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Abstract
A Cauchy problem on the semiline for a nonlinear diffusion equation is
considered, with a boundary condition corresponding to a prescribed thermal
conductivity at the origin. The problem is mapped into a moving boundary
problem for the linear heat equation with a Robin-type boundary condition.
Such a problem is then reduced to a linear integral Volterra equation of II type
which admits a unique solution.

PACS numbers: 02.30.Ik, 02.60.Lj

The nonlinear diffusion equation

ut =
(ux

u2

)
x

u = u(x, t) (1)

is a well-known mathematical model for heat conduction in high polymer systems [1] and
in simple monoatomic metals of Storm type [2]. Fixed and moving boundary problems for
equation (1) have been solved in the past through a linearizing transformation which allows
us to reduce equation (1) to the linear heat equation [3, 4]. In the following we limit our
consideration to materials of Storm type and consider for equation (1) an initial/boundary
value problem on the semiline with a prescribed thermal conductivity at the origin. We show
that the corresponding problem for the linear heat equation is a semiline problem with a
moving boundary and a Robin-type boundary condition. Such problem is then solved, i.e.
reduced to a linear integral equation of Volterra II type which admits a unique solution. An
explicit example is also discussed.

We start our analysis by observing that the thermal variable u in equation (1) is related to
the temperature distribution of the system through the relation [3]

u =
∫ T

T0

ρcp(T ′) dT ′, (2)

where ρ and cp(T ) represent in turn the density (assumed to be constant) and the specific
heat of the system. In our model the thermal variable u represents therefore the heat energy
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(quantity of heat for unitary length) propagating through a semi-infinite one-dimensional
metallic rod. Moreover we observe that for materials of Storm type we can write(ux

u2

)
x

= k(T ), (3)

k(T ) being the thermal conductivity of the material.
Let us now analyse for equation (1) the initial/boundary value problem on the semiline

0 � x < ∞, characterized by the following initial and boundary data:

u(x, 0) = u0(x), 0 � x < ∞ (4a)

u(∞, t) = γ > 0, ux(∞, t) = 0, t � 0 (4b)

ux(0, t)

u2(0, t)
= α > 0, (4c)

where α and γ are positive constants. Due to (3), the boundary condition (4c) corresponds,
from the physical point of view, to a prescribed constant thermal conductivity at the origin.

Next we introduce the hodograph transform

u(x, t) = [v(z, t)]−1 (5a)

with

∂z

∂x
= u(x, t) (5b)

∂z

∂t
= −

(
1

u(x, t)

)
x

(5c)

whose compatibility, ∂2z
∂x∂t

= ∂2z
∂t∂x

, is guaranteed by (1).
Under the above transformation equation (1) is mapped into

vt = vzz (6)

over the domain α t � z < ∞, with the initial datum

v(z, 0) ≡ v0(z0) = [u0(x)]−1, (7a)

where

z0 ≡ z0(x) =
∫ x

0
dx ′u0(x

′). (7b)

Moreover, the boundary conditions (4b), (4c) become

v(∞, t) = 1

γ
, vz(∞, t) = 0 (7c)

α v(α t, t) + vz(α t, t) = 0. (7d)

The initial/boundary value problem for the nonlinear diffusion equation (1), with the initial
datum (4a) and the boundary conditions (4b), (4c) is then mapped into an initial/boundary
value problem for the linear heat equation (6) over a domain with a linearly moving boundary,
characterized by the initial datum (7a) and boundary conditions (7c), (7d). We observe
that (7d) is a Robin-type boundary condition at the moving boundary. In order to solve this
problem we introduce the fundamental kernel of the heat equation

K(z − ξ, t − t ′) = 1

2
√

π

1√
t − t ′

exp

[
−1

4

(z − ξ)2

(t − t ′)

]
(8)
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and integrate Green’s identity for the heat equation

∂

∂ξ

(
K

∂v

∂ξ
− v

∂K

∂ξ

)
− ∂

∂t ′
(Kv) = 0 (9)

over the domain αt ′ < ξ < ∞, ε < t ′ < t − ε and let ε → 0. Using (7d) and
K(z − ξ, 0) = δ(z − ξ), we obtain

v(z, t) =
∫ +∞

0
dξ K(z − ξ, t)v0(ξ) +

∫ t

0
dt ′Kξ(z − αt, t − t ′)v(αt ′, t ′). (10)

From (10) it follows that v(z, t) has to be determined in terms of the boundary value
v(α t, t) which is unknown; it is therefore convenient to evaluate (10) at z = α t . By putting
v(α t, t) = w(t), we obtain

w(t) = G(t) +
∫ t

0
dt ′R(t − t ′)w(t ′), (11a)

with

G(t) = 1

2
√

πt

∫ +∞

0
dξ exp

[
− (α t − ξ)2

4 t

]
v0(ξ) (11b)

and

R(t) = α

4
√

π

1√
t

e−β t , β = α2

4
. (11c)

