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0.1 Where are truth-functions of connectives from?

Obviously, the truth-functions should behave classically on extremal truth
values 0,1 and should satisfy some natural monotonicities (the truth function
of conjunction (disjunction) should be non-decreasing in both arguments;
the truth function of implication should be non-decreasing in the second
argument but non-increasing in the first, i.g. the less true is the antecedent
@ and the more is true the succedent 3 the more is true the implication
@ — . (—) should be non-increasing.) This leads to the notion of a t-norm:
(cf. [43]) this is an operation * : [0,1]*> — [0, 1] which is commutative and
associative, non-decreasing in both arguments and having 1 as unit element
and 0 as zero element, i.c.

THRY=YkT
(x*xy)*kz=uax*(y*z)
<2 andy <y impliesx xy < 2’ *xy’
Iz =2, 0xz=0.
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We shall only work with continuous t-norms as good candidates for
truth functions of a conjunction. FEach t-norm ¢ determines uniquely its
corresponding implication = (not necessarily continuous) satisfying, for all
z,y,z € [0,1]

z<z=yiff cxz <{y.

For each such system we define an evaluation to be a mapping e assigning
to each atom p its truth degree e(p), 0 < e(p) < 1; a I-tautology is a formula
whose value is 1 for each evaluation.

We present three outstanding examples:

(1) Lukasiewicz logic [25] with the conjunction

x % y =max(x+y—1,0) and the corresponding implication

r=>y=1forx <yand = y=1—x+y otherwise;

(2) Gédel logic [9] will the conjunction

x*y = muin(z,y) and the corresponding implication

r=y=1iff  <yand z = y = y otherwise;

(3) Product logic will the conjunction zxy = .y (product) and v = y =1
iff « <y, 2= y=y/x otherwise.

Negation (—) is defined as follows: (—)a =a = 0

One can show (see e.g. [33]) that each t-norm is composed in a certain
way from these three examples. Thus our question reads: what is the logic
of these examples?

We show that min and max are definable from * and =-.

For each continuous t-norm *, the following identities are true in L(*):

(i) min(z,y) = * (z = y),

(il) max(z,y) = min((z = y) =y, (y = ¢) = ).

In the next subsection we shall present a basic fuzzy logic BL. Formulas
provable in BL are 1-tautologies for each continuous t-norm. We shall formu-
late a completeness theorem formulated with the help of residuated lattices.
Then in three following sections we shall develop logics of the three main
t-norms defined above.

0.2 The basic many-valued logic

Fix a continuous -norm #: you fix a propositional calculus (whose set of truth
values is [0,1]): This means is the truth function of the (strong) conjunc-



tion &, the residuum = of * becomes the truth function of the implication.
Further connectives are defined as follows:

e A is ol — ),

eV is ((p =) = L)A (¥ — ) — ¢),
- 1S 99—>(j,

p=v is (¢ = P)&(P — ).

An evaluation of propositional variables is a mapping e assigning to each
propositional variable p its truth value e(p) € [0, 1].

This extends to each formula via truth-functions as follows:

e(0) =0,
(e — ¥) = (e(¢) = e(v)),
e(p&etp) = (e(p) * e(1)).

A formula ¢ is a 1-tautology of PC(%) if e(p) = 1 for each evaluation e.
The following formulas are axioms of the basic logic:
(AL) (¢ = ) = (( = x) = (¢ = X))

2) (p&tp) — o

3) (plet)) = (vdep)

1) (plelp = ¢)) = (&(y — ¢))
Aba) (¢ = (P = x)) = ((p&ey)) = X)
ASB) ((pdetp) = x) = (¢ = (¥ = X))
6) ((p = ¥) = x) = (¥ = ¢) = x) = X)

(A7) 0 — ¢

The deduction rule of BL is modus ponens. Given this, the notions of a
proof and of a provable formula in BL are defined in the obvious way

All axioms of BL are 1-tautologies in each PC(x). If ¢ and ¢ — ) are
I-tautologies of PC(x) then ¢ is also a 1-tautology of PC(*). Consequently,
each formula provable in BL is a 1-tautology of each PC(x). Let us present
a list of some formulas provable in BL.

(A
(A
(A
(
(
(A

BL proves the following properties of implication:



=@
L proves the following properties of strong conjunction:
) (p&lp — 1)) — o
) o — (¥ — (p&))
) (¢ = ) = ((p&x) — (&)
) (1 = L1)&(p2 — 12)) = ((pr&ep2) — (vi&erpy))
) (p&p)&ex = p&(P&ox).

L :
3) o= (V) ¥ = (p V), (p Vi) = (¥ V),
1) (o= ) = ((p vV ) — )
5) (p =)V (¥ — o)
6) (¢ = X)A (¥ = X)) = (pVih) = x.
BL proves the following properties of negation.
(17) ¢ — (= — ), in particular, ¢ — ==
(18) (¢ — (b)) — =
1 stands for 0 — 0.
BL proves the following:
(19) 1
(20) ¢ — (L&yp).
BL proves the following additional properties of A, V:
(21) (A (A X)) = (¢ M) Ax)
(P ALY AX) = (AP AX))
(associativity of A),
(22) analogous associativity for V,
(23) o = 0 A (9 V)
(e V(e A) = ¢
BL proves
2 e=9, (p=¢)— (¥ =
((p =) =x)) = (¢

)7

RS

X),



BL proves the following distributive laws:
(30)  @&(v Vv x) = (p&y) V (plex)
Pl A x) = (p&) A (pdox)

B (A VX))= (e APV (e Ax))

- (VI AX) = VY)A(p VX))
proves:
(32) (e V)&lp V) = ((p&p) V (P&)))
(e AP)&(p A ) — (&) A (&)

(33) (¢ —= )" V(¢ — )", for each n,

where " is ad&s ... a,n times.

A theory over BL is a set of formulas. A proof in a theory T is a
sequence 1, ..., p, of formulas whose each member is either an axiom of BL
or a member of T' (special axiom) or follows from some preceding members
of the sequence using the deduction rule modus ponens.

T F ¢ means that o is provable in T', i.e. is the last member of of a proof
in T'. The deduction theorem for BL reads as follows:

Deduction theorem: Let T be a theory and let ¢, be formulas.

T U{e} F ¢ iff there is an n such that T' F ¢" — ¢ (where " is
o& ... &p,n factors).

Now we shall introduce some algebras corresponding to BL similarly as
Boolean algebras correspond to classical logic.
A regular residuated lattice (or a BL-algebra) is an algebra

(L7 m? U7 *7 j? 07 1)
with four binary operations and two constants such that

(i) (L,N,U,0,1) is a lattice with the largest element 1 and the least element
0 (with respect to the lattice ordering <),
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(ii) (L,*,1) is a commutative semigroup with the unit element 1, i.e. * is
commutative, associative, 1 * x = x for all z.

(iii) the following conditions hold:

(1) z<(x=y)iff zxz <yforall x,y,z.

(2)zNy=ax*x(z=y)

B)zuy=(=y)=y)n(y=2)

= )

(W) (= y)Uly=2)=1

An L-evaluation of propositional variables is any mapping e assigning
to each propositional variable p an element e(p) of L. This extends in the
obvious may to an evaluation of all formulas using the operations on L as
truth functions.

The logic BL is sound with respect to L-tautologies: if ¢ is provable in BL
then ¢ is an L-tautology for each regular linearly ordered residuated lattice.
More generally, it T'is a theory over BL. and T proves ¢ then, for each regular
linearly ordered residuated lattice L and each L-evaluation e of propositional
variables assigning the value 1 to all the axioms of T, e(¢) = 1.

Classes of provably equivalent formulas (w.r.t. a theory T') form a regular
residuated lattice.

Completeness theorem. For each formula ¢ the following there things
are equivalent:

(i) ¢ is provable in BL,

(ii) for each linearly ordered regular residuated lattice L, ¢ is an L-tau-
tology:;

(iii) for each regular residuated lattice L, ¢ is an L- tautology.

We shall generalize this completeness theorem as follows:

(1) An axiom schema given by a formula
®(py,...,pn) is the set of all formulas
O(p1,...,9,) resulting by the substitution of ¢; for p;(: = 1,...,n) in
D(p1,. .., pn)-

(2) Alogical calculus C is a schematic extension of BL if it results from BL
by adding some (finitely or infinitely many) axiom schemata to its axioms.



