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Abstract In this article, the expression for the Drazin inverse of a modified matrix is

considered and some interesting results are established. This contributes to certain recent

results obtained by Y.Wei [9].
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1 Introduction

Let Cn×m denote the set of all complex n×m matrices. For A ∈ Cn×m, the set of inner

inverses are given by

A{1} = {X : AXA = A}. (1)

Let us recall that the Drazin inverse of A ∈ Cn×n [3] is the matrix AD ∈ Cn×n that

satisfies

Ak+1X = Ak, XAX = X, AX = XA,

for some nonnegative integer k. The least such k is the index of A, denoted by ind(A). Some

interesting properties of Drazin inverse, among other articles, were investigated in [4, 8, 10].

In this article, we consider a matrix A ∈ C(m+p)×(n+q) partitioned as

M =

⎡
⎣A B

C D

⎤
⎦ , (2)

where A ∈ Cm×n and D ∈ Cp×q.

The motivation for this research is the article of Y.Wei [9], in which he derived various

expressions for the Drazin inverse of a modified matrix.
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It is well-known that the generalized Schur complement of D in M is defined as

S(M) = A−BD−C, (3)

where D− ∈ D{1}.

If we replace D− ∈ D{1} by the Drazin inverse of D in (3), we obtain the Drazin-Schur

complement of D in M , denoted by

SD(M) = A−BDDC.

The Drazin-Schur complement of A in M is denoted by

ZD(M) = D − CADB.

For interesting results concerning Schur complements, see [1, 2, 6, 7].

In this article, we derive some expressions for the Drazin inverse of Drazin-Schur comple-

ment for the matrix M given by (2). As a corollary, we obtain the results of Wei [9].

2 Results

For an arbitrary matrix A, we denote EA = I −AAD. Let

K = ADB, H = CAD, G = HK.

We use S and Z instead of SD(M) and ZD(M), respectively.

When the partitioned matrix M and the submatrix D are both nonsingular, then the Schur

complement of D in M is also nonsingular. When M, A, and D are all nonsingular, then,

(A−BD−1C)−1 = A−1 + A−1B(D − CADB)−1CA−1

which was observed by Duncan [5]. We have the analogous result concerning the Drazin inverse

and the Drazin-Schur complement.

Theorem 2.1 Suppose that EAB = 0, CEA = 0, BEDZDC = 0, BDDEZC = 0,

BZDEDC = 0, and BEZDDC = 0. Then,

SD = AD + ADBZDCAD.

Proof Let X = AD + ADBZDCAD. Then,

SX = (A−BDDC)(AD + ADBZDCAD)

= AAD + AADBZDCAD −BDDCAD −BDDCADBZDCAD

= AAD + BZDCAD −BDDCAD −BDD(D − Z)ZDCAD

= AAD + BEDZDCAD −BDDEZCAD

= AAD.

Similarly, XS = ADA, that is, XS = SX . Furthermore,

XSX = ADA(AD + ADBZDCAD)

= AD + ADBZDCAD

= X.
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By induction, it follows that

(A−BDDC)m+1X = (A−BDDC)m + (Am+1AD −Am).

Hence, (A−BDDC)m+1X = (A−BDDC)m holds for m ≥ ind(A).

In case D = I, it follows that ED = 0. Hence, we obtain Theorem 2.1 in [9] as a corollary

of our Theorem 2.1.

Corollary 2.1 If EAB = 0, CEA = 0, BEZC = 0, then,

(A−BC)D = AD + ADBZDCAD,

where Z = I − CADB.

If Z is invertible, then, from Theorem 2.1, we obtain the following result.

Corollary 2.2 Suppose that Z is nonsingular and EAB = 0, CEA = 0, BEDZ−1C = 0,

and BZ−1EDC = 0. Then,

SD = AD + ADBZ−1CAD.

In case B = I, we have the following corollary.

Corollary 2.3 Suppose that CEA = 0, EADD = 0, and ‖AD‖ · ‖DDC‖ ≤ 1. Then,

(A−DDC)D = (I −ADDDC)−1AD = AD(I −DDCAD)−1

and

(A−DDC)D −AD = (A−DDC)DDDCAD = ADDDC(A−DDC)D,

with
‖(A−DDC)D −AD‖

‖AD‖
≤

kD(A)‖DDC‖/‖A‖

1− kD(A)‖DDC‖/‖A‖
,

where kD(A) = ‖A‖‖AD‖ is the condition number with respect to the Drazin inverse.

