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Abstract

A Cauchy problem on the semiline for a nonlinear diffusion equation is
considered, with a boundary condition corresponding to a prescribed thermal
conductivity at the origin. The problem is mapped into a moving boundary
problem for the linear heat equation with a Robin-type boundary condition.
Such a problem is then reduced to a linear integral Volterra equation of II type
which admits a unique solution.

PACS numbers: 02.30.1k, 02.60.L;j

The nonlinear diffusion equation
u; = (u—;> u=u(x,t) (1
u X

is a well-known mathematical model for heat conduction in high polymer systems [1] and
in simple monoatomic metals of Storm type [2]. Fixed and moving boundary problems for
equation (1) have been solved in the past through a linearizing transformation which allows
us to reduce equation (1) to the linear heat equation [3, 4]. In the following we limit our
consideration to materials of Storm type and consider for equation (1) an initial/boundary
value problem on the semiline with a prescribed thermal conductivity at the origin. We show
that the corresponding problem for the linear heat equation is a semiline problem with a
moving boundary and a Robin-type boundary condition. Such problem is then solved, i.e.
reduced to a linear integral equation of Volterra II type which admits a unique solution. An
explicit example is also discussed.

We start our analysis by observing that the thermal variable u in equation (1) is related to
the temperature distribution of the system through the relation [3]

T
U= f pe, (T dT', )
T

0
where p and c¢,(T) represent in turn the density (assumed to be constant) and the specific
heat of the system. In our model the thermal variable u represents therefore the heat energy
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(quantity of heat for unitary length) propagating through a semi-infinite one-dimensional
metallic rod. Moreover we observe that for materials of Storm type we can write
u
(_;> = K(T), 3)
us/x

k(T) being the thermal conductivity of the material.

Let us now analyse for equation (1) the initial/boundary value problem on the semiline
0 < x < 00, characterized by the following initial and boundary data:

u(x,0) = up(x), 0<x <@ (4a)
u(co,t)y =y >0, u(00,t) =0, t>0 (4b)
u,(0,1) 0 40
2O, ¢ ‘

where « and y are positive constants. Due to (3), the boundary condition (4¢) corresponds,
from the physical point of view, to a prescribed constant thermal conductivity at the origin.
Next we introduce the hodograph transform

u(x, 1) = [v(z, )] (5a)
with

% =u(x,1) (5b)

0x

0z 1

E - <u(x, t))x G0

_ ¥z

whose compatibility, % = 55 is guaranteed by (1).
Under the above transformation equation (1) is mapped into

Uy = Uy (6)
over the domain o t < z < 00, with the initial datum
v(z, 0) = vo(20) = [uo(x)]™", (Ta)
where
z0 = zo(x) = / dx'uo(x’). (7b)
0
Moreover, the boundary conditions (4b), (4c) become
1
v(oo, t) = —, v,(c0, 1) =0 (7¢)
14
av(at, t)+v,(at, t) =0. (7d)

The initial /boundary value problem for the nonlinear diffusion equation (1), with the initial
datum (4a) and the boundary conditions (4b), (4¢) is then mapped into an initial /boundary
value problem for the linear heat equation (6) over a domain with a linearly moving boundary,
characterized by the initial datum (7a) and boundary conditions (7c), (7d). We observe
that (7d) is a Robin-type boundary condition at the moving boundary. In order to solve this
problem we introduce the fundamental kernel of the heat equation

Kbt —t)= —— L exp[—l(z_€)2:| 8)
Y 2Jm =1 4 (t—1)
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and integrate Green’s identity for the heat equation

0 ov 0K 0
s (K5 =5 ) - m kv =0 ®

over the domain at’ < & < 00, ¢ < t' <t —¢ and let ¢ — 0. Using (7d) and
K(z —&,0) = 8(z — &), we obtain

t

v(z, 1) = f ” dé K(z — &, t)vo(§) +/ di'Ke(z —at, t —tv(at’, 1'). (10)
0 0

From (10) it follows that v(z, #) has to be determined in terms of the boundary value
v(a ¢, t) which is unknown; it is therefore convenient to evaluate (10) at z = « ¢. By putting
v(at,t) = w(t), we obtain

w(t) = G(t)+/ dt'R(t — tHw(t), (11a)
0
with
o +oo (at —§)?
G@) = 2—\/5/0 d§ exp [—T] vo(§) (11b)
and
o 1 o?
— -~ Bt -
R(t)—4ﬁﬁe , B = T (11c)

