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Abstract

The authors apply the theory of multiple Gamma functions, which was recently revived in the study of the determinants
of the Laplacians, in order to evaluate some families of series involving the Riemann Zeta function. By introducing a
certain mathematical constant, they also systematically evaluate this constant and some de�nite integrals of the triple
Gamma function. Various classes of series associated with the Zeta function are expressed in closed forms. Many of these
results are also used here to compute the determinant of the Laplacian on the four-dimensional unit sphere S4 explicitly.
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1. Introduction, de�nitions, and preliminaries

The double Gamma function was de�ned and studied by Barnes [3–5] and others in about 1900.
Although this function did not appear in the tables of the most well-known special functions, yet
it was cited in the exercises by Whittaker and Watson [30, p. 264] and recorded also by Grad-
shteyn and Ryzhik [16, p. 661, Entry 6.441(4); p. 937, Entry 8.333]. Recently, this function was
revived in the study of the determinants of the Laplacians on the n-dimensional unit sphere Sn

(see [9,18,22,23,27,29]). Shintani [24] also used this function to prove the classical Kronecker limit
formula. Its p-adic analytic extension appeared in a formula of Cassou-Nogu�es [7] for the p-adic
L-functions at the point 0. More recently, Choi et al. [10–13] used this function to evaluate the

∗ Corresponding author. Tel.: +1-250-721-7455; fax: +1-250-721-8962.
E-mail addresses: junesang@mail.dongguk.ac.kr (J. Choi), hmsri@uvvm.uvic.ca (H.M. Srivastava)

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00311-3



88 J. Choi, H.M. Srivastava / Journal of Computational and Applied Mathematics 118 (2000) 87–109

sums of several classes of series involving the Riemann Zeta function. Matsumoto [21], on the other
hand, proved asymptotic expansions of the Barnes double Zeta function and the double Gamma
function, and presented an application to the Hecke L-functions of real quadratic �elds. Before their
investigation by Barnes, these functions had been introduced in a di�erent form by (for example)
H�older [19], Alexeiewsky [1], and Kinkelin [20]. The theory of multiple Gamma functions was also
developed in yet another paper by Barnes [6].
In this paper we aim at presenting an explicit form of the triple Gamma function �3 by reducing

the recurrence formula for the multiple Gamma function introduced by Vign�eras [26] and a general
form of a de�nite integral of the double Gamma function evaluated in terms of �3: We also show
that various series involving the Riemann Zeta function can be evaluated by using the theory of
multiple Gamma functions (�2 and �3) and introducing a certain mathematical constant. Finally,
by making use of some of our closed-form evaluations of series involving the Zeta function, we
compute the determinant of the Laplacian on the four-dimensional unit sphere S4 with the standard
metric.
In accordance with Barnes’s de�nition [3], the double Gamma function �2 = 1=G satis�es each of

the following properties:
(a) G(z + 1) = �(z)G(z) (z ∈ C);
(b) G(1) = 1;
(c) Asymptotically,

logG(z + n+ 2)=
n+ 1 + z

2
log(2�) +

[
n2

2
+ n+

5
12
+

z2

2
+ (n+ 1)z

]
log n

− 3n
2

4
− n(1 + z)− logA+ 1

12
+ O

(
1
n

)
(n → ∞); (1.1)

where � is the familiar Gamma function:

{�(z + 1)}−1 = e
z
∞∏
k=1

{(
1 +

z
k

)
e−(z=k)

}
(1.2)

and A is the Glaisher–Kinkelin constant de�ned by

logA= lim
N→∞

{
N∑

k=1

k log k −
(
N 2

2
+

N
2
+
1
12

)
logN +

N 2

4

}
; (1.3)

the numerical value of A being 1:282427130 : : : :
From this de�nition, Barnes [3] deduced several explicit Weierstrass canonical product forms of the
double Gamma function �2; one of which is recalled here in the form

{�2(z + 1)}−1 =G(z + 1)

= (2�)z=2e−(1=2)[(1+
)z2+z]
∞∏
k=1

{(
1 +

z
k

)k
e−z+z2=2k

}
; (1.4)

where 
 denotes the Euler–Mascheroni constant given by


= lim
n→∞

(
n∑

k=1

1
k
− log n

)
∼= 0:577 215 664 901 532 5 : : : : (1.5)
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Voros [29] (see also Vardi [27]) showed for the Glaisher–Kinkelin constant A that

logA=−�′(−1) + 1
12 ; (1.6)

in terms of the Riemann Zeta function �(s) de�ned by

�(s) =
∞∑
k=1

1
ks
=

1
1− 2−s

∞∑
k=1

1
(2k − 1)s (R (s)¿ 1): (1.7)