(The deduction rule remains to be modus ponens.)

(3) Let C be a schematic extension of BL and let L be a lattice. L is a
C-lattice if all axioms of C are L-tautologies.

Completeness. Let C be a schematic extension of BL and let ¢ be a
formula. The following are equivalent:

(i) C proves ¢,

(ii) ¢ is an L-tautology for each linearly ordered C-lattice L,

(iii) ¢ is an L-tautology for each C-lattice L.

Remark. Results of the present section are new; but rely very heavily
on related results of Hohle [21].

0.3 Lukasiewicz logic

This logic results by extending BL by the following axiom (L4):
(e =) =)= (¥ = ¢) = ¢) (1.4)

; Similarly as classical logic, Lukasiewicz logic I. may be alternatively devel-
oped from implication — and negation = (or just from — and 0); the truth
function of negation is (—)x = x = 0 = 1 — 2. We can define two different
conjunctions and disjunctions:

e &Pis =(p — ), x*xy=max(x+y—1,0)

eV is ~(mp & —p), Uy = min(z +y,1)

eVhis (o =) =1, xUy=maz(x.y)

pAYis (e V), wNy =min(z,y)

The following are the original axioms of Lukasiewicz logic:

o= (¥ =) (L.1)

(¢ =) = (v = x) = (¢ = X)) (1.2)

(= = =) = (¢ = ¥) (1.3)

(e =) =)= (¥ = ¢) = ¢) (1.4)

The only deduction rule is modus ponens; the definition of a proof is as

in classical logic (relative to our set of axioms).
As mentioned above, this set of axioms is equivalent to BL + (L.4)



Completeness of this set of axioms was conjectured by Lukasiewicz in
Thirties, but first proved by Rose and Rosser [39]; a good proof can be found
in [10]. The relevant algebras are particular regular residuated lattices called
MV -algebras.

Needless to say, details are non-trivial and laborious but the structure is
the same in all our three logics.

Completeness. A formula ¢ is provable in Lukasiewicz logic L iff it is
a l-tautology of Lukasiewicz logic.

Remark. Observe the difference from the completeness theorem for BL:
here we do and work work with all linearly ordered regular residuated lat-
tices but with just one: the real interval [0,1] with the truth functions of
Lukasiewicz logic.

0.4 Godel logic

Kurt Godel (born 1906 in Brno, now Czech Republic), probably the most
important mathematical logician, published in 1932 an extremely short pa-
per [9] concerning intuitionistic logic (a subsystem of classical logic with a
different meaning of connectives; e.g. ¢ V = is not provable). Godel’s aim
was to show that there is no finitely valued logic for which axioms of intu-
itionistic logic would be complete. For this purpose he created a semantics
of (possibly infinite-valued) propositional calculus which is now called Godel
logic Gi. (Needless to say, this was more than three decades before fuzzy sets
have been defined).

Godel logic has the following connectives: —, A, V, = (implication, con-
junction, disjunction, negation; negation may be replaced by 0). The seman-
tics is as follows (cf. Sect. 2.3):

r=>y=1ifz <y, = y =y otherwise,

r Ny =min(z,y),

r Uy =max(z,y),

(—)x=1forx =0, (—)x=0fora >0.

The axioms are as follows (G1 - G11 are axioms of intuitionistic logic,
G12 is an axiom of “linearity”):

(G (p =) = (¥ = x) = (¢ = X))



(G2) ¢ — (p V)

(G3) ¥ — (p V)

(G4) (p = X) = (L = x) = (¢ V) = X))
(G5) (pAp) — ¢

(G6) (p Aep) —

(GT) (x =) = ((x =) = (x = (g A1)
(G8) (p = (¥ = X)) = ((pAN¥) = X)

(G9) ((pAY) = x) = (¢ — (¥ = X))

EGlO) Eap A=) — b

G11) (¢ = (¢ Am9p)) = —p

(G12) (¢ = )V (¥ — @)

It is an easy checking to show that all these are 1-tautologies. The de-
duction rule is modus ponens; this defines the notion of a proof.

One can show that (i is equivalently axiomatized by BL plus ¢ — (&)
— idempotence of &. It follows easily that @& is equivalent to ¢ A so that
& is redundant.

Completeness theorem: Fach 1-tautology is provable. Again here the
proof is rather non-trivial with a different class of algebras, called Heyting
algebras or pseudo-boolean algebras. We have no room for details; [10] is
recommended for a readable elaborated proof originally given by Dummett
[7].

Deduction theorem is valid for G: TU {p} F o iff T F (¢ — o).
Note that G is the only many-valued logic having the deduction theorem,
more precisely: if a logic contains a conjunction given by a t-norm and the
corresponding implication — . is completely axiomatized and satisfies the
deduction theorem then the t-norm is minimum and hence — is Godel im-
plication.

Godels logic satisfies the following form of strong completeness: Say that
a theory semantically entails p if for each evaluation e there is a conjunction
a of finitely many axioms of T' such that e(a) < e(p). (Observe that in
classical logic this is equivalent to saying that ¢ is true in each model of T'.)

Strong completeness: For each theory T and formula ¢, T'F @ ift T
semantically entails .

Note that the easy part of this equivalent (soudness) implies that if T F ¢
and e(a) > r for each axiom « of T' then e(a) > r. The difficult part can be
obtained by combining the (normal) completeness of ¢ with the techniques

of Takeuti and Titani [45].



0.5 Product logic.

The logic based on the product t-norm has been considerably less investigated
them the two preceding ones (see [1]). The paper [18] investigates product
logic and proves completeness theorem using a class of algebras called product
algebras. There are several open problems related to this (rather interesting
and unjustly overlooked) logic.

We write & instead of &.
The axioms of Il are those of BL plus

(I1) ==x = (¢ O X = ¥ O x) = (¢ = ¥)),

(I12) o A =p — 0.

The axioms are 1-tautologies over the algebra [0,1]p of the truth func-
tions.

IT proves the following formulas:

(1) (¢ ©¥) = =(pA¢)

(2) (p = ~9) = v

(3) = V ==

The axiom (II2) can be equivalently replaced by each of the following
formulas:

(O ) =, (¢ = )= e, 7V e,

Following the general approach we define a ll-algebra (or product algebra)
to be a regular residuated lattice satisfying

——z < ((zxz=yxz)= (z=y)),
zN—z=0.

Using this notion one proves the following

Completeness theorem.

(1) A formula ¢ is provable in the product logic 11 iff it is a I-tautology of
the product logic.

(2) Let T be a finite theory over I, ¢ a formula. T proves ¢ over the product
logic iff it is true in each model of T' (in the sense of II).
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0.6 Rational Pavelka logic

Till now we have been interested almost exclusively only in axiomatizing 1-
tautologies, i.e. proving formulas that are absolutely true. But in fuzzy logic
we are interested in deriving consequences from assumptions that are only
partially true, true in some degree. (We met a result of this type at the end of
2.5 - for Godel logic.) Logics of partial truth were studied, in a very general
manner, as early as in the seventies by the Czech mathematician Jan Pavelka
[34] and since then have been substantially simplified; We refer to [14] but
here we describe a still simpler version. It is very different from the original
Pavelka’s version and looks as an “innocent” extension of Lukasiewicz’s L;
but the main completeness result of Pavelka still holds.

The idea is as follows: assume that e(¢) = r; then for each ¢, e()) >
riff e(p — ) = 1. Thus if ¢ is a formula whose value is r in all evaluations
then the axiom ¢ — ¥ would just postulate that i is at least r-true.

Thus we extend the language of L. by adding truth constant 7 for some r €
[0,1] as new atomic formulas, postulating that e(7) = r for each evaluation
(we already have had 0 and 1). Our choice will be to add truth constants
7 for each rational r € [0,1] (thus we have truth constants for a countable
dense recursirely representable set of reals from [0,1], this is all we need).