Equation (11a) is a linear Volterra integral equation of the convolution type with a mildly
singular kernel; it admits a unique solution under the assumption that G(¢) is an integrable,
bounded function of its argument [5]. The solution of (11a) can be written as

t
w(t) = G(1) +f dr' S(r — tHG(), (12a)
0
where S(¢) is the resolvent kernel of (11a) given by
1 t
S@t) =e P! {—+ﬁeﬂ’/4[1+Erf<£)“, (12b)
Jrt 2 2
with G(¢) given by (11b) and
2 7 2
Erf(y) = —/ dre ™. (12¢)
v Jo

Having established existence and uniqueness of the boundary datum w(¢), it then follows,
via (10), existence and uniqueness of the solution of the linear problem v(z, ). We can
therefore conclude that, due to (5a), the initial/boundary value problem (1), (4a)—(4c) for the
nonlinear diffusive equation admits a unique solution u(x, ?).

As an example, let us now consider an initial datum uy(x), compatible with the asymptotic
conditions (4b), given by

up(x) = y tanh(x). (13)
(11) implies, via (5a) and (5b),
Zo(x) = y Incosh(x) (14a)
and
ew/y
vo(z0) = —— (e — 1712 (14b)
14

which is the initial datum for the linear problem (6), (7a)—(7d).
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When (14b) and (11b) are used, the function G(¢) on the right-hand side of (12a) takes
the form
oy SVEHE

1 1
———c P! / dée —_—
2y Jrmt 0 eElr — 1
In the following we concentrate our attention on the case when the parameter y is small

(0 < y < 1) and analyse for this case the asymptotic, large ¢ behaviour of v(z, 7). It is easy to
check that for small y we obtain the approximate expression

1
G(t) = 5[1 +Erf (/B 1)]. (16)

In the same approximation, via (10), (8) and (140), we can write the solution of the linear
problem v(z, f) as

1 1 +00 _ 2
v(z, 1) = 2_«/__/ dé& exp |:— (2 45) i|

f —at’) ex [_1(1_—‘”,)2} w(t') (17)
Tavm [k s '

The two terms on the rlght-hand side of (17) can be evaluated in the large time limit t — oo
(see the appendix). We denote by v, (z, ) the asymptotic value of v(z, f) and obtain from (17)

Voolz, 1) ~ ! 1+ ﬂ (Z 2 + O(t‘l/z)) (18)
e tlarge 2)/ \/H \/F ’

Finally, the solution of equation (1) with initial datum (13) and boundary data (4b), (4c) is
obtained (for small y) in the large time limit as

0z
Uoo (X, 1) = (5) (19)

where, in virtue of (3a), (3b), z(x, t) solves

¥4
X = / dz/ veo (2, 1) (20)
0
with v (z, t) given by (18).

G@t) = 5)

Appendix

We write (17) in the form
U(Z,I)ZI](Z,t)+12(Z,t), (Al)

where 1(z, t) and I,(z, t) denote, respectively, the first and the second term on the right-hand
side of (17).

We then get
1 1 +00 _ 52
I, (z, t)_Z_J__ déexp|:—(z4:5) i|
1
2y [1 + Erf <2¢_>] (A.2)

In the large time ¢ limit we obtain from (A.2)

1 z e~ 2 /4 e~ 2 /4
I ~ —|1+— — . A.
1(z, 1) e 2y + = 7 +0 a7 (A.3)
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We now turn our attention to the asymptotic, large ¢, evaluation of I5(z, t). From (17) we
can write

1 (z — atu)? 3
L(z, 1) = du(z — ot u)exp |:———i| w(tu) <1 + zu + .- ) . (A4

1 1 /!
mﬁfo 4 t(1—u)

In the large ¢ limit, by using the Laplace method, we obtain from (A.4)

2 —22 /4t z efz2/4z efzz/4t A
I N e _ _ .
2@) % w0t e O+ 0| S | (AS)

where, via (12a) and (16), itis w(0) = 1/2y.
When (A.3) and (A.5) are used in (A.1), there immediately follows the result reported
in (18).
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