Chapter 3

Connections

3.1 Frames

As we have already noted in chapter 1, the theory of curves in R? can be elegantly formulated by
introducing orthonormal triplets of vectors which we called Frenet frames. The Frenet vectors are
adapted to the curves in such a manner that the rate of change of the frame gives information about
the curvature of the curve. In this chapter we will study the properties of arbitrary frames and their
corresponding rates of change in the direction of the various vectors in the frame. This concepts will
then be applied later to special frames adapted to surfaces.

3.1 Definition A coordinate frame in R” is an n-tuple of vector fields {eq,...,e,} which are
linearly independent at each point p in the space.

In local coordinates z', ... z", we can always express the frame vectors as linear combinations of
the standard basis vectors

€; = ajAjZ», (31)

where 0; = % We assume the matrix A = (Aji) to be nonsingular at each point. In linear
algebra, this concept 1s referred to as a change of basis, the difference being that in our case, the
transformation matrix A depends on the position. A frame field is called orthonormal if at each
point,
< €4,€5 >= (5” (32)
Throughout this chapter, we will assume that all frame fields are orthonormal. Whereas this
restriction 1s not necessary, it is very convenient because it simplifies considerably the formulas to
compute the components of an arbitrary vector in the frame.

3.2 Proposition If {ey,...,e,} is an orthonormal frame, then the transformation matrix is
orthogonal (ie: AAT = 1) '
Proof: The proof is by direct computation. Let e; = 9;A%;,. Then

bij = <eie5>
= <845 04 >
= ARAY <O, 0>
= ARAL S
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34
= ARy
= A5(AT)jx.
Hence
(AT) el =
(AT)]kAkz’ =
ATA =

5
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Given a frame vectors e;, we can also introduce the corresponding dual coframe forms 8; by

requiring

0'(e;) = 6

since the dual coframe 1s a set of 1-forms, they can also be expressed in of local coordinates as

linear combinations

0' = B dz".
It follows from equation( 3.3), that
0'(e;) = Bjda*(9,A)
= BLALd"(0)
_ A
5. = BLA.

(3.3)

Therefore we conclude that BA = I, so B = A~' = AT. In other words, when the frames are

orthonormal we have

€

gi

A"
Al da*.

(3.4)

3.3 Example Consider the transformation from Cartesian to cylindrical coordinates
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Using the chain rule for partial derivatives, we have
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From these equations we easily verify that the quantities
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are a triplet of mutually orthogonal unit vectors and thus constitute an orthonormal frame.

3.4 Example TFor spherical coordinates( 2.20)

z = psinfcos¢
y = psinfsing
= pcosb,

the chain rule leads to

0 . 0 . .0 0
3_p = schosqSﬁ—x—i—smHsmqb%—|—cos€6—z
% = pcos@cosd);—x—i—pcosﬁsinqS;—y—|——psin95%
% = —psin@sinqS%—l—psin@cosqS;—y.
In this case, the vectors
0 = 2
1 = 3p
10
e = —=
: p 06
10
€3 = m% (35)

also constitute an orthonormal frame.

The fact that the chain rule in the two situations above leads to orthonormal frames is not
coincidental. The results are related to the orthogonality of the level surfaces x’ = constant. Since
the level surfaces are orthogonal whenever they intersect, one expects the gradients of the surfaces
to also be orthogonal. Transformations of this type are called triply orthogonal systems.

3.2 Curvilinear Coordinates

Orthogonal transformations such as Spherical and cylindrical coordinates appear ubiquitously in
mathematical physics because the geometry of a large number of problems in this area exhibit sym-
metry with respect to an axis or to the origin. In such situations, transformation to the appropriate
coordinate system often result in considerable simplification of the field equations involved in the
problem. It has been shown that the Laplace operator which enters into all three of main classical
fields, the potential, the heat and the wave equations, is separable in 12 coordinate systems. A sim-
ple and efficient method to calculate the Laplacian in orthogonal coordinates can be implemented
by the use of differential forms.

3.5 Example In spherical coordinates the differential of arc length is given by (see equation 2.21)
ds? = dp® + p?db* + p? sin? 0d¢?.
Let

o1 = dp
0> = pdo
6> = psinfde. (3.6)
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Note that these three 1-forms constitute the dual coframe to the orthonormal frame which just
derived in equation( 3.5). Consider a scalar field f = f(p,f,$). We now calculate the Laplacian
of f in spherical coordinates using the methods of section 2.4. To do this, we first compute the
differential df and express the result in terms of the coframe.

af = afd +8—fd9—|—8—qub
dp d¢
0 f 1 0 af 02 1 Jf 03
3p p@ﬁ +psm98¢>

The components df in the coframe represent the gradient in spherical coordinates. Continuing with
the scheme of section 2.4, we first apply the Hodge-* operator. Then we rewrite the resulting 2-form
in terms of wedges of coordinate differentials so that we can apply the definition of the exterior
derivative.