Equation (11a) is a linear Volterra integral equation of the convolution type with a mildly
singular kernel; it admits a unique solution under the assumption that G(t) is an integrable,
bounded function of its argument [5]. The solution of (11a) can be written as

w(t) = G(t) +
∫ t

0
dt ′ S(t − t ′)G(t ′), (12a)

where S(t) is the resolvent kernel of (11a) given by

S(t) = e−β t

{
1√
πt

+

√
β

2
eβ t/4

[
1 + Erf

(√
βt

2

)]}
, (12b)

with G(t) given by (11b) and

Erf(y) = 2√
π

∫ y

0
dτ e−τ 2

. (12c)

Having established existence and uniqueness of the boundary datum w(t), it then follows,
via (10), existence and uniqueness of the solution of the linear problem v(z, t). We can
therefore conclude that, due to (5a), the initial/boundary value problem (1), (4a)–(4c) for the
nonlinear diffusive equation admits a unique solution u(x, t).

As an example, let us now consider an initial datum u0(x), compatible with the asymptotic
conditions (4b), given by

u0(x) = γ tanh(x). (13)

(11) implies, via (5a) and (5b),

z0(x) = γ ln cosh(x) (14a)

and

v0(z0) = ez0/γ

γ
(e2z0/γ − 1)−1/2 (14b)

which is the initial datum for the linear problem (6), (7a)–(7d).
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When (14b) and (11b) are used, the function G(t) on the right-hand side of (12a) takes
the form

G(t) = 1

2γ

1√
π t

e−β t

∫ +∞

0
dξ e−ξ 2/4t e(

√
β+1/γ )ξ

√
e2ξ/γ − 1

. (15)

In the following we concentrate our attention on the case when the parameter γ is small
(0 < γ < 1) and analyse for this case the asymptotic, large t behaviour of v(z, t). It is easy to
check that for small γ we obtain the approximate expression

G(t) ∼= 1

2γ
[1 + Erf(

√
β t)]. (16)

In the same approximation, via (10), (8) and (14b), we can write the solution of the linear
problem v(z, t) as

v(z, t) ∼= 1

2γ

1√
πt

∫ +∞

0
dξ exp

[
− (z − ξ)2

4 t

]

+
1

4
√

π

∫ t

0
dt ′

(z − αt ′)
(t − t ′)3/2

exp

[
−1

4

(z − αt ′)2

(t − t ′)

]
w(t ′). (17)

The two terms on the right-hand side of (17) can be evaluated in the large time limit t → ∞
(see the appendix). We denote by v∞(z, t) the asymptotic value of v(z, t) and obtain from (17)

v∞(z, t) ≈
t large

1

2γ

[
1 +

e−z2/4t

√
πt

(
z − 2√

β
+ O(t−1/2)

)]
. (18)

Finally, the solution of equation (1) with initial datum (13) and boundary data (4b), (4c) is
obtained (for small γ ) in the large time limit as

u∞(x, t) =
(

∂z

∂x

)
(19)

where, in virtue of (3a), (3b), z(x, t) solves

x =
∫ z

0
dz′ v∞(z′, t) (20)

with v∞(z, t) given by (18).

Appendix

We write (17) in the form

v(z, t) = I1(z, t) + I2(z, t), (A.1)

where I1(z, t) and I2(z, t) denote, respectively, the first and the second term on the right-hand
side of (17).

We then get

I1(z, t) = 1

2γ

1√
πt

∫ +∞

0
dξ exp

[
− (z − ξ)2

4 t

]

= 1

2γ

[
1 + Erf

(
z

2
√

t

)]
. (A.2)

In the large time t limit we obtain from (A.2)

I1(z, t) ≈
t large

1

2γ

[
1 +

z√
π

e−z2/4t

√
t

+ O

(
e−z2/4t

t3/2

)]
. (A.3)
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We now turn our attention to the asymptotic, large t, evaluation of I2(z, t). From (17) we
can write

I2(z, t) ∼= 1

4
√

π

1√
t

∫ 1

0
du(z − α t u) exp

[
−1

4

(z − αtu)2

t (1 − u)

]
w(t u)

(
1 +

3

2
u + · · ·

)
. (A.4)

In the large t limit, by using the Laplace method, we obtain from (A.4)

I2(z, t) ≈
t large

− 2√
πβ

e−z2/4t

√
t

w(0) +
z

4
√

β

e−z2/4t

t
w(0) + O

(
e−z2/4t

t3/2

)
, (A.5)

where, via (12a) and (16), it is w(0) ∼= 1/2γ .
When (A.3) and (A.5) are used in (A.1), there immediately follows the result reported

in (18).
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