Thus for example if ¢, are formulas then (¢ — 0.7) & (0.4 — =) is a
formula. We have some obvious tautologies like =0.7 = 0.3 and 0.7 — 0.5 =
0.8; in general, for each rational r,s € [0, 1] we have

(P1) -7 = (),

(P2) (T—35)=r=s3

We add these schemas as new logical axioms; the resulting logic (with the
language extended by truth constants and axioms extended by (P1), (P2))
will by called RPL (rational propositional logic or rational Pavelka logic).
The only deduction rule is modus ponens.

If ¢ is a formula and r € [0, 1] is rational then (¢,r) denotes just the
formula (F — ¢) (saying that ¢ is at least r-true). We have same derived
deduction rules.

Lemma. Let T be a theory in RPL (a set of special axioms); for each
formula «, T'F « means that « is provable in T

()T F (p,r)and T+ (p — ¢, s), then T F (¢, 7 * s).

2) T F (p,r)then TH (53— p,s =r).

Definition. Let T be a theory in RPL. (1) The truth degree of ¢ in T is
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| elly = mf{e(e) | eisamodelof T}.
(2) The provability degree of ¢ in T is

|@ lr=sup{r | T F (¢,r)}.

Thus || ¢ ||z is the infimum of values of ¢ in models of T; | ¢ |7 is the
supremum of rationals r such that T'F7 — .

Completeness theorem for RPL: Let T be a theory in RPL; then, for
each formula ¢, || ¢||lr=|¢ |-

This is a very pleasing and elegant result (invented originally by Pavelka);
the proof is moderately difficult (much easier than the proof of completeness
of L, but using the fact that we have the Rose-Rosser’s complete axiom
system for L).

Remarks. (1) A fuzzy theory is a fuzzy set of formulas, i.e. a mapping
T associating to each formula ¢ the degree T'(¢) of being an axiom. An
evaluation e is a model of T' of for each ¢, e(p) >,T(p), i.e. each formula
is at least as much true, as the theory demands. It is natural to assume
that each T'(¢) is a rational number. The notion of a fuzzy theory is central
in Pavelka’s approach but we see that it is superfluouns; if you define 7" =
{(¢,T(¢)) | ¢ formula} (thus for each ¢, if T'(¢) = r we put (F — ) into T")
then T" is a (crisp) theory having the same models as T

(2) The set of all formulas is a recursive set and the syntax is recursive;
thus we may call a theory T' recursive if T' is a recursive set of formulas.
Note that | ¢ | may be irrational; on the other hand, if » > 0 is rational
then we can construct a recursive theory 7' such that the set of all ¢ such
that | |r> r is “badly” non-recursive (for experts: it may be Ily-complete;
see [14] for details).

(3) We can similarly extend other logics, e.g. Godel logic or product logic
but unfortunately we cannot hope for Pavelka style completeness (as Pavelka
himself tells us) since the truth function of implication is not contuous in
these logics. To see this take the theory T = {p — (%) | n natural }; then

lp — 0]|z=1 for each of L, GG, P;

lp — 0|7 =1 for L but |p — 0|p= 0 for both G and P (verify).

Note that RPL satisfies the same generalized deduction theorem as L
(and of course does not satisfy the classical deduction theorem).
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1 Predicate calculi

1.1 The classical predicate calculus

In the present section we assume the reader to have some basic knowledge
of the classical predicate calculus. In this subsection we survey the basic
notions and facts, for comparison with their many-valued generalizations.
We shall restrict ourselves to calculi without function symbols. Details may
be found e.g. in [27].

A language consists of predicates P,(),..., object constants c¢,d,..., ob-
ject variables x,y, . ... Each predicate is assigned a positive natural number
as its arity. If P is an n-ary predicate and ty,...,1, are variables and/or
constants then P(t1,...,1,) is an atomic formula. Non-atomic formulas are
from atomic ones using connectives —,— and the universal quantifier V : if
@, are formulas and x is an object variable then ¢ — ¢, =, (Va)e are
formulas. The variable @ is bound in (V1 )p; other variables are free/bound
in ¢ iff they are free/bound in (Va)e. A variable is free/bound in = iff of
is such in ¢; it is free/bound in @ — ¢ iff it is such in ¢ or in ¥. A formula
is closed of 1t has no free variable.

Other connectives are introduced as abbreviations as in propositional
quantifier; the existential quantifies 3 is defined thus: (Jx)p abbreviates
=(Vz ).

An interpretation of a language L is given by the following:

e a non-empty domain M,

e for each n-ary predicate P, an n-ary relation rp C M™ (set of n-tuples
of elements of M)

e for each constant ¢, an element m,. € M.

The interpretation is witnessed if each element m € M is the meaning of
a constant ¢, m = m,. (This can be achieved by extending the language by
some additional constants.) For each closed formula ¢ and each interpreta-
tion

M = <M7 (TP)P predicates (mc)c constant >7

The truth value of  in M is defined as follows:

13



o If P(c,...,d) is a closed atomic formula then || P(e,...,d)||m= 1 iff
(Mey...,mq) € rp (the tuple of meanings of ¢,...,d is in the relation
r, which is the meaning of P); otherwise || P(c,...,d)|lm= 0;

o o= dlm=llellm= ¢lm, [[melim= (=) [[¢llm;

o || (Va)e||m= min. ||¢(c)||nm, where p(c) results from ¢ by substituting
the constant ¢ for (free occurences of) x.

We write M | ¢ for || ¢ ||lm= 1 and read: ¢ is true in M. If ¢ is not
closed then M = ¢ means that M | (Vaq)...(Vx,)e, where xq,... 2, are
the variables free in .

A theoryis a set of formulas (special axioms). M is a model of a T' if each
¢ € T is true in M.

Logical axioms: axioms of classical propositional calculus plus
(A1) (Va)p — (1)

where ¢ is either a constant or an object variable free for x in ¢ (this
is a simple condition preventing “clash of free and bound variables”) - the
substitution axiom,

(A2) (Vo) = ¢) = (v = (F2)p)

where v is a formula in which z is not free.

Deduction rules: Modus ponens and generalization: from ¢ derive (Va)ep.

A proofin a theory T is a sequence @1, . .., @, of formulas (not necessarily
closed) such that each ¢; either is a logical axiom or belongs to T' (is a special
axiom) or results from some previous formulas(s) using one of the deduction
rules. A formula ¢ is provable in T' (notation: T F ) if ¢ is the last member
of a proof in T.

Godel’s completeness theorem: T = ¢ iff ¢ is true in each model of T'. In
particular, ¢ is a tautology (true in all interpretations) iff - ¢ (¢ is provable
using only logical axioms).

1.2 The basic fuzzy predicate logic

A predicate language consists of predicates P, (), ..., each together with its
arity and object constants. c,d,.... Logical symbols are object variables
z,y,..., connectives &, —, truth constants 0,1 and quantifiers ¥,3. Other
connectives (A, V, =, =) are defined as in propositional calculus. Terms are
object variables and object constants.
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Atomic formulas have the form P(tq,...,t,) where P is a predicate of
arity n and ty,...,t, are terms. If ¢,? are formulas and z is an object
variable then ¢ — v, @&, (Va )i, (Fz)e, 0, 1 are formulas; each formula
results from atomic formulas by iterated use of this rule.

Let J be a predicate language and let L be a regular residuated lattice.
An L-structure M = (M, (rp)p, (m.).) for T, M # 0, for each n-ary pred-
icate P a L-fuzzy n-ary relation rp : M™ — L on M and for each object
constant ¢, m. is an element of M.

An M-evaluation of object variables is a mapping v assigning to each
object variable x an element v(z) € M. Values of terms and formulas are
defined as follows: ||| = v(2); ||¢||are = me.

1Pty )i, = reUltllares - - [Eallar);

le = P15, = lellin, = 1905

le&eid|lfr, = llellir, * 1211503

10/[az,0 = 0; [L][ar0 = 15

(Ve )ellfr, = inf{{lollfrlv =0 0}

132)ell5r, = sup{llll il =» v'};

provided the infimum/supremum exists in the sense of L;

The structure M is L-safe if all the needed infima and suprema exist, i.e.
|2l 57 is defined for all ¢, v

llellar = inf{||¢]|me] v M — evaluation}.

A formula ¢ of a language 7 is an L-tautology if ||¢||a = 11, for each safe
L-structure M.