_ 3_f 2003 13f 1, p3 1 of 01 A 92
*df = 3p9 A6 399 NG +psm93¢> NG
= pzsinﬁg—idﬁ/\d(b—psinb’;g—gdp/\dqb—l—psinﬁ Hggd A df
. Of ., Of of
— 2 e _ -
= p sm@a df Ad¢p —sinf 39dp/\d¢+ ¢d pAdf
0 of 0 of 0 ,0f
dxdf = ap(p sm@a Ydp AdO A d¢ (sm@ag)dﬁ/\d /\d¢+3¢(3¢)d¢/\dp/\d6
2 0f af f
= 60— 9— dpNdONd
[sm ap(p a0 )+39( )+ 3(/)2] AdO N de.
Finally, rewriting the differentials back in terms of the the coframe, we get
_ 1 . 3f . 3f *f1 2 503
So, the Laplacian of f is given by
SO s IR PR
V= p? dp r Jp + p?sin b 39( )+ 0¢? (37)

The derivation of the expression for the spherical Laplacian through the use of differential forms
is elegant and leads naturally to the operator in Sturm Liouville form.

The process above can also be carried out for general orthogonal transformations. A change of
coordinates ' = z!(u*) leads to an orthogonal transformation if in the new coordinate system u*,
the line metric

ds® = g11(du)? + goo(du?)? + gaz(du®)? (3.8)

only has diagonal entries. In this case, we choose the coframe

= Voridu' = hidu’
= /g22du’ = hydu?
93 = \/g33dU3 = h3dU3
The quantities {hq, hs, hs} are classically called the weights. Please note that in the interest of

connecting to classical terminology we have exchanged two indices for one and this will cause small
discrepancies with the index summation convention. We will revert to using a summation symbol
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when these discrepancies occur. To satisfy the duality condition Hi(ej) = (5}, we must choose the
corresponding frame vectors e; according to

19 10
T g oul by out
19 10
T g 0w hy 0u?

19 10
€3 =

- /933 % B 73%
Gradient. Let f = f(2%) and ' = z*(u*). Then
of &
P
of out
Out Dk dx
af i
Out du
10s
- ht Jut
= e(f)0.

As expected, the components of the gradient in the coframe @° are the just the frame vectors

19 1 0 1 0
V= (h—a— h—a—h—a—> (3.9)
Curl. Let F = (Fy, Fs, F3) be a classical vector field. Construct the corresponding one form
F = F;0" in the coframe. We calculate the curl using the dual of the exterior derivative.

F = o'+ Fy0* + F30°
= (thl)dul + (thz)duz + (thg)dUS
= (hF)idui, where (hF); = i F;

df =

gi

L [ohF);  O(hF); i ;
dF = o) [ o du' A du
B 1 [O(hF); O(hF); i ;
o hzh] [ 3uj 8Ul d0 /\dg
s 1 9(hF);  O(hF);
— _ il gk — k
«dF = €9 [hihj[ 5 | 0 = (V% F)id".

Thus, the components of the curl are

( 1 6(h3F3) 6(h2F2) 1 6(h3F3) 6(h1F1) 1 6(h1F1) 6(h2F2)

- - . Nl
hahs™  Ou? 5 hihsl Bl T T, du? Jul ] ) (3:10)
Divergence. As before, let /' = F;# and recall that V - ' = *d * I'. The computation yields

r
*F

F10' 4+ Fa0? + F30°

FL0% A3 4+ a0 AGY + P50 A G2

= (hzhg,l‘?l)du2 Adud + (hlthz)du?’ Adul + (hlthg)dul A du?
O(hahsFy)  O(hihsFs)  9(hihaFs)

_ 1 2 3
dxdF = Sl + EPE + EE du” A du® A du”.
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Therefore,
1 8(h2h3F1) 8(h1h3F2) 8(h1h2F3)

F=xdx F =
v ¥ax h1h2h3 8U1 + 8U2 + 8U3

(3.11)

3.3 Covariant Derivative

In this section we introduce a generalization of directional derivatives. The directional derivative
measures the rate of change of a function in the direction of a vector. What we want is a quantity
which measures the rate of change of a vector field in the direction of another.

3.6 Definition Let X be an arbitrary vector field in R® . A map Vx : T(R") — T(R") is
called a Koszul connection if it satisfies the following properties.

