of a surfaceS, and let p =r(5,{) be

a pointon S. Now, c(s) =r(s,f) is a curve on the surface that passes through he point p.

ro ... . . .
1 (5,1) is tangent to this curve at the point p. We see in the same

Thus the vector E =—
ds 9s

r .
way that the vector %(S,f) is tangent to the curve r(5,t) at p.
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At the point p =r(5,f) on the surface S, the vectors % and % are thus tangent to S.

r, qr .
Hence the vector ﬂ— ﬂ— isnormal to S.
s It

Example

Let's find a vector normal to the surface given by the vector description

r(s,t) =si+tj+(s? +t?)k ata point. We need to find the partial derivatives 1% and

1.

Is’

1 i +2sk, and ﬂ:j+2tk.
S fit

The normal N is

=

k
N = 2 =-2si - 2tj+K.

S

P O .

i
r,%:l
0

=

2t

Meditate on the geometry here and convince yourself that this result is at least

reasonable.

Exercises

1. Give a vector description for the surface z = .,/x +2y?, X,y 3 0.
2. Give a vector description for the ellipsoid 4x* +y? + 8z =16.

3. Give a vector description for the cylinder x> +y* =1.
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10.

Describe the surface given by r(s,t) = scosti +ssintj +sk, 0O£Et£2p, -1£s£1.
Describe the surface given by r(s,t) = scosti +ssintj +s’k, 0Et£2p, 1£s£2.

Give a vector description for the sphere having radius 3 and centered at the point

(1,2,3).

Find an equation (l.e., a vector description) of the line normal to the sphere

a a a
x? +y? +z2% =a? atthe point (—=,—,- —).
NERNERING

Find a scalar equation (l.e., of the form f(x,y,z) =0) of the plane tangent to the

. .a a a
sphere x? +y? +z? =a? at the point (—=,—,- —).

3B B

Find all points on the surface r(s,t) = (s*+t?)i +(s+3t) j - stk at which the tangent

plane is parallel to the plane 5x - 6y +2z =7, or show there are no such points.

Find an equation of the plane that contains the point (1,-2,3) and is parallel to the

plane tangent to the surface r(s,t) = (s+t)i +s”j- 2t’k at the point (1, 4,-18).

15.2 Integration

Suppose we have a nice surface S and a function f:S® R defined on the surface.

We want to define an integral of fon S as the limit of some sort of Riemann sum in the

way in which we have already defined various integrals. Here we have a slight problem in

that we really are not sure at this point exactly what we might mean by the area of a
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small piece of surface. We assume the surface is sufficiently smooth to allow us to
approximate the area of a small piece of it by a small planar region, and then add up these
approximations to get a Riemann sum, etc., etc. Let's be specific.

We subdivide S into a number of small pieces S,,S,,...,S, each having area DA,
select points r” =(x.",y",z")1 S,, and form the Riemann sum
0

R=a f(r)DA.

=1

Then, of course, we take finer and finer subdivisions, and if the corresponding Riemann

sums have a limit, this limit is the thing we call the integral of fon S: ¢)f (r)dS.
S

Now, how do find such a thing. We need a vector description of S , say
rrD® r(D)=S. The surface S is subdivided by subdividing the region DI R? into

rectangles in the usual way:
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The images of the vertical lines, s = constant, form a family of "parallel™ curves on the
surface, and the images of the horizontal lines t = constant, also form a family of such

curves:

Let's look closely at one of the subdivisions:

pist Lst)

rist)

rist

plsttAt)
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We paste a parallelogram tangent to the surface at the point r(s,t.) as shown. The

lengths of the sides of this parallelogram are and

E—(s., t)Ds,

—(s,, t.)Dt, ‘ The area

is then 8 (sI ,t.)Ds %‘ﬂ (sI DY 3 and we use the approximation

DA»

= HORIL-UCS ,)Q‘DsDt
in the Riemann sums:

R= én f(r(s 'ti))g?}_;(si 7ti)%, g}I_rt-(si ,ti)%DS Dt

i=1

These are just the Riemann sums for the usual old time double integral of the function

F(s,t)=§ f(r(si,ti»‘gé%(si,ti)g' a[—:(si,ti)g‘

over the plane region D. Thus,

ax _ as fir L
(;Df (nds = EDf(r(s, t))‘E (s,1) ﬁ(s, t)|dA

Example

Let's use our new-found knowledge to find the area of a sphere of radius a .