The following are logical axioms on quantifiers:
(V1) (Va)p(x) — @(t) (¢ substitutable for « in p(x))
(31) p(t) — (Fx)e(x) (¢ substitutable for x in p(x))
(V2) (Va) (v — ¢) = (¥ — (Ya)p) (z not free in v)
(32) (Va)(¢ — v) — ((Fx)p — v) (x not free in v)
(V3) (Va)(r V) — (v V (Va)p) (x not free in v)

The predicate calculus CV (over a given predicate language J) has the
following axioms:
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o all formulas resulting from the axioms of C by substituting arbitrary
formulas of 7 for propositional variables, and

e the axioms (V1),(v2),(31),(32), (V3) for quantifiers

and deduction rules
e modus ponens (from ¢, ¢ — @ infer ) and

e generalization (from ¢ infer (Va)e).

In particular, we are interested in BLY and three stronger logics: LV
(Lukasiewicz), GV (Godel), IV (product). Also note in passing that if C
is the classical propositional calculus (as described above) then in CV the
axioms (V3), (1), (32) are redundant (provable from the rest); (¥1), (V2) are
the usual axioms of the classical predicate logic.

The axioms (V1)-(¥3), (31)—(32) are L-tautologies for each regular resid-
uated lattice L.

(Soundness of provability.) Let C be a schematic extension of BL, let T
be a theory in the language of T over CV, let ¢ be a formula of T. If ' ¢
(¢ is provable in T') then ||¢||%; = 1 for each C-lattice L and each L-model
Mof T.

Let ¢ be an arbitrary formula, v a formula not containing z freely. Then
BLYV proves the following:

(1) (Vo) (v — ¢) = (v = (Vo)p)
(2) (Va)(p —v) = ((Be)y = v)
(3) Eﬂfﬂ)(v =) = (v = (Fr)p)

The converse implications in (3), (4) are not provable in BL. We shall see
later that neither of them is a tautology of GV; the converse of (3) is but the
converse of (4) is not a tautology of IIV; and both converses are tautologies

of LV.
For arbitrary formulas ¢, 1, BLV proves the following:

((Va)p — (Vo))
((B)p — (Fa)y)

1
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(7) (Vo)ed&e(Fz)e) — (Fo)(pdey))

For arbitrary ¢ and for v not containing z freely, BLY proves
(9) (Fe)(pler) = ((Fr)pler),

(10) (Fz)(wplep) = ((Fz)p&(Fx)p).

BLYV proves the following:

(11) (Fz)p — =(Va)=e
(12) =(3z)p — (Va)=e

Completeness. Let T be a theory over CV. For each formula ¢, T
proves ¢ iff for each linearly ordered C-algebra L and each safe L-model of
T, el =1.

1.3 Lukasiewicz predicate logic

LY proves

(Jap) = - (V).
(Va)(p&rv) — ((Va)pkv).

Axioms (31)(32)(V3) are redundant (provable from the others).
Lemma. LV proves the following:
(v — (o)) — ()(v — o),
(V2)g — v) — (Be)lg — v).
Theorem. There is no recursive axiomatic system complete with respect to
LV¥-tautologies (over [0, 1]} ). Moreover, the last set is II;-complete.[36, 37, 42]

1.4 Rational Pavelka quantification logic

We extend Lukasiewicz predicate logic by propositional constants 7 for each
rational r € [0, 1]; for each M, ||7||p; = 7. The azioms of RPLY are those of
RPL plus (A1), (A2) from 3.1 plus

We introduce (@, r) as abbreviation of (7 — ) as above; given a theory
T, we define the provability degree and truth degree as above:

[ lr=sup{r | T'F (r — ©)},
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l¢lly = inf{ll [l | M amodel of T'}.

(We should say that for a non-closed ¢, || ¢ ||ps is defined as
| (V) ... (V)¢ ||y analogously as above; M is a model of T'if |||y =1
for each ¢ € T'.

We have the following Pavelka-style

Completeness theorem (see [16]). For each theory T" and formula ¢,

lelly =lelr,

i.e. the truth degree equals the provability degree. Let T' be a recursive
theory. For each positive r € [0, 1], the set Pr(T,r) of all ¢ such that |¢|7> r
is Ily; there is a recursive theory 7" such that Pr(T,1) is Ils-complete. (See
again [16].

Thus RPLY is an elegant fuzzy predicate calculus with truth degree equal
to provability degree; on the other hand, it badly undecidable. For details
see [16] and its predecessors, in particular, [30].

1.5 Godel predicate logic

This logic is, in contradistinction to Lukasiewicz logic, recursively axiomati-
zable.

Logical axioms are those of Godel propositional logic (see 2.5) plus the ax-
ioms (V1), (V2),(¥3), (31), (32) of BLY (see above) Deduction rules are modus
ponens and generalization. The logic is sound in the following sense: it T'F ¢
then for each M there is a conjunction « of finitely many elements of T
such that ||afl; < [[¢]lp. It follows that if all axioms of T" are 1-true in
M (J|allpy = 1) and T' = ¢ then |||y = 1 too. Moreover, if M is such
that || a ||y > r for some r and all & € T and if T'F ¢ then |||y > r-

Completeness T' = ¢ iff for each M there is a conjunction « of finitely
many elements of T" such that |[a|ly; < ¢|lpe In particular, ¢ is a 1-
tautology (|| ¢ |lpr = 1 for all M) iff F ¢.

Hence, in contradistinction to Lukasiewicz predicate logic (and Rational
Quantification Logic), the set of all 1-tautologies of Godel predicate logic is
recursively enumerable.
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Historical remark. Recursive axiomatizability of Godel predicate logic
was first shown by Takeuti and Titani [45] using an auxiliary deduction rule.
M. Baaz showed that the rule is superfluous (still unpublished).

We have surveyed two main systems of fuzzy predicate calculus:
Lukasiewicz’s calculus (with its extension RPLY a la Pavelka-Novak) and
Godel’s calculus (a la Takeuti-Titani). The investigation of a predicate cal-
culus based on the product conjunction remains to be a future task. We know
that the set of 1-tautologies of 11V is not recursively enumerable; moreover,

it is Ils—hard.

2 General fuzzy logics

In this section we describe a very general approach to the syntax and se-
mantics of fuzzy logics, developed by Pavelka [34]. This approach does not
assume any truth functionality.

2.1 Formulas and models

We have a set Form of formulas. These may be formulas of some propo-
sitional logic, predicate logic, or quite abstract entities. Semantics is given
by a set § whose element are called models. Each model is a mapping
M : Form — [0,1]; thus M assigns to each formula the degree in which it is
true (in the model).

For example, Form consists of formulas of Lukasiewicz propositional cal-
culus and § consists of all e : Form — [0,1] obeying the truth functions of
connectives, i.e. e(¢ — ) = e(p) = e(¥), e(~p) = (—)e(p).

Any T : Form — [0,1] may be understood as a fuzzy theory;, T(p) is
the degree in which ¢ is an axiom. An M € § is a model of T if, for each
©, M(@) > T(p) (each formula is at least as true as the theory T" demands).

For each fuzzy theory T' and formula ¢, let || ¢ ||, = inf{M(p) | M is a
model of T' } (the truth degree of ¢ for T').

2.2 Provability

We shall work with graded formulas, i.e.  pairs (p,x) where ¢ is
a formula and = € [0,1]. An n-ary deduction rule assigns to
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some n-tuples (@1, 21,...(pn,¢,) of graded formulas a graded formula
(r'(@1,. o yon), (X1, .. 2,)) (', 7" are appropriate functions).
The function " is assumed to preserve all (infinite) suprema, i.e. if

sup,cr(zn) =y then sup, ;(r"( .. 2p,...) =r"(L..,sUp,cs T,y . . .).
For example, recall the fuzzy modus ponens in Lukasiewicz logic:

(¢, 2), (0 =, y)
(byxxy)

A theory T is closed under the rule (r/,r") if for each tuple ¢1,..., ¢,
of formulas, T(r'(p1,...,¢n)) = r"(T(¢1),...T(¢n)), i.e. if T(p;) = x; and
T(r'(p1,...,9n)) =y then from (¢1,21), ..., (@n, x,) the rule derives
(r'(@1,. . yon), T(x1,...,2,)) and T demands r'(p1,...¢,) to be at least
y-true, y > r"(x1,. .., x,)).