Indeed the Zeta function �(s) satis�es the functional equation (see [30, p. 269]):

�(s) = 2s�s−1�(1− s)�(1− s) sin
�s
2

(1.8)

and takes on the following special or limiting values (see [30, p. 271]):

�(−1) =− 1
12 ; �(0) =− 1

2 ; �′(0) =− 1
2 log(2�) (1.9)

and

lim
s→1

(
�(s)− 1

s− 1
)
= 
: (1.10)

The generalized (or Hurwitz) Zeta function �(s; a) is de�ned by

�(s; a) =
∞∑
k=0

1
(k + a)s

(R (s)¿ 1; a 6= 0;−1;−2; : : :); (1.11)

which, just as �(s); can be continued meromorphically everywhere in the complex s-plane except
for a simple pole (with residue 1). It is not di�cult to see from de�nitions (1.7) and (1.11) that

�(s; m+ 1) = �(s)−
m−1∑
k=0

1
(k + 1)s

(m ∈ N:={1; 2; 3; : : :}) (1.12)

and

�(s; 1) = �(s) = (2s − 1)−1 �(s; 12 ): (1.13)

There exists a relationship between the generalized Zeta function �(s; a) and the Bernoulli poly-
nomials Bn(a) (see [2, pp. 264–266]):

�(−n; a) =−Bn+1(a)
n+ 1

(n ∈ N0:=N ∪ {0}); (1.14)

which, for a= 1; yields

�(0) = B1 and �(−n) =− Bn+1

n+ 1
(n ∈ N); (1.15)

where Bn denotes the Bernoulli numbers given by

Bn:=Bn(0) = (−1)nBn(1) (n ∈ N0)

or, more conveniently, by

Bn = Bn(1) (n ∈ N0 \ {1});
since

B2n+1 = 0 (n ∈ N):



90 J. Choi, H.M. Srivastava / Journal of Computational and Applied Mathematics 118 (2000) 87–109

The Digamma (or Psi) function  (z) de�ned by

 (z) =
�′(z)
�(z)

or log�(z) =
∫ z

1
 (t) dt (1.16)

is meromorphic in the complex z-plane with simple poles at z = 0;−1;−2; : : : (with residue −1).
We recall here some known identities involving  (z) (see [14, pp. 31–40]):

 (n) =−
+
n−1∑
k=1

1
k

(n ∈ N) (1.17)

and

 
(
n+

1
2

)
=−
− 2 log 2 + 2

n−1∑
k=0

1
2k + 1

(n ∈ N); (1.18)

it being understood (as usual) that an empty sum is nil.

2. An explicit form for the triple gamma function �3

Vign�eras [28, p. 241] introduced the multiple Gamma function �n by means of a recurrence
formula, which can be applied here in order to evaluate the following Weierstrass canonical product
form of the triple Gamma function �3 explicitly:

�3(1 + z) =G3(1 + z)

= exp

[
−1
6

(

+

�2
6
+
3
2

)
z3 +

1
4

(

+ log(2�) + 1

2

)
z2 + 
z

]

×
∏

m∈N20×N

{(
1 +

z
L(m)

)−1
exp

[
z

L(m)
− 1
2

(
z

L(m)

)2
+
1
3

(
z

L(m)

)3]}
; (2.1)

where


 =
1
12

(
3
2
− 
− 3 log(2�) + �2

12

)
+
1
2

∞∑
n=1

(−1)n �(n+ 2)
(n+ 3)(n+ 4)

and

L(m) = m1 + m2 + m3 with m= (m1; m2; m3) ∈ N2
0 ×N:

Now the in�nite sum in 
 can be evaluated explicitly by using a known formula [10, p. 116, Eq.
(2.63)]:

∞∑
k=3

(−1)k �(k)
(k + 1)(k + 2)

=
1
2
+



6
− �2
72

− 2 logA: (2.2)

We thus �nd that


 = 3
8 − 1

4 log(2�)− logA (2.3)

in terms of the Glaisher–Kinkelin constant A de�ned by (1.3).
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Observe that, if

L(m) = m1 + · · ·+ mn with m= (m1; : : : ; mn) ∈ Nn−1
0 ×N;

then the number of solutions of

L(m) = k (m ∈ Nn−1
0 ×N)

is (
n+ k − 2
n− 1

)
(k ∈ N): (2.4)