Observe that the area of a surface S is simply the integral ¢gyiS. In the previous section,
S

we found a vector description of the sphere:
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r(s,t) =acoss sinti +asins sint j+acostk,

O£t£p and O£ s £ 2p . Compute the partial derivatives:

=

r
S

=-asins sinti +acoss sintj, and

=

Ir . ] . )
—t:acoss costi+asins cost j- asintk

Then

i j k
r, fr . . .
ﬂ— 1111—t:a2-sms sint cosssint 0

fis . .
coss cost  sinscost -Sin

=a’[- coss sin’ ti- sins sin’ tj - sintcostk]
Next we need to find the length of this vector:

fir, 9ir

TS Tt =a’[cos’ s sin* t+sin®s sin*t +sin® tcos’ t]*
s

=a?[sin® t +sin? t cos? t]¥? = a?[sin®t(sin?t + cos? t)]*?

=a’[sint|

Hence,

dA = cgp’lsin t|dA

D

N\ N ﬂr, T[r
Area:(ﬁiS:d— —_—
s oils Tt
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p2p
N\

=a’Qysint|dsdt
00
p
=2p a’yintdt =4pa’
0

Another Example

Let's find the centroid of a hemispherical shell H of radius a. Choose our

coordinate system so that the shell is the surface x? +y? +z2 =a?, z3 0. The centroid

(R,y,2)is given by

s @vds yds
X‘ = H\\ y = H\\ and z = li\
ars s an's
H H H

First, note from the symmetry of the shell that x =y =0. Second, it should be clear

from the precious example that (gylS =2p a?. This leaves us with just integral to
H

evaluate:

(ydS . Most of the work was done in the example before this one. This hemisphere has
H

the same vector description as the sphere, except for the fact that the domain of r is the

rectangle O£ s £ 2p, 0£t£%. Thus
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p/22p
dS = a’ cost|— = —|dsdt
G2 00 s 1
p/22p p/2
=a® )cyost sintdsdt =2pa’ yost sintdt
0 0 0

. p/2
=pa® sm2t|0 =pa?

3

pa

And so we have 7 = >
2pa

a :
= TR Is this the result you expected?

Yet One More Example
Our new definition of a surface integral certainly includes the old one for plane

surfaces. Look at the "surface™ described by the vector function
r(q,r)=rcosqi+rsinqj,

with r defined on some subset D of the g - r plane. For what we hope will be obvious

reasons, we are using the letters g and r instead of s and t. Now consider an integral
af (x,y)ds
S

over the surface S described by r. We know this integral to be given by

N\ N\ - ﬂrr ﬂr
f (X, y)dS = anf (rcosg,rsing )l— = —IdA.
(SD (x,y) cDD (rcosq q)‘.ﬂq ﬂr}d

Let's find the partial derivatives:
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ir . )
— =-rsingi +rcosqj, and
19 q q)

qir .
—r:cosq|+smqj.
Thus,
i j k
E’ﬂ:-rsinq rcosq O[=-rk,
g Ir )
cosq sing O
and we have ﬂ H =r. Hence,
g 9r

a@f (x,y)dS = g@f (rcosq, rsing )‘% ’ %)dA = @f (rcosq ,rsing)rdA .
S D

D
This should look familiar!

Exercises

11. Find the area of that part of the surface z = x? + y? that lies between the planes z = 1

andz = 2.
12. Find the centroid of the surface given in Problem 11.

13. Find the area of that part of the Earth that lies North of latitude 45°. (Assume the

surface of the Earth is a sphere.)

14. A spherical shell of radius a is centered at the origin. Find the centroid of that part of

it which is in the first octant.
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15.

16.

17.

18.

a)Find the centroid of the solid right circular cone having base radius a and altitude h.

b)Find the centroid of the lateral surface of the cone in part a).

Find the area of the ellipse cut from the plane z = 2x by the cylinder x* +y* =1,

Evaluate qgx+Yy+2)dS, where S is the surface of the cube cut from the first octant
S

by the planesx=a,y=a,andz=a.

Evaluate c‘ﬁ(,’yzﬂ dS, where S is the surface cut from the paraboloid
S

y?> +4z =16 by the planes x=0,x=1,and z = 0.
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