A deductive structure is given by a fuzzy theory A (of logical axioms) and
a set R of deduction rules. For each fuzzy theory T', there is a unique theory
T" O T such that 7" O A and T is closed under each rule from R. 7" is
denoted Cnar(T).

A graded proof in T (given A, R) is a set of graded formulas (¢q, z1),. ..,
(pn, x,) such that each (¢, x;) either is a logical axiom (A(y;) = ;) or is
an axiom of T' (T(¢;) = x;) or (@i, x;) results by a rule R € R from some
previous graded formulas. The provability degree |¢ |7 is sup{r | T F (¢, x)}
(where T'F (¢, x) obviously means that (¢, ) is the last member of a proof.

The condition of sup preservation guarrantees that for each ¢
[olr= Cnas(T)(e).

The deductive structure (A, R) is sound for the semantics S if for each
theory T and each formula ¢, | ¢ |7<|| ¢ |l (] ¢ |r being defined using
(A, R), ||¢]|lr using S). It is complete if | |r=|¢ |7

3 Equality and similarity

3.1 Classical predicate calculus with equality

Classical predicate calculus is often extended with to deal with the relation
of equality. This is achieved by introducing in the language a new predicate
F of arity 2 and adding to the axioms of classical predicate calculus (i.e.
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the three axioms of classical propositional calculus plus the two axioms on
quantifiers (V1) and (¥2)) the following two axioms for equality:

(E1) E(z,x)

(E2) E(z,y)— (P(...,2,...) = P(...,y,...)
where P is any predicate of the (extended) language. Then any extension
of classical predicate calculus including these axioms is called a PC system
with equality. Let T be such an extension. Then it is easy to show that T
proves the following formulas about the equality predicate:

(Va)E(x, x)

(Vo) (Vy)(E(x, y) — E(y, z))

(V) (F9)(7=) (B, ) — (E(y, ) — Bz, 2))
Thus since each of these must be true in any model of T, the predicate F
has to be interpreted by an equivalence relation (reflexive, symmetric and
transitive), but not necessarily as an equality =. However it can be also
proved that any consistent PC system with equality has a model where F is
interpreted by =.

3.2 Many-valued predicate calculi with fuzzy equality

The fuzzy counterpart of classical equivalence relations is the following notion
of fuzzy similarity relation, also known as fuzzy equality relations.

Let W be a set and let L be a linearly ordered residuated lattice. A binary
L-fuzzy relation S on W (i.e. a mapping S : W x W — L) is a x-similarity
relation if it satisfies the following properties ([47]):

L. reflexivity: S(w,w) =1
2. symmetry: S(w,w’) = S(w', w)
3. *-transitivity: S(w,w’) * S(w',w"”) < S(w,w")

When S(W x W) = {0,1}, S is clearly an equivalence relation on W. For
simplicity we shall assume that L is the interval [0,1] with the structure given
by a t-norm * and its residuum =-. Let us discuss our three basic t-norms:

e *x = minimum: then S is a similarity relation in the sense of Zadeh

[48]). Especially, each level-cut S, = {(w,w’) | S(w,w') < a} is an
equivalence relation, and 1 — S defines a pseudo-ultrametric;
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e + = product: this type of fuzzy relation goes back to Menger [28] and
has been studied by Ovchinnikov [32];

e « = Lukasiewicz conjunction, i.e. a * b = max(0,a + b — 1). This type
of fuzzy relation is studied by Ruspini [40], Bezdek and Harris [2]) who
call it a likeness relation. Then 1 — S is a pseudo-metric.

A similarity in thus a notion dual to a distance. A *-similarity relation
will be called fuzzy equality if in addition it verifies the following separating

property:
S(w,w') =1iff w=1w'.

If S is a fuzzy equality, the 1-cut of S (that is, {(w,w’) | S(w,w’) = 1}) is
just the equality on W.

Therefore, in order to define what a many-valued logical system with
equality is, 1t seems natural to add the following axioms for fuzzy equality
to our basic many-valued predicate logic BLY:

(E1) E(z,x)

(E2) E(z,y)— (P(...,2,...) = P(...,y,...)
where P is any predicate.

Then, analogously to classical predicate logic, in any model of any theory
of containing (E1), (E2) the predicate £ must be interpreted by a fuzzy rela-
tion which must be a x-similarity relation and moreover, the interpretations
of the rest of predicates have to be extensional [22]. Indeed, the following
formulas

(Va)E(x, x)

(Vo) (Vy)(E(x, y) — E(y, z))

(V) (F9) (=) (B, ) — (E(y, =) — B(z,2))
directly corresponding to the reflexivity, symmetry and *-transitivity prop-
erties of the similarity relations, are also provable in any theory over BLY
containing (E1) and (E2). Moreover, if S is the interpretation of £ and pp
is the interpretation of the predicate P (we consider P of arity 1), since (E2)
is a l-tautology, it follows that

S(a.b) < ppla) = pp(b)

that is,
pp(a) x S(a,b) < pp(b),
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which is the condition for the fuzzy set up to be extensional [22], which in
turn is a generalization of the classical condition

ifae Aand a="bthen be A

for a subset A to behave well with respect to an equivalence relation =, or
in other words, the condition for A to be a union of equivalence classes.

Finally, let us mention, again analogously to the classical case, that the
interpretation of the equality predicate in models of theories with equality
need not be a fuzzy equality in the above sense. However, for any consis-
tent theory with equality there is a model where the equality predicate is
interpreted as a fuzzy equality relation. The proof is as follows.

Let T be a consistent theory with equality over CV , and let M =
(M, (rp)p,(m.).) a model for T. Let S = rg be the interpretation of £
in the model M. It is clear that S must be a *-similarity relation. De-
fine the equivalence relation on M as follows: a ~ b iff S(a,b) = 1, and
denote the equivalence class containing « by [a]. Now define a new struc-
ture M’ = (M', (rp)p, (ml).), where M’ = M/ ~, rp([a]) = [rp(a)] and
m! = [m.]. It can be checked that M’ is a model of T" and S’ = r}; is a fuzzy

C

equality.

3.3 Similarity-based logical systems

One of the possible semantics of fuzzy sets is in terms of similarity, namely
a grade of membership of an item in a fuzzy set can be viewed as the degree
of resemblance between this item and prototypes of the fuzzy set. In such a
framework, an interesting question is how to devise a logic of similarity able
to account for the proximity between interpretations.

A variety of uncertain reasoning models has been captured in the modal
framework by equipping the set of boolean interpretations or possible worlds
with a suitable uncertainty measure (see e.g. [15]). It is thus tempting to
model similarity-based reasoning by equipping a set of possible worlds with
a proximity or generalized metric structure.

Similarity relations and fuzzy sets can be closely related. Namely let
A C Q be a non-empty subset of (). Then a similarity relation S allows us
to define the non-empty normalized fuzzy set A* of elements close to A as
follows:

ﬂA*(w) = maxw’eAS(wv w/)
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Conversely, any non-empty fuzzy set F' on {) can be viewed as deriving
from a *-similarity relation S and a subset A such that

A=A{w | pp(w) =1} (#0)

S(w, w') = min(pr(w) = pr(w'), pr(w') = pr(w))

This is due to Valverde’s theorem of representation of similarity relations by
fuzzy sets [47], based on residuation. This result gives a formal justification to
the fact that a degree of membership pup(w) in a fuzzy set can be interpreted
as a degree of similarity of w to prototypes of F', which form the set A.

Moreover it points out that if ¢ is a proposition in a formal propositional
language L, of which € is the (finite) set of interpretations, then the similarity
induces a fuzzy proposition ¢* whose (fuzzy) set of models is [¢*] = [¢]",
defined by means of the fuzzy relation S, where [¢] denotes the (classical)
set of models of ¢ (the set of interpretations where ¢ is true). Intuitively
¢* means approximately q, not far from ¢, where “approximately”, “not far
from” is mathematically expressed by the similarity relation S.

