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Abstract

Some extensions and generalizations of Enestrom-Kakeya theorem
are available in the literature. In this paper further generalized results
are given.
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1 Introduction

The Enestrom-Kakeya theorem [4] given below is well known in the theory of
zero distribution of polynomials.

Theorem A. For an nth-order polynomial P(z) = Y1 a;2", assume
Up 2 Qp-1 2 -+ 2 a1 2 ag > 0.

Then P(z) has all its zeros in the disk |z| < 1.

In the literature some attempts have been made to extend and generalize
the Enestrom-Kakeya theorem. Joyal et al [3] extended the Enestrom-Kakeya
theorem to the polynomials with general monotonic coefficients by showing

that if
@nzanfl 2 "'zal 2&0,

then all the zeros of P(z) are contained in the disk
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Aziz and Zargar [1] generalized the result of Joyal et al [3] as follows.

Theorem B. If P(z) = Y ,a;2" is an nth-order polynomial such that for
some A > 1,
Aan Zan—l Z Zal Z(lo,

then P(z) has all its zeros in the disk

On the other hand Govil and Rahman [2] investigated the zero distribution
of polynomials such that the modulii of coefficients are monotonic, and proved
the following theorem.

Theorem C. Let P(z) = Y1y a;2° be the nth-order polynomial such that for
some a > 0,

lan| > alayn 1| > a®lan o] > - > " Hay| > a"|agl.

Then all the zeros of P(z) lie in the disk |z| < Ki/a, where Ky is the greatest
positive root of the equation

Kt —2K"+1=0.

Govil and Rahman [2] also proved that if P(z) = 3", a;z' is an nth-order
complex polynomial such that

larga; — B <a<w/2,i=0,1,2,---,n,
for some real (3, and
|an| > lan-1| = - = Jar| = |aol,
then all the zeros of P(z) lie in the disk

2sina "=t

Z |al
=0

|z| < cosa+sina+
||

Recently Shah and Liman [5] generalized Theorem B and the result of Govil
and Rahman [2], and proved the following two theorems.

Theorem D. Consider an nth-order complex polynomial P(z) = 7 a;z"
with Re{a;} = o and Im{a;} = B3;, 1 =0,1,2,- -+, n. If for some A > 1,

/\CYnZOén—lz"'ZOQZOéo;
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ﬁnzﬁnflz"'zﬁlzﬂ0>o7
then all the zeros of P(z) lie in the disk

A—1 -
2+ ( )an < )‘an a0+|a0|+ﬁn'
a, |ay|
Theorem E. Let P(z) = Y1y a;2" be the nth-order complex polynomial such

that
larga; — B <a<w/2,i=0,1,2,---,n,

for some real 3, and
Man| = |an1| = -+ = |ar| = |aol,

for some X > 1. Then all the zeros of P(z) lie in the disk

1 n—1
24+ A—1| < m{(/\|an| — lao|)(cos o + sin @) + |ao| + 2sina Y |ai|}.
n =0

This paper presents further generalizations of the Enestrom-Kakeya the-
orem. To illustrate the motivation of this paper, consider a fifth-order real
polynomial given by

P(z) = iaizi
=0
= 52° + 42" +102° + 322 — 2z — 2.
Obviously Theorem B is not applicable to this polynomial. However we have
as > a4 > A\az > az > a; > ay,
for 0.3 < A < 0.4. Then it is natural to ask what happens in Theorem B if
(p—k41 = Np—f > Qp—k—1,

for some A # 1 and 1 < k < n (a_; = 0). Similar questions can be raised
for other theorems mentioned above. In the next section we present some
solutions to such questions for Theorem B through Theorem E.