Proof For the proof of this corollary, see Theorem 3.2 and Corollary 3.2 in [10].

Theorem 2.2 Let Z = 0, EAB = 0, CEA = 0, BEDGDC = 0, BDDEGC = 0,

BGDEDC = 0, and BEGDDC = 0. Then,

SD = (I −KGDH)AD(I −KGDH)

= (I −KH(KH)D)AD(I −KH(KH)D).

Proof Denote X = (I −KGDH)AD(I −KGDH). We obtain

SX = (A−BDDC)(I −KGDH)AD(I −KGDH)

= (A−BDDC −BGDCAD + BDDDGDCAD)(AD − (AD)2BGDCAD)

= (A−BDDC)(AD − (AD)2BGDCAD)

= AAD −BDDCAD − A(AD)2BGDCAD + BDDC(AD)2BGDCAD

= AAD −BDDCAD − ADBGDCAD + BDDGGDCAD

= AAD −ADBGDCAD

= AAD −KGDH
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and XS = AAD −KGDH , that is, XS = SX . Also,

XSX = (AAD −KGDH)(I −KGDH)AD(I −KGDH)

= (AAD −KGDH −AADKGDH + KGDHKGDH)(AD −ADKGDH)

= (AAD −KGDH)(AD −ADKGDH)

= (I −KGDH)AADAD(I −KGDH)

= X.

We prove that (A−BDDC)m+1X = (A−BDDC)m by induction.

If D = I, then we obtain Theorem 2.2 of [9]:

Corollary 2.4 Suppose that Z = 0, EAB = 0, CEA = 0, and BEGC = 0. Then,

(A−BC)D = (I −KGDH)AD(I −KGDH)

= (I −KH(KH)D)AD(I −KH(KH)D).

Theorem 2.3 Let ind(Z) = 1 and EAB = 0, CEA = 0, BED = 0, EDC = 0, ZZ#G =

GZZ#, BD = DB, CD = DC, BEGC = 0. Then,

SD = (I −KEZGDH)AD(I −KEZGDH) + KZ#H. (4)

Proof Denote by X the right side of (4). We have

SX = (A−BDDC −BEZGDH + BDDCADBEZGDH)

×AD(I −KEZGDH) + AKZ#H −BDDCADBZ#H

= (A−BDDC −BEZGDH + BDD(D − Z)EZGDH)

×AD(I −KEZGDH) + BZ#H −BDD(D − Z)Z#H

= (A−BDDC)AD(I −KEZGDH) + BDDZZ#H

= AAD −KEZGDH −BDDCAD + BDDGGDEZH + BDDZZ#H

= AAD −KEZGDH −BDDEGCAD + BDDEGZZ#CAD

= AAD −KEZGDH

and

XS = (I −KEZGDH)AD(A−BDDC −KEZGDC

+KEZGDCADBDDC) + KZ#C −KZ#CADBDDC

= (I −KEZGDH)AD(A−BDDC −KEZGDC

+KEZGD(D − Z)DDC) + KZ#C −KZ#(D − Z)DDC

= (I −KEZGDH)AD(A−BDDC) + KZ#ZDDC

= ADA−ADBDDC −KEZGDH + KEZGDGDDC + KZ#ZDDC

= ADA−KGDEZH −ADBEGDDC + KZ#ZEGDDC

= ADA−KGDEZH.
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Furthermore,

XSX = (ADA−KGDEZH)(I −KEZGDH)AD

×(I −KEZGDH) + (ADA−KGDEZH)KZ#H

= (ADA−KGDEZH)AD(I −KEZGDH) + KZ#H

= X.

By induction, it follows that

(A−BDDC)m+1X = (A−BDDC)m + (Am+1AD −Am).

Hence, (A−BDDC)m+1X = (A−BDDC)m, for m ≥ ind(A).

Obviously, for D = I we have the following result.

Corollary 2.5 Let EAB = 0, CEA = 0, BEGC = 0, GDEZ = EZGD, and ind(Z) = 1.

Then,

(A−BC)D = (I −KEZGDH)AD(I −KEZGDH) + KZ#H.
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