Analogously to what we have said in the introduction on fuzziness and
probability, the similarity-based approach in the frame of truth-functional
fuzzy logic has to distinguish between a crisp proposition ¢ and its fuzzy
counterpart approzimately g, keeping strictly in mind that approzimately
p&eg, i.e. (p&q)* is not equivalent to approzimately p and approximately q,
i.e. (p*&q*). Then one may be safely truth-functional.

But our aim in this section is to describe another approach that consists
in considering for eac ¢ the corresponding approzimately ¢, i.e. in defining a
graded satisfaction relation on the formulas of the original given propositional
language as follows:

w =5 ¢ iff pgg(w) = a

That is, in the finite case, w =% ¢ if there exists a model w’ of ¢ which
is a-similar to w. In other words, w belongs to the a-cut of [¢*] that will be
denoted by [¢#*],. The degree of approximate satisfaction of ¢ by w in the
sense of S has been introduced by Ruspini [41], and shall be denoted

Is(q | w) = pipgg(w) = maw,yS(w, w').

Note that, identifying each interpretation w of ) with the conjunction of
literals made true by w , we have that Is(w’ | w) = S(w,w’). Thus, one may
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have w S ' for w’ # w. Indeed it means that w and w’ are close enough to
each other in the sense that S(w,w’) > a. Note that w E$ w' is equivalent
to w’' ES w since S is symmetric.

The graded satisfaction relation can be extended over a graded entailment
between (boolean) propositions in the obvious way:

p E2 g iff w ES ¢ for each w model of p

In other words, p E¢ ¢ holds if each model of p is similar, at least to
the degree a, to some model of ¢. An equivalent definition is p =% ¢ iff
Is(q | p) > «, where Is(q | p) = infue,ls(q | w) is the Ruspini’s implication
measure of ¢ given p. The graded entailment has been characterized in terms
of the following properties [4]:

Nested: If p =% q then p =7 ¢, for 8 < a.
Extremals: pE'qiffpEq; pE"q.

- Transitivity: If p =2 ¢ and ¢ |=° r then p =2*F r.
Left Or: pVqgE riff p E®rand ¢ E r.
Right Or: If » has a single model then

r=*pVgiffr E“porr =% g.
Consistency preservation: If p £ T then p E* T only when o = 0.
Continuity from below: If p =7 ¢ for each 3 < «a then p =2 .

One can understand this as a general fuzzy logic in the sense of Sec-
tion 4. But one has to be aware of the fact that such a logic cannot be
truth-functional. Namely given S, the truth-value evaluation Is(q | w) of ¢
associated to the interpretation w is truth-functional neither for the nega-
tion nor for the conjunction since only the following inequalities hold in the
general case:

Is(~g | w) = 1~ Is(q | w)
Is(p N g |w) <min(ls(p|w), 1s(q | w))

However for disjunction we do have that [pV¢]* = [p]*U[¢]*, hence Is(pVq |
w) = max(Is(p | w),Is(q | w)) . This fact stresses the difference between
similarity logic and many other logics underlying fuzzy sets like the truth-
functional fuzzy logics described in Section 2. This lack of truth-functionality
has also been noticed in the theory of rough sets (Pawlak, 1991). Rough sets
are a theory of similarity based on equivalence relations that handles upper
and lower approximations of sets. The lack of truth-functionality is thus not
due to the fuzziness of similarity.
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A natural logical setting for similarity-based reasoning is the one of modal
logics which is tailored to account for relations on the set of interpretations.
The similarity relation S can be considered as a family of nested accessibility
relations R, on the set of possible worlds € defined as w R, iff S(w,w') > a.
Therefore, enlarging the logical language, we can define, for each «, a pair of
dual modal operators O, and <, with the following standard semantics:

w | Oup iff there exists w’ such that wR,w' and w' = p
w = O,p iff for every w' such that wR,w’ then it holds w' |= p
If the similarity relation is min-transitive, i.e.

S(w,w") > min(S(w,w”), S(w”,w)),

then the accessibility relations R, are equivalence relations, and therefore,
for each «, O, and <, are a pair of dual S5 modal operators. These types
of modal logics generalize rough set logics (Orlowska, 1984) and have been
studied by Nakamura (1992). It is easy to check that the above defined
graded satisfaction % is directly related to the possibility operator <, in
the sense that if ¢ is a non-modal proposition, then w % ¢ iff w = Ouq.

In the following we shall describe the multi-modal system axiomatizing
the graded modal operators O, and <.

To define the language we fix a range G C [0,1] of possible similarity
values. Further assumptions on G are that {0,1} C G and that, for the
sake of simplicity, we shall assume that GG is denumerable. Then, the multi-
modal propositional language is built, in the usual way, upon a denumerable
set of propositional variables p, ¢, ..., connectives — (implication) and —
(negation), and (unary) modal operators &9 and <¢, for each o € G. We
shall use @, ¥, ... to denote arbitrary formulas. We shall also use the classical
definitions of A and V in terms of — and —, and furthermore 0% and O%p
will stand for abbreviations of =02~ and —=Of =g respectively.

A similarity Kripke model is a struture M = (W, S, || ||) where:

1. W is a non empty set of possible worlds,

2. S: W xW — G is a #-similarity fuzzy relation on W, for some t-norm
* on (3,

3. || || is a function that given an atomic formula p return the set |[p|| C W
where p is considered to be true.
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The notion of a formula ¢ being true in a world w in a similarity Kripke
model M = (W, S| ||), written (M, w) |= ¢ is defined in the usual way,
except for the modal formulas, which is defined as follows:

(M, w) | OLp iff I (¢ | w) > o
(M, w) | Oop iff I3 (¢ | w) > a

where the implication measure 21 is defined as follows:

Mo w) = sup Slwu')
(M )y

Notice that ©9 is a normal modal operator in the sense that it has an asso-
ciated accessibility relation R° which provides it with the standard Kripke
semantics:

(M, w) E O iff (M, w') E ¢ for some w’ such that (w,w’) € R?,
where the accessibility relation R? is defined as

(w,w') € R iff S(w,w') > a.

C
(o'

i.e. they do not have,
in general, a corresponding accessibility relation. However they do have it
whenever the sup appearing in the expression of I3(p | w) is reached for

This is not the general case for the operators <

any ¢ and any w, i.e. when I$'(¢ | w) becomes maz(p,wyeeS(w,w'). In
particular, this is the case when either the range G is finite or the set of
possible worlds W is finite.

Given a range (¢ and a t-norm operation * on (, the class of structures
CY is the set of similarity structures M = (W, S| ||) where S is a (G, *)-
similarity on W. The notation FC% will denote the subclass of C¢ consisting
of similarity structures with a finite set of worlds W.

The basic similarity multi-modal logic MS5(G, *) is the smallest set of
sentences containing every instance of the following axiom schemes and closed

under the last two inference rules:
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PL: Propositional tautologies

Koo Oi(p =) — (B¢ — OL¢), Va € G
Ker Oo(p =) = (Bop = O0¢), Va € G
Te: 0o — ¢, Vae G

Be: o — 020%0, Va e G

4¢: OS50 — 05050, Va € G
Neo Dge — Dg% for 8 > a,
EXe Ofep,

EXo: =0,

CO: Do — D%, Vae G
OC:  O%p — Ogp, for a < j,

RN?: From ¢ infer 0%, Va € (¢
MP: From @ and ¢ — 1 infer

Schemes K, T*, B' and 4°, where ¢ is either ¢ or o, are direct counterpart,
for the graded modal operators, of the well-known axioms of the classical S5
modal logic. Scheme C° corresponds to the fact that, under the assumption
of finite range G or finite set of worlds W, IZ%(¢ | w) = 1 only if p is true in
w. Schemes N* stand for the nested properties of the graded modal operators,
while schemes £X* set up the extremal conditions for them. Finally, schemes
OC and CO establish the obvious relations between strict and non-strict
inequalities.

It is very easy to check that MS5(G,*) is sound with respect to the
class of structures C%, for any G and *. The question whether, in general,
MS5(G, *) is complete, has not been addressed yet. However there is com-
pleteness in the following particular cases.

1. For any finite range G, the system MS5%(G,*) obtained from
MS5(G, *) by adding the axiom:

C°:p — Ojp.
is complete with respecte to the class of similarity models CY.