2 Theorems and proofs

Theorem 1. Let P(z) = 3" a;2" be the nth-order polynomial such that for
some N# 1,1 <k<n and a,_ # 0,

Qp > Apo1 > 0 > Apefog1 2> Ak = Gpf—1 > =+ + > Q1 > Q.
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If ap_g—1 > an_g, then all the zeros of P(z) lie in the disk |z| < Ky, where K
1s the greatest positive root of the equation

where

0 =

KF 5 K*F — |y =0,

()\ - 1)an_k

= )
Qp,

an + (A= 1)ap_x — ag + |ao|

|an|

If ap— > an_py1, then all the zeros of P(z) lie in the disk |z| < Ks, where Ko
18 the greatest positive root of the equation

where

52:

K* = 8, K" — || =0,

(1 - /\)an_k

T2 = ’
Gp,

an + (1 = Nap_g — ap + |ag|

|l

Proof. Consider a polynomial

o(2)

— (1-2)P(2)

= —a, 2"+ (an — ap1)2" + -+ (a1 — ag)z + ag.

If ap_g—1 > ap_g, then a, g1 > a,_ and ®(z) can be written as

= =0, 2" = (AN = Dan_p 2"+ (an — apy)2" + - -
F(An—rs1 = ) 2"+ (N — anp—1)2" "

H(an—g—1 — Apg—2)2" N+ + (a1 — ap)z + ag.

a2+ (N = Dayp_p2"

—]z]"{(&n —Qp_1) + -+

(an—k-i-l - an—k)

(/\an—k - an—k—l)

’Z‘k—l
(an—k—l - an—k—Q) (Ch - ao) |@0|
|Z|k+1 + + |Z|n—1 |z|n

}

|2[*

2" Fan 2"+ (A = Vx| = [2"{an + (A = Dan_k — ao + |aol}

O(2)
For |z] > 1,
@) =
_l’_
>
> 0
if

|25+ | > 612"
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This inequality holds if
2] — || > a2

Hence all the zeros of P(z) with modulus greater than one lie in the disk
|z| < Ky, where K is the greatest positive root of the equation

KM — 6§ KF — || = 0.

But the zeros of P(z) with modulus less than or equal to one are already
contained in the disk |z| < K since K; > 1 (see Remark 1 below).

The second part can be proved similarly. If a,_p > a, g1, then a,_p >
a1 and ®(z) can be written as

@(2) = —anzn+1 _ (1 _ )\)anikznkarl + (an _ anil)zn 4.
ket = M )2 (g — 1)

F(n-te1 — Apg—2)2" T+t (a1 — ag)z + ag.
For |z] > 1,

()] > 2" [anz" 4+ (1 = N)an—|

n (a'n—k-i-l - )\an—k)
—|z| {(an—an1)+-~-+ P
(an—k - an—k—l) (an—k—l - an—k—?) (al - ao) |a0|

TR N P B P
> |Z|n_k+1|anzk + (1= Nan—i| = [2]"{an + (1 = Nan_k — ao + |ao|}
> 0

if
2% + 2| > |2/

This inequality holds if
|2 = 72| > Gaf2|*.

Hence all the zeros of P(z) with modulus greater than one lie in the disk
|z| < K3, where K3 is the greatest positive root of the equation

K* — 5, KF! — || = 0.

But the zeros of P(z) with modulus less than or equal to one are already
contained in the disk |z| < K since Ky > 1 (see Remark 2 below).

Remark 1. Let
f(K) = KM = 5, K" — |y
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To prove K7 > 1, it suffices to show that f;(1) < 0. If a,,_x_1 > a,_g, then one
of the following four cases happens.

~—

a
b
¢
d

Gp—fr1 = Qp_j—1 > Ap_g > 0 and A > 1.
Gp—kt1 2> Qp_j—1 > 0> a,_p and A < 0.
p—tr1 > 0> ay_—1 > a,_ and A < 1.
0>an ki1 > App—1>anand 0 < A\ < 1.

~—

N N N N
~—

~—

It is easily seen that 71 > 0 and §; > 1+ 7, for the cases (a), (b) and (c), and
01 > 1+ || for the case (d). Then fi(1) =1 —6; — |y1| < 0 and we have
K> 1.