If we set n = 3 in (2.4), we observe that {�3(z)}−1 is an entire function with zeros at z = −k
(k ∈ N0) whose multiplicity is

1
2 (k

2 + 3k + 2) (k ∈ N0):

Furthermore, (2.1) can be written in the following equivalent form analogous to (1.4):

�3(1 + z) =G3(1 + z)

= exp

[
−1
6

(

+

�2
6
+
3
2

)
z3 +

1
4

(

+ log(2�) + 1

2

)
z2

+
(
3
8
− 1
4
log(2�)− logA

)
z

] ∞∏
k=1

{(
1 +

z
k

)−(1=2)k(k+1)

× exp
[
1
2
(k + 1)z − 1

4

(
1 +

1
k

)
z2 +

1
6k

(
1 +

1
k

)
z3
] }

: (2.5)

It follows that �3 satis�es several basic properties and characteristics, which are summarized here
in

Theorem 2.1. The triple Gamma function �3 is the unique meromorphic function satisfying each
of the following properties:
(a) �3(1) = 1;
(b) �3(z + 1) = G(z)�3(z) (z ∈ C);
(c) For x¿1; �3(x) is in�nitely di�erentiable and

d4

dx4
{log�3(x)}¿0:

3. A set of mathematical constants

In this section, we shall introduce two interesting mathematical constants, in addition to the
Glaisher–Kinkelin constant A; by means of the Euler–Maclaurin summation formula (cf. Hardy [17,
p. 318]; see also Edwards [15, p. 117]):

n∑
k=1

f(k) ∼ C0 +
∫ n

a
f(x) dx +

1
2
f(n) +

∞∑
r=1

B2r
(2r)!

f(2r−1)(n); (3.1)
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where C0 is an arbitrary constant to be determined in each special case and

B0 = 1; B1 =− 1
2 ; B2 = 1

6 ; B4 =− 1
30 ; B6 = 1

42 ; B8 =− 1
30 ;

B10 = 5
66 ; : : : ; and B2n+1 = 0 (n ∈ N)

are the Bernoulli numbers. Letting f(x)=x2 log x and f(x)=x3 log x in (3.1) with a=1, respectively,
we obtain

logB= lim
n→∞

[
n∑

k=1

k2 log k −
(
n3

3
+

n2

2
+

n
6

)
log n+

n3

9
− n
12

]
(3.2)

and

logC = lim
n→∞

[
n∑

k=1

k3 log k −
(
n4

4
+

n3

2
+

n2

4
− 1
120

)
log n+

n4

16
− n2

12

]
; (3.3)

where B and C are constants whose approximate numerical values are given by

B ∼= 1:030 916 75 : : : (3.4)

and

C ∼= 0:979 557 46 : : : : (3.5)

The constant B was �rst considered by Choi and Srivastava [11, p. 102].
Moreover, using the Euler–Maclaurin summation formula (3.1) again, we can obtain a number of

analytical representations of �(s); such as (cf. [17, p. 333])

�(s) = lim
n→∞

{
n∑

k=1

k−s − n1−s

1− s
− 1
2
n−s

}
(R (s)¿− 1); (3.6)

�(s) = lim
n→∞

{
n∑

k=1

k−s − n1−s

1− s
− 1
2
n−s +

1
12

sn−s−1
}

(R (s)¿− 3); (3.7)

and

�(s) = lim
n→∞

{
n∑

k=1

k−s − n1−s

1− s
− 1
2
n−s +

1
12

sn−s−1 − 1
720

s(s+ 1)(s+ 2)n−s−3
}

(R (s)¿− 5): (3.8)

Now it is not di�cult to express the mathematical constants B and C as

logB=−�′(−2) (3.9)

and

logC =−�′(−3)− 11
720 ; (3.10)

respectively, in terms of special values of the derivative �′(s).
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It is clear from (3.3) that logC must be the �nite part of the divergent sum
∑

k3 log k accord-
ing to some regularization; hence logC must be related to �′(s) for some special value of s. By
di�erentiating both sides of (3.8) with respect to s and letting s=−3, we obtain

− �′(−3) = lim
n→∞

{
n∑

k=1

k3 log k −
(
n4

4
+

n3

2
+

n2

4
− 1
120

)
log n+

n4

16
− n2

12

}
+
11
720

; (3.11)

which, when compared with (3.3), yields the desired expression (3.10).
With a view to obtaining the assertion (3.9) in a markedly di�erent manner, we recall a result of

Choi and Srivastava [11, p. 111, Eq. (4.24)] in the following corrected form:
∞∑
k=1