2. For any dense range (G, and * = mintmum, the system
MS57*(G, min) obtained from MS5(G, min) by adding the axioms:

Be: o — 000, for o > 0
C°: ¢ — Ofp, and
472 0050 — B00e, Va e G,
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G

min*

is complete with respect to the class of similarity models FC

Remark that, for the case of G being finite, one can define the set of open
modal operators {02 },e¢ in terms of the closed ones {0 }, e, and therefore
the system MS5% (G, *) admits the following much simpler axiom system:

PL: Tautologies of propositional logic,

K: Ou(p = ¥) = (Bap — Dath),
T:  Oap— e,

B: © — 0,040,

4: Da*ﬁap — DﬁDagp7

C: o — Oy,

N: Onp — Ogp, with 8 > a,
EX: <>0g0,

where we have written O, for OF,.

As a kind of final remark, notice that it is clear that the similarity-based
graded entailment relation |=¢ introduced at the beginning of this section is
fully captured inside the multi-modal systems. Namely, given a *-similarity
S on the set of interpretations 2 of the propositional sublanguage, if ¢ and
Y are non-modal formulas, then we have that

o b5 i Mg g — 05,
where M, = (Q,5,] |I)-

4 Appendix: Similarity and approximate
reasoning

In this section we use the notions of Section 5 (subsections 1, 2) to analyze
some typical patterns of approximate reasoning by the means of the notion
of logical deduction, in particular, the so-called compositional rule of infer-
ence, generalized modus ponens, and the “inference” in fuzzy control. These
topics have been largely discussed in the literature. We may recommend
monographs [11], [24], [23]. In particular, the subsequent presentation is in-
fluenced by the work of Kruse, Gebhardt and Klawonn (see also [22]). In
this section we stall use the many-sorted variant of fuzzy predicate calculus,
which is the immediate generalization of the one-sorted case: each variable
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and constant has a sort, each unary predicate has a sort, each binary pred-
icate has a sort for its first argument and one for its second argument etc.
In particular, let us agree that for each sort z, the symbol ~; will be al-
ways use for a fuzzy equality (similarity) predicate of the sort ¢ for both
arguments. (The index ¢ may be omitted if clear from the context.) Let J
be a many-sorted predicate language and let L be a regular residuated lat-
tice. An L-structure M = (M, (rp)p, (m.).) for J consists of the following:
M # 0, for each n-ary predicate P with sorts (o,7) a L-fuzzy n-ary relation
rp: M, x...x M, — L and for each object constant ¢ of the sort o, m, is
an element of M, .

FExample: Two sorts t,p (temperature and pressure), unary predicates
Ht, Hp (high temperature, high pressure), one binary predicate F' of sorts
(t,p) relating temperatures and corresponding pressures. Variable @ of sort
t, variable y of sort p. Formula:

(V) (Vy) ((F(x, )& Ht(z)) — Hp(y))

saying: “for all temperatures x and pressures y, it y corresponds to = and
x is a high temperature then y is a high pressure”. We elaborate this to a
general approach.

4.1 The compositional rule of inference

Let use define a variate to be given by its name X and its domain D. X is
just a symbol; D is a non-empty set. Examples are: age with the domain
of integers < 120 (say), temperature (with some domain), etc. Fuzzy logic
notoriously uses expressions of the form “X is A” where A is (the name of) a
fuzzy subset of D, e. g. “the age is high”. These expressions typically occur
in fuzzy rules to be analyzed later.

How to formalize this: having n variates (Xi, Dy),-- -, (X,, D,,) we under-
stand the D’s as domains of a many-sorted structure interpreting a predicate
language; fixed fuzzy subsets of a domain interpret some unary predicates.
The name of a variate is taken to be an object constant, interpreted in each
situation as the actual value of the variate. The expression “X is A” becomes
an atomic closed formula A(X) A typical rule “IF X is A THEN Y is B”
may be interpreted as A(X) — B(Y)

The compositional rule of inference in its traditional formulation can be
stated as follows:
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From “X is A” and “(X,Y) is R” infer “Y is B” if for all v € Dy,

rp(v) = use%px(rA(u) *rp(u,v)).

where * is a continuous t-norm. The relation rg is sometimes called the
composition of r4 and rg, on the image of r4 under the relation rg.
Observe that in fact the definition of r in terms of 74 and rg is expressible

in BL:
(VYy)(B(y) = (Fa)(A(x)&R(x,y)) is 1-true in D. Call the last formula Comp.

Lemma. BLY proves
Comp — (A(X)&R(X,Y)) — B(Y)).

Consequently, for each structure D such that ||Comp||p =1,
[ACX)&R(X.Y D < |BOY)lp

Consider Zadeh’s Generalized Modus Ponens as a particular case of the
Compositional Inference rule. To this end let us slightly change notation: we

replace A by A*, B by B* and then take R(x,y) to be A(x) — B(y) for some
predicates A,B.
Definition and lemma. Let C'ompyrp be the formula

(Vy)(B™(y) = (F2)(A"(z) & (A(z) — B(y))).
Then BLY proves
(Compryp & AY(X)& (A(X) — B(Y))) — B™(Y).
This may be visualized as a deduction rule:

Comppyp, A*(X), A(X) — B(Y)
B(Y)

moreover:
[Comparp & A™(X) & (A(X) — B(Y))|lp <

< [1B*(Y)llp,

The use of A, A*, B, B* should suggest that A* is similar to A in some sense
- and then C'ompysp should say that B* is similar to B in some other sense.
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Notorious example: If the colour is red then the tomato is ripe; the colour is
very red - what follows? But be careful: If A, B, A* are interpreted by crisp
(0, 1 - valued) subsets of the respective domains then the interpretation of
B* is also crisp and

(i) either ra« Cra, ras # 0 and rg« = rp,

(i1) or ras Cra, 74+ =0 and rg« =0,

(iii) or r4« is not a subset of r4 and then rg» = Dy (the full set).

In general, if Compysp is defined as above then
BIYE (y)[((30)(A°(x) & ~A(x) — B(y)].
Thus for each v € Dy, rp+(v) > sup,ep, (ra=(u) * (—)ra(u)).

Note also

Compyp F (Fz)A*(2) — (Vy)(B(y) — B*(y)).

4.2 Fuzzy functions and fuzzy rules

“Fuzzy IF-THEN rules” are presented as implications but then used to con-
struct a fuzzy relation having little to do with any implication, at least at
the first glance (the relation is defined by a disjunction of conjunctions). At-
tempts to call
e. g. the min-conjunction a “Mamdani implication” must be strictly rejected.

The crisp situation is as follows: we have two domains My, M3 and a crisp,
possibly partial, function f from M; to My. Moreover, (u1,v1),..., (U, v,) €
M; x My, for i = 1,...,n, f(u;) = v;. Let F be a binary predicate
interpreted by f, let M = (My, My, f,=1,=2) where =; is identity on M,,
x-variables range on M,, y-variables on M,. The fact that f is a partial
mapping is expressed by

(Va, y1, y2)(F(z,y1) & F(2,y2)) — y1 = y2). Let ¢; be the constants for
u;, and d; for v;.

Lemma. Under the present notation,

(1) The formula
/\ F(Ci, dz)

just expresses the fact that f(u;) = v;; it is true in M.
(2) The formula
(Vo.y) \((w =) = (y = dy))
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defines a relation » C M; x M, whose restriction to {uy,...,u,} coincides
with the restriction of f to {uy,...,u,} and containing all pairs (u,v) where
w 1s distinct from all uq,...,u, and v € My; thus f Cr.

(3) The formula

(Vo,y) \(z =&y =d;)

K3

defines a relation s C My x M, which is the restriction of f to {uq,...,u,};
i.e. no pair (u,v) with u distinct from all uy, ..., u, belongs to s. Thus s C f.

Definition. F' defines a (partial) fuzzy function in T with respect to ~
if T' proves the following:

(zmd'&ymy)— (Flz,y) = F(a',y'),
(F(x,y) & F(z,y) —y =y

The former formula is the congruence axiom; the second says that any two
images of x are similar.

Lemma. Let F' define a partial fuzzy function in 7" w.r.t. &. Let ¢,d be
constants such that 7'+ F(¢,d).

(1) Then T+ (z = c& F(x,y)) — y ~ d.