Remark 2. Let
fo(K) = K* — 6, KM — |y,
If a,_ > a, g1, then the following four cases are possible to occur.
a) Ap_g > Qp_gs1 > Ap_g—1 > 0and 0 < A < 1.
b) an_g > ap_ty1 > 0> a,_1 and A < 1.

¢) pp>0>ay ki1 > a, g1 and A <0.
d) 0> ap_ > ap_g+1 > ay_g—1 and A > 1.

Then 7, > 0 and dy > 1 + 75 for the first three cases, and dy > 1+ |7, for the
last case. Hence f3(1) =1 — d2 — |72| < 0 and we have Ky > 1.

Theorem 2. Let P(z) = 3" a;2" be the nth-order polynomial such that for
somea >0, \(#1)>0,1<k<nand a,_y #0,

|an| Z CL|CLn_1| Z e Z ak_1|an—k+1| Z )\ak|an—k| Z ak+1|an—k—1| Z e Z an|a0|'

If |an—k| < alan—g-1| (i.e., X > 1), then all the zeros of P(z) lie in the disk
|z| < Ki/a, where K is the greatest positive root of the equation

K" 2K +1=0.

If alan—g| > |an—g+1| (i-e., 0 < X < 1), then P(z) has all its zeros in the disk
|z| < Ky/a, where Ky is the greatest positive root of the equation
A—1 1
Kn+1 _9K™ —Kn—k—H Z—=0.
TN X
Proof. If |an_| < a|an_x_1|, then a*~|a,_ri1| > a¥|a,_i|, and we obtain the
same result as Theorem B following the proof of Theorem 1 in [2]. Now suppose
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alan_1| > |an_ri1|, and let Q(2) = "7 a;2*. Then for |z| = R(> 1/a),

1 1 1
< 3 "1{1 4= 4.
Q(2)] < lan|R + aR + (aR)? + + (aR)*2
1 1
err Tarr T (aR)”_l}
1 1 1
< 3 "1{1 -
< lan-a|R i aR * (aR)? i (aR)+—2

+

1 1 1

Mol + NaR)" + -4 W}

_ o f (aR)M -1 (aR)"HHT — 1

= lana|R {(aR)k_Q(aR —1)  MaR)""'(aR - 1)}

AaR)" + (1 =N (aR)" ! —1
/\(aR)”_l(aR o 1) }

— |an_1|R”_1{

Hence

aR)"™ — aR)V k1 _
P(2)] > |an\R"—!an1]R"1{/\( R)" + (1 - M (aR) 1}

AaR)"1(aR — 1)
> 0
if
|| - MaR)" + (1 — N)(aR)"*+1 —1
alan, 1| AMaR)"HaR —1)
Since |a,|/ala,_1] > 1 by hypothesis, the above inequality holds if

MaR)" HaR —1) > AMaR)"™ + (1 — A\)(aR)" " — 1.

Replacing aR by K, we obtain the result.

Theorem 3. Consider an nth-order complex polynomial P(z) = 37, a;z"
with Re{a;} = oy and Im{a;} = 3; i =0,1,2,---,n, and assume that for some
AN£1,1<k<nand a,_ # 0,

Qp, > " 2 Qpfog1] = ANy = Q1 > =+ > Q1 > Qo

ﬁnZﬁn—lZZﬁlZﬁO

If k-1 > g, then all the zeros of P(z) lie in the disk |z| < K, where K
18 the greatest positive root of the equation

KH —51Kk - ‘71| =0,

where
()\ — 1)Oén,k

71 = ’
Qp,
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5 = On + (A= 1Dan_x —ag + |ag| + B — Bo + |50|'
[
If ap_g > 11, then all the zeros of P(z) lie in the disk |z| < K, where Ko
18 the greatest positive root of the equation

K* — 6, K* — || =0,

where
1—XNay,—
y = L= Nk
Qn
5 = Gt (1= Nay_i — ag + |ao| + B, — Bo + [ Bl
2 = )
’an’