�(2k)
(k + 1)22k

=
1
2
− log 2 + 14 logB: (3.12)

Comparing (3.12) with another known result (cf., e.g., [8, p. 191, Eq. (3.19)]):

�(3) =
2�2
7

(
log 2 +

∞∑
k=0

�(2k)
(k + 1)22k

)
; (3.13)

we immediately obtain the relationship:

logB=
�(3)
4�2 ; (3.14)

which is precisely the same as our assertion (3.9), since (cf., e.g., [26, p. 387, Eq. (1.15)])

�(2n+ 1) = (−1)n 2(2�)
2n

(2n)!
�′(−2n) (n ∈ N): (3.15)

4. A special value of �3( 12 )

It is known from the work of Cassou-Nogu�es [7] (see also Barnes [3, p. 288, Section 17]) that

G
(
1
2

)
= 21=24�−(1=4)e1=8A−(3=2); (4.1)

which may be compared with the well-known result:

�
(
1
2

)
= �1=2: (4.2)

We now proceed to express the value of �3( 12) in terms of the mathematical constants �; e; A, and
B. We begin by recalling the following known asymptotic formulas:

1
2
log(2�) = lim

n→∞

[
n∑

k=1

log k −
(
n+

1
2

)
log n+ n

]
(4.3)

and

log
(
1 +

1
n

)
=
1
n
− 1
2n2

+
1
3n3

+ O
(
1
n4

)
(n → ∞): (4.4)



94 J. Choi, H.M. Srivastava / Journal of Computational and Applied Mathematics 118 (2000) 87–109

By taking logarithms on both sides of (2.5) and setting z = 1
2 in the resulting equation, if we

make use of (1.5), we obtain

log�3

(
1 +

1
2

)
=
3
16

− 1
16
log(2�)− 1

2
logA

+ lim
n→∞

[
−

n∑
k=1

k(k + 1)
2

log
(
1 +

1
2k

)
+

n2

8
+
5
16

n− 1
24
log n

]
: (4.5)

We �rst consider the following sum:

Sn :=
n∑

k=1

k(k + 1)
2

log
(
1 +

1
2k

)

=
1
2

n∑
k=1

k(k + 1) log(2k + 1)

− log 2
2

n∑
k=1

k(k + 1)− 1
2

n∑
k=1

k2 log k − 1
2

n∑
k=1

k log k

=
1
8

(
n∑

k=1

(2k + 1)2 log (2k + 1)−
n∑

k=1

log (2k + 1)

)

− log 2
2

n∑
k=1

k(k + 1)− 1
2

n∑
k=1

k2 log k − 1
2

n∑
k=1

k log k:

We thus have

Sn=
1
8

(
2n+1∑
k=1

k2 log k − 4
n∑

k=1

k2 log k − 4 log 2
n∑

k=1

k2

−
2n+1∑
k=1

log k +
n∑

k=1

log k + n log 2

)

− log 2
2

n∑
k=1

k(k + 1)− 1
2

n∑
k=1

k2 log k − 1
2

n∑
k=1

k log k;

which immediately leads us to

Sn=
1
8

2n+1∑
k=1

k2 log k − 1
8

2n+1∑
k=1

log k −
n∑

k=1

k2 log k − 1
2

n∑
k=1

k log k

+
1
8

n∑
k=1

log k −
(
n3

3
+
3
4
n2 +

7
24

n

)
log 2: (4.6)
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Upon substituting from (4.6) into (4.5), if we apply (1.3), (3.2), and (4.3), we obtain

log�3

(
1 +

1
2

)
=
3
16

− 1
16
log(2�) + 7

8
logB

+ lim
n→∞

[
−
(
n3

3
+
3
4
n2 +

7
24

n− 1
16

)
log
(
1 +

1
2n

)

+
n2

6
+

n
3
− 35
288

+
1
16
log 2

]
:

We therefore have

log�3

(
1 +

1
2

)
=
3
16

− 1
16
log �+

7
8
logB

+ lim
n→∞

[
−n2

6
− n
3
− 19
288

+ O
(
1
n

)
+

n2

6
+

n
3
− 35
288

]

=− 1
16
log �+

7
8
logB;

where we have also used (4.4) for the second equality. Thus, we �nd that

�3(1 + 1
2) = �

−(1=16)B7=8; (4.7)

which, in view of (4.1) and the assertion (b) of Theorem 2.1, yields

�3( 12) = 2
−(1=24)�3=16e−(1=8)A3=2B7=8: (4.8)

5. Integral expressions for logG (z + a) and log�3(z