(2) Moreover, if A(x) is # ~ ¢ and B(y) is the formula given by the
condition Comp of the compositional rule of inference from F' and A, i.
e. B(y)is (Fz)(x = c& F(x,y)) then T F (B(y) = y ~ d). (Thus the

compositional rule transforms « ~ ¢ and F(x,y) to y ~ d.)

Definition. A fuzzy relation s : (M; x My) — [0,1] is a fuzzy mapping
from MyintoM;y w.r.t. ri,ry if s is extensional, i. e. for all x,2" € My, y,y’ €
M27

ri(z,2’) «ray,y') + s(x,y) < s(a'sy')
and functional, i. e.
s(x,y) =+ s(,y') < raly,y)

Assume now that s is a fuzzy mapping from M into My (w.r.t. rq,rg),
and that we know finitely many examples u;,v; (¢ = 1,...,n) such that
s(u;,v;) = 1. Thus if F names s, ¢; name u; and d; name v; then F(¢;, d;) is
I-true in M = (My, My, 1,19, 8, u;, v;), hence

r & Fle,y)—y~d;
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is 1-true; and this resembles an “IF- THEN rule”
IF x is similar to ¢; THEN vy is similar to d;.

Definition. F' defines a ~-function with examples (¢;,d;) (1 = 1,...n)
in T if F' defines a fuzzy function w.r.t. a similarity &~ and for ¢ = 1,...,n,

T proves F(¢;,d;).
Lemma. Let A;(x) be 2 &~ ¢;, let B;(y) be y &~ d;. Then T proves
F(x.y) = \(Ai(z) — Bi(y)),
VA& B(5) — Fley).

Definition. Given predicates A;, B;, we let
RULES(x,y) stand for the formula

/\(Ai(f) — Bi(y))
and MAM D(x,y) (resembling the name Mamdani) for the formula
V(Ai(2)&Bi(y))

THEMAMD(z,y) — F(x,y) - RULES(x,y).

One easily shows that M AM D defines in T' a ~-function with examples
(ciyd;). Infact, MAM D(x,y) defines in T the least ~-function with examples
(¢ci,d;). Caution: The formula RULES(x,y), 1. e. Ni(Ai(x) — Bi(y)) need
not define a ~-function!

Thus keeping our assumptions on 7" we may ask under which conditions
the two formulas, RULES(x,y) and MAM D(z,y) are equivalent. The fol-

lowing lemma gives the answer:

Lemma.

T+ (\/ Ai(x)) = (MAMD(z,y) = RULES(z,y))
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TU {\/ Ai(x)} B (Va,y)(MAMD(z,y) = RULES(x,y)).

What if we just have M;, similarities r; and (potential) examples (u;,v;)?
What must be assumed to be sure that there is a fuzzy mapping s (w.r.t. ;)
such that s(u;,v;) =17

Lemma. If T+ ¢; & ¢; — d; &~ d; for each ¢, j (indices at ~ deleted) and
THMAMD(z,y) = V(x ~ ¢; &y ~ d;) then MAMD defines a ~-function
inTand T'H MAMD(¢;,d;) fori =1,...,n.

Let us be still more modest: let us have My, M, and fuzzy subsets ry4, of
My, rg, of My. We ask under which conditions we may assume

e similarities sy on M; and sy on M, with respect to which ry4,, rp, are
extensional,

o elements uy,...,u, € My, v,...,v, € My such that such that ry,
are “fuzzy singletons given by wu; with respect to s;” and similarly for

rB,, Vi, S2, and

® an sy, sy-fuzzy mapping rp “sending u; to v;”.

Lemma.
(1) Define a binary predicate a2 as folows:

(Va,2")(z =2’ = /\(AZ(J}) = A;(2")).

The resulting extension T of T is conservative, &~ is a similarity in 1" and
all T" proves all A; to be extensional.

(2) Add new constants ¢; and axioms
(Va)(Ai(x) = « & ¢)). The resulting theory T" is a conservative extension
of T" iff T" proves all formulas

(32) Ai(z),



Now we are ready to answer our question above:
Theorem. Assume
Tk (32)Ai(z),  TF (Jy)Bi(y),

TE(Jz)(Ai(x)&Aj(x)) —

T+ (3y)(Bi(y)&B;(y)) —
Add definitions @1 ~ x5 = A;(Ai(21)
Bi(y2)), new constants ¢;, d; and axioms
AZ(J}) =T~ ¢, Bz(y) =y~ dZ
Finally add the definition

Il
E>
S

=
[N~}
S—’
S—’
N
[

0
2
[N~}

Il
?
S
oy
S
N
[
S—’

I

MAMD(z,y) = \/(Ai()&Bi(y))
Then

o The resulting theory 7™ is a conservative extension of 1" and ~, ~
are similarities.

o MAMD defines in TM a fuzzy mapping w.r.t. ~,~, with the exam-
ples (¢, d;) iff

T'E (o) (Ai(x)&A () — (Fy)(Bi(y)&Bj(y)).

Finally let use discuss the (logical) principles of fuzzy control in general,
without relating it to to the notion of similarity. We have rules: A;(x) —

Bi(y)
We define:

(Yo, y)(MAMD(x,y) = \/(Ai(2)&Bi(y))). (*)

(Vy)(B*(y) = (F2)(A™(x)&MAM D(x, y))). ()
Given a model M = (Dx, Dy,ra,,rg,) this defines a function associating to
each fuzzy subset r4+ of Dy the corresponding fuzzy subset rg« of Dy.

Remark. In this discussion problems of fuzzification and defuzzification
are fully disregarded. We ask: Is there any logic here?
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Definition. FC' is the following two-sorted theory. The axioms are the
formulas (*), (**) above (defining MAM D from A;, B; and defining B* from
A*, R). In addition, F'C has two constants: X and Y.

Theorem. FC proves the following (over BLY):
ACAX) = BA(Y)E V(AP(X)] — (A°(X) —
— B*(Y)):

This has double meaning: (1) Read the formula assuming that its as-
sumptions true but also (2) assuming only that the assumptions are only
sufficiently true: For example, if the rules are 1-true then |[|[B*(Y)||m >

|A*(X)||ar * || V AZ2(X))||ar (* being the interpretation of &).
Lemma. FC proves (over BLY) the following:
[(Va)(A™(x) = Ai(x))&(Tx) Af(2)] — (Vy)(Bily) — B*(y)).

[(Va)(A™(x) = Ai(ﬂ?))&(vw)(é\lﬁ(Az'(l‘)&Aj(w)))] — (Vy)(B"(y) = Bi(y))-
i

Again read the formulas as true in a model — first with the antecedent
1-true and then with the antecedent sufficiently true. We see that

(i) if A*(x) is sufficiently true to A; and A; is (sufficiently) near then B;
is sufficiently included in B*;

(ii) if A, is sufficiently disjoint from all the other A;’s and A* is sufficiently
near to A; then B* is sufficiently included in B;. Obviously, these are fuzzy
readings; the precise meaning is given by the formulas proved and may be
expressed in more details as an exercise.

Note that instead of antecedent of the form A;(X) we could investigate
Aﬂ(Xl)& ce &Azk(Xk) or
A (X1) Ao A Ai(Xy); this brings no problems but is more cumbersome.

5 Conclusion

We hope that we have shown the following:

o [uzzy logic is neither a poor man’s logic nor poor man’s probability.
Fuzzy logic (in the narrow sense) is a reasonably deep theory.
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o [uzzy logic is a logic. It has its syntax and semantic and notion of
consequence. It is a study of consequence.

o There are various systems of fuzzy logic, not just one. The main two
most developedp systems are those of Lukasiewicz and of Godel, the
first together with its extension a la Pavelka.

In addition, we claim the following:

o [Further logical investigations of fuzzy logic are possible. In particular,
one has to apply the theory of generalized quantifiers to fuzzy logic and
go further in a strictly logical analysis of things pointed out by Zadeh
as “particular agenda of fuzzy logic”. Cf also [5].

o To construct combined calculi of vagueness and of uncertainty is pos-
sible. See [19, 20] for information; one gets many-valued modal logics.

o [uzzy logic in the narrow sense is a beautiful logic, but also is important
for applications: it offers foundations.
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