Proof. Consider a polynomial

O(z) = (1—2)P(2)
= —a, 2" 4 (@ — ap1)2" -+ (a1 — ag)z + ag
—ap, 2" (= 1) 2"+ (0 — )z + g

+i{(Bn — Bu1)2" 4+ (51 — Bo)z + Bo}-

If ovp—p—1 > ap_y, then a,_gy1 > @, and ®(z) can be written as

B(2) = —ap2"™ — (A= Doy_pz"F
+(an - an—l)zn + T+ (an—k-l—l - an—k)z
(A — Qpepm1)2™ o (g — )z + g

+i{(Bn — Bn-1)z"+ -+ (b1 — Bo)z + Bo}-

n—k+1

If |z| > 1, then
|D(2)] > |anz"™ + (A= Day_pz" |

Qg1 — Oy
_|Z|n{(an_06n_1)—|—+ ( k+1 k)

Bl
(Aan— — anp-1) (1 —ap) | ol
e T \zr"}
n (81— Bo) | 1Bl
—|2| {(ﬁn_ﬁnl>+"'+ |21 ’Z‘n}

v

a2 4+ (A — Va2 "
—|z|"{an + (A = D)ag_i, — ao + || + B — Bo + | Bo])}
> 0



Generalizations of Enestrém-Kakeya theorem 991
if

|25 | > 612"
But this inequality holds if

[ = Il > a2

As a result all the zeros of P(z) with modulus greater than one are contained
in the disk |z| < K7, where K is the greatest positive root of the equation

K'IH—I —61Kk - "71| = 0.

As in the case of Theorem 1, it can be shown that K; > 1. Hence all the
zeros of P(z) with modulus less that or equal to one are already lie in the disk
|z| < Ky, and the proof of the first part is completed.

Now assume o, > ap—g+1. Then oy, > ay,_—1, and $(2) can be written

as
D(2) = —ap,2"™ — (1= Nay_gz"*!
+(Oén — an,l)z" + -+ (ankarl - )\Oén,k)znikJrl
(U — 1) 2" (g — )z + g
+i{(Bn — Bu-1)2" + -+ (b1 — o)z + Bo}-
If |z| > 1, then
1D(2)] > |anz™™ + (1= Nay_p2" FH
n (Odnkarl - )\Oénfk>
—l2™{(an = n1) + -+ B
(n—k — pg-1) (1 — ) | ol
+ + e
2| i |Z|”}
(81 = Bo) | 150l
| 8]
> a2+ (1= Ny, 2"
—|z["{om + (1 = M)an—k — a0 + |ao| + Bn = fo + 6o}
> 0
if
2% + o] > 8i|z|F

But above inequality holds if

|25 = [l > daf 2",
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Hence all the zeros of P(z) with modulus greater than one lie in the disk
|z| < K3, where K3 is the greatest positive root of the equation

Kk — (52Kk71 - "72| = 0.

Again it is easily seen that Ky > 1, and all the zeros of P(z) with modulus
less that or equal to one are already contained in the disk |z| < K3, and the
proof of the second part is completed.

Theorem 4. Let P(z) = Y1 a;2" be the nth-order complex polynomial such
that for some real 3,

larga; — B <a<7/2,i=0,1,2,---,n
and for some X # 1 and a,_y # 0,
|an| > lan-1| = - an—ps1] = Nan—i| > |@n_p—1] > -+ > |a1| > |ag|.

