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DISTORTION PROPERTIES  OF //-FOLD  SYMMETRIC
ALPHA-STARLIKE  FUNCTIONS

H.   B.   COONCE AND  S.   S.   MILLER1

Abstract.    Starlike functions / which are of Mocanu type a

and have power series of the form

.     f(z) = z + ap+1z»+1 + a^z*^1 + ■■■ ,

where p = \, 2, 3, • • • , are shown to satisfy the relation f(z)=

[g(z")]llv where ^ is of Mocanu type pa. with power series g(z)=z+

b2zi+b3z3 + - ■ ■ . Distortion results dealing with the ¿-theorem

and bounds on |/(z)| are obtained.

1. Introduction. In a recent paper [1] S. S. Miller obtained distortion

theorems for the class of alpha-starlike functions. In this paper we look

at functions which are alpha-starlike and //-fold symmetric. Specifically

we look at functions / which are alpha-starlike with power series of the

form

(1.1) foz) = z + a^z^1 + a2v+xz2^ + ■■■,

wherep—l, 2, 3, • • •.

For completeness we recall the pertinent definitions.

Definition 1. Let a be real and suppose /(z)=z+/32z2+/33z3+- • • is

regular in F={z:|z|<l} with/(z)/'(z)#0 in 0<|z|<l. If

r zf'(z) ¡zf"(z)        \1

for z g D then/is an a-starlike function. We write/G ^#a.

Definition 2. If/ is starlike and a.=sup{ß:fe^ß} then / is of

Mocanu type a. (fe ^(a)).

The above definitions may be found in [1], [2] and [3].

We now introduce some notation.
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Definition 3. If/G^#a and foz) has a power series of the form

(1.1) we write/G^#ai). Iffe ^(a.) with power series of the form (1.1)

we write feJ(v(a).

The results of this paper will depend upon the theorem (proven in §2)

that/G^P(a) iff g zJtx(p<x) where f(z)=[g(zv)]1/". The subsequent

distortion theorems (proven in §3) will follow from results in [1].

2. The basic relation. In this section we consider the following

result.

Theorem 1.   /g ^„(a) iff g g Jíxipt¿), where f(z)= [giz')]11».

Proof.    Letf&J(ap, a real, thus

(2.1)
/(z)

(^+l))>0.
\f'(z) Ii

Setting/(z)= [g(zv)]llv and computing/'(z)//(z) and/"(z)//'(z) we notice

the left-hand side of (2.1) is equal to

(2.2, RJ(1_ptl)i!iïi'i + pIt(£ÏÏ£l>+1)).

But the condition that this quantity is positive is equivalent to g e ^m,v

Since the computations are reversible it follows that/G ^œ>p iff g g ^ß mX-

Furthermore since the correspondence of a and pa. is monotone increasing

it follows that/G ~#„(a) iff g g J(xipa.).

Note that an alternate proof to Theorem 1 can be obtained by using

the integral representation for functions in ^a (see [1] or [2]) plus the

fact that if giz) is a starlike function then [g(z")]1/n is also a starlike

function.

3. Distortion theorems. In the following theorems we will need the

functions

(3.1)

(3.2)

and

g0(pa, z) =

./»a

j    £l/j»Jt-l

Jo
(1 _ £)-*/»» di

/0(a, z) = [g0(j»a, z')]
v\\lln

(3.3) K(a,r)-r[öf-,-,- + l;r)
\a   a   a /.

where G(a, b, c; z) is the hypergeometric function.
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Theorem 2. If foz) is a p-fold symmetric alpha-starlike fonction,

a.>0, then for \z\=r(0<r<l)

(3.4) [-KipoL, -r')}1" < |/(z)| S [F(/za, r»)?'*.

Proof.    In [1] it is shown that for g g Jtxipu),

(3.5) -Kipx, -r) S \giz)\ S F(//a, r).

By Theorem 1 foz)=[gizp)]1,p and (3.4) follows. Since (3.5) is sharp for

gaipoL, z), we have equality for/0(a, z).

Remarks.    If oc= 1 and /» = 2 we have for odd convex functions

tan    r S |/(z)| S \ log-,
1 — r

whereas if a approaches zero we have the known result for all odd starlike

functions

r r

J     ,    r2 =   V (Z>\   =   1   _   r2 '

Furthermore, since geJ^a) for <x>2 implies g is a bounded convex

function [1] we have that fe^vLr¿), for <x>2///, is a bounded convex

function. In particular all odd alpha-starlike functions are bounded if

a>l.

Theorem 3. If /Gu^fjx), a>0, with power series (1.1) then

K+il ^2///(l +pa.) and this bound is sharp.

Proof. In [1] it is shown that if g &Jtxip<¿), //a>0, the coefficient

b2=g"i0)l2 satisfies \b2\S2¡il+pot.). Since foz)=[gizp)]1/p, a straight-

forward calculation shows \av+x\S2¡p(l+pa.). This inequality is sharp

for/,. Notice that for a=0 or 1 and /»=2 this reduces to the familiar

bounds 1 and \ respectively.

Theorem 4. Iff s ^'„(°0, a>0, then the image of' D under the mapping

w=f(z) always contains the disc |w|<i/(a) where

<?(a) = (i)2/p when a = 0,

- 1   [Til/px)]2-]«
-when a > 0.

_2//cc   r(2/pa) J

These results are sharp with equality for fo.

Proof. Clearly d(a.)=[d(poi)]1,p where d is the radius of the largest

disc always contained in the image w=g(z) where f(z)= [g(zp)]1,p. But
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by [1],

dip*) =
■  1    nil pat

2/ja r(2/r/a)_

which proves the result for a>0. For a = 0, the Koebe function gives us

i\yzlp and in fact lima_0+i/(a) = (|)2/l', thus establishing the result.

Notice that for a=0 or 1 and p= 1 or 2, we have d(a.) given by

it

4

If we let //—»-co we notice lim,,^^ d(a.)=l, a^O thus providing another

proof of the well-known fact that limJ,^0O[g(zî>)]1/î> is the function hiz)=z.

Theorem 5.    If ft J( Aft), a>0, and A/(r) = max9|/(/-e<9)|, then

for OS a. <

for a = 2/p,

Mir) = 0(1/(1 - r))(2-!,0,)/,,   for 0 S a < 2/p,

= 01og(l/(l -r))

as r*->l~. If'a>2///, (//e//

Aí(r) ^
1   rv,,      rq-2/pa)-

— 1 (l///a)-
L/»a T(l — l/pa).

F/zese bounds are best possible with equality for fo

Proof.    From [1] we see that if g e ^xipa), then

max |g(/-V)| = 0(1/(1 - rv))2-px    for 0 S a < 2,
e

0(log 1/(1 - r"))    fora = 2,
as r—>-l~. If a>2, then

max |g(rV)| S
i rq/poorq - 2/pqy

Lpa        F(l - 1/pa)      .

Letting f(z)=[g(zp)]1,p and taking pth roots of the above we obtain the

desired result.
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