1. Vix(Y) = fVxY,

2. Vixiaxs) =Vx,Y +Vx,Y,
3. Vx (Y1 +Y2) =VxVY, + VxYo,
4. VxfY = X(f)Y + fVxY,

for all vector fields X, Xy, X, Y, V1, Y5 € T(R"™) and all smooth functions f. The definition states
that the map Vx is linear on X but behaves like a linear derivation on Y. For this reason, the
quantity VxVY is called the covariant derivative of Y in the direction of X.

3.7 Proposition Let Y = f° 6‘2, be a vector field in R™ | and let X another C°° vector field.
Then the operator given by

VxY = X(f) (3.12)

0
EsE
defines a Koszul connection. The proof just requires verification that the four properties above are
satisfied, and it is left as an exercise. The operator defined in this proposition is called the standard
connection compatible with the standard Euclidean metric. The action of this connection on a
vector field Y yields a new vector field whose components are the directional derivatives of the
components of Y.

3.8 Example Let

0 0 o, 5 0
Then,
— 0 0
_ 2 2
VxY = X(a:)—ﬁx—i—X(xy)—@y
O PN T L N AL I

0 0
2 2 2
2z Ee + (zy” + 22 yz)ﬁy

3.9 Definition A Koszul connection V is compatible with the metric ¢(V, 2) =< Y, Z > if

Vx <Y, Z>=<VxY,Z>+<Y,VxZ>. (3.13)
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In Euclidean space, the components of the standard frame vectors are constant, and thus their
rates of change in any direction vanish. Let e; be arbitrary frame field with dual forms 6°. The
covariant derivatives of the frame vectors in the directions of a vector X, will in general yield new
vectors. The new vectors must be linear combinations of the the basis vectors

Vxer = wll(X)el —I—wzl(X)ez —|—w31(X)63
Vxes = wlz(X)el +w22(X)62 —|—w32(X)63
Vxes = w13(X)61 —|—w23(X)62 —|—w33(X)63 (3.14)

The coefficients can be more succinctly expressed using the compact index notation

Vxe: = ejwl(X) (3.15)

It follows immediately that ' o
w]»(X) = HJ(VXC‘Z'). (316)

K3

Equivalently, one can take the inner product of both sides of equation (3.15) with ej to get

<Vxeier > = <ejw(X) e >
= WH(X) <ej e >
= wi(X)gjn
Hence, .
< Vxe; ex >= w;ﬂ(X) (317)

The left hand side of the last equation i1s the inner product of two vectors, so the expression
represents an array of functions. Consequently, the right hand side also represents an array of
functions. In addition, both expressions are linear on X, since by definition Vi is linear on X. We
conclude that the right hand side can be interpreted as a matrix in which, each entry is a 1-forms
acting on the vector X to yield a function. The matrix valued quantity wij is called the connection
form .

3.10 Definition Let Vx be a Koszul connection and let {e;} be a frame. The Christoffel
symbols associated with the connection in the given frame are the functions Fkij given by

Ve e; =TF e 3.18
) 17

The Christoffel symbols are the coefficients which give the representation of the rate of change of
the frame vectors in the direction of the frame vectors themselves. Many physicists therefore refer
to the Christoffel symbols as the connection once again giving rise to possible confusion. The precise
relation between the Christoffel symbols and the connection 1-forms is captured by the equations

k k
or equivalently

Wk =T%,60 (3.20)

In a general frame in R™ there are n? entries in the connection 1-form and n3 Christoffel symbols.
The number of independent components is reduced if one assumes that the frame is orthonormal.

3.11 Proposition Let and e; be an orthonormal frame and Vx be a Koszul connection compatible
with the metric . Then
Wi = —Wij (321)
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Proof: Since it is given that < ¢;, e; >= d;;, we have

0 = vx < e€5,e5 >
< vxei,e‘j >+ < ei,vxej >
= < w’jek,ej >4 < ei,w’;ek >

k k
Wi <eg,ej > Fwy < e e >
k k
= Wigkj + Wik

= Wy T Wiy
thus proving that w is indeed antisymmetric.

3.12 Corollary The Christoffel symbols of a Koszul connection in an orthonormal frame are
antisymmetric on the lower indices; that is

ko _ k
I =-T%;. (3.22)

We conclude that in an orthonormal frame in R™ the number of independent coefficients of the
connection 1-form is (1/2)n(n — 1) since by antisymmetry, the diagonal entries are zero, and one
only needs to count the number of entries in the upper triangular part of the n x n matrix w;;
Similarly, the number of independent Christoffel symbols gets reduced to (1/2)n?(n—1). In the case
of an orthonormal frame in R? | where g;; is diagonal, wij 1s also antisymmetric, so the connection
equations become

. el 0 whi(X)  wh(X) e
Vx | es | = | —wh(X) 0 wi(X) es | . (3.23)
es3 —wh(X) —wi(X) 0 e3

Comparing the Frenet frame equation( 1.27), we notice the obvious similarity to the general frame
equations above. Clearly, the Frenet frame is a special case in which the basis vectors have been
adapted to a curve resulting in a simpler connection in which some of the coefficients vanish. A
further simplification occurs in the Frenet frame since here the equations represent the rate of change
of the frame only along the direction of the curve rather than an arbitrary direction vector X.

3.4 Cartan Equations

Perhaps, the most important contribution to the development of Differential Geometry is the work
of Cartan culminating into famous equations of structure which we discuss in this chapter.

First Structure Equation

3.13 Theorem Let {e;} be a frame with connection wji and dual coframe 6. Then

O =df’ +w'; AT =0 (3.24)

Proof: Let '
€ = ajA]z"

be a frame, and let 6 be the corresponding coframe. Since Hi(ej), we have

0" = (A™1) dat.
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Let X be an arbitrary vector field. Then

Vxe: = Vx(9;4%)
ej""ji(X) = 3jX(Aji)
B;d(A%)(X)
= ex(AT5d(A)(X)
XY = (ATHEA(A)(X)

Hence,

or in matrix notation

w=A"1dA
On the other hand, taking the exterior derivative of 6%, we find

dg' = d(A™) Adad
d(A™Y A AT
o = d(AHANG.

But, since A71A = I, we have d(A=')A = —A71dA = —w, hence
df = —w NG,
In other words

0" +w'; AT =0

Second Structure Equation

41

(3.25)

(3.26)

Let 6" be a coframe in R™ with connection w’;. Taking the exterior derivative of the first equation

of structure and recalling the properties (2.34) we get
d(d6’) + d(w'; A7) =0
dw'; N7 — W' A dB =0,
Substituting recursively from the first equation of structure, we get
dw'; N0 — 'y A (—w? ABF) =0
dw'; N7 + W'y /\wl} ANGT =0
(do'; + w'y AWS) NG =0
dwij + W /\wl} =0.

We now introduce the following

3.14 Definition The curvature € of a connection w 1s the matrix valued 2-form

(3.27)

3.15 Theorem Let 8 be a coframe with connection w in R™ . The the curvature form vanishes

Q=dw+wAw=0

(3.28)
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Proof: Given the there is a non-singular matrix A such that § = A='dz and w = A~'d A, have
dw=d(A™ ) AdA
On the other hand,
wAw = (ATHdA) A (ATHdA)
—d(ATYYANATHA
—d(AT)(AATYY A dA
= —d(A™Y) AdA.

Therefore, dQ = —w A w.

Change of Basis

We briefly explore the behavior of the quantities @ and Qij under a change of basis.
Let e; be frame with dual forms 6, and let & another frame related to the first frame by an
invertible transformation. '
€; = ejB]Z», (329)
which we will write in matrix notation as € = eB. Referring back to the definition of connec-
tions (3.15), we introduce the covariant differential ¥V by the formula

Ve, = € ® wji
= ejwj'
Ve = ew (3.30)

where once again, we have simplified the equation by using matrix notation. This definition is
elegant because it does not explicitly show the dependence on X in the connection (3.15). The idea
of switching from derivatives to differentials is familiar from basic calculus, but we should point out
that in the present context, the situation is more subtle. The operator V here maps a vector field
to a matrix-valued tensor of rank 751, Another way to view the covariant differential, is to think
of V as an operator such that if e is a frame, and X a vector field, then Ve(X) = Vye. If fis a
function, then Vf(X) = Vx f = df(X), so that Vf = df. In other words, V behaves like a covariant
derivative on vectors, but like a differential on functions. We require V to behave like a derivation
on tensor products

V(T @Te) =VTy @Ty+ Ty @ VT3 (3.31)
Taking the exterior differential of (3.29) and using (3.30) recursively, we get

Ve = Ve@B+eVB
= (Ve)B +e(dB)
= ewB+e(dB)
= eB 'wB+4+eB 'dB
= ¢B 'wB+ B7'dB]

w

sl

provided that the connection @ in the new frame € 1s related to the connection w by the transfor-
mation law

w=B"'wB+ B 'dB. (3.32)

It should be noted than if e is the standard frame e; = 9; in R? | then Ve = 0, so that w = 0. In this
case, the formula above reduces to @ = B~'dB, showing that the transformation rule is consistent
with equation (3.25).