If lan—k| < lan—g-1| (i.e., A > 1), then all the zeros of P(z) lie in the disk
|z| < Ky, where Ky is the greatest positive root of the equation

KR 51Kk - ‘71’ =0,

where
()\ — 1)CLn,k

T = ’
Qp,

{(|an| + (X = D]an_x])}(cos a + sina) + 2sina 317 |a;]
|an|

If lan—k| > |an—k+1| (i.e., 0 <X < 1), then all the zeros of P(z) lie in the disk
|z| < K3, where Ky is the greatest positive root of the equation

5y =

K* — 6, K* — || =0,

where ( N
1—MNa,_
Yo = 7’{7
ap
{(Jan| + (1 = N)|an—k|) }(cos a + sina) + QSin&Z?:_Ol ||

|an|

5y =

Proof. Consider a polynomial

®(z) = (1—2)P(z)

= —a, 2"+ (an — ap1)2" -+ (a1 — ag)z + ag.
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If |ap—r—1| > |@n—g|, then |a,_g11] > |an—k| and ®(z) can be written as

CI)(Z) = —anzn—s—l _ ()\ _ ]-)an—kzn_k + (an . an—l)zn 4.
(1 — k) 2"+ (Nt g — apg1)2" "

+(an-t—1 = Anp—2)2"" 4+ (a1 — ag)z + ao.

If |z| > 1, then
[®(2)] > |anzn+1 + (A — 1)an—kzn_k|
’ankarl - anfk’
_|Z|n{|an_an—1|+"'+ | 2|1
|Xap—t — an_p—1] lar — ag |ao|
|2 2t [
> a2z 4+ (A = Dap_p2" |

_|Z|n{|an - an—1| +-+ |an—k+1 - an—k|

—H)\an,k — (Ln,kfly + -+ ]al — ao‘ + ‘CLO‘}.

It was shown in [2] that, for two complex numbers by and by, if |by| > |b1] and
largb; — O] < a <w/2,i=0,1, for some 3, then

|b0 — b1| S (|b0| — |b1|> cos o + (|b0| + |b1|) sin «v.
Using this fact, we have

|D(2)] > Janz"™ + (A — Dap_pz" "
—[z"{{(lan| + (A = 1)]an_k])}(cos @ + sin )

—lap|(cosa +sina — 1) + QSin&nz_:l ]ai\}
i=0
> ap2" ™+ (A = Day,_ 2" "
—[2"{{(lanl + (A = D]an-4)}(cos @+ sina) + 2sma7§ il }
> 0 -

if
|25 ] > 612 )R

This inequality holds if
2"+ = || > ]2l

and all the zeros of P(z) with modulus greater than one lie in the disk |z| < K7,
where K is the greatest positive root of the equation

K'IH—I —61Kk - "71| = 0.
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It is easily seen that K7 > 1, and all the zeros of P(z) with modulus less than
or equal to one are already contained in the disk |z| < K.
Now consider the case |an—k| > |an—g11].- Then |a,_| > |an—x—1] and ®(z)
can be written as
®(2) = —a, 2" — (1= Nap_p2" "+ (ay —an_1)2" +- -

+(an—k+l - )‘an—k)zn_k+1 + (an—k - an—k—l)zn_k + -
+(a; — ag)z + ag.

If |z| > 1, then

1D(2)] > |anz" 4 (1= Nap_p2" "

‘an—k-‘rl - /\an—k|

—|Z|"{|an — G|+

B
|k — Qn—g—1] la; — ag| |ao
+ ot
|2[* 2| \Z!"}
> |anzn+1 + (1 o )\)an_kzn—k+1|
—|z|"{(|an| + (1 — N)|an_k])(cos a + sin «)
n—1
—l|ag|(cosa + sina — 1) + 2sina Y |ai|}
i=0
> |anzn+1 + (1 o )\)an_kzn—k+1|
n—1
~[2["{(Jan] + (1 = N]an_s|)(cos o+ sina) + 2sina Y fa;] |
=0
> 0
if
|25 + 2| > |2/

This inequality holds if
21" — |2l > dal 2",

and all the zeros of P(z) lie in the disk |z| < K5, where K is the greatest
positive root of the equation

Kk — (52Kk_1 - "72| = 0.

Again it can be shown that Ky > 1, and all the zeros of P(z) lie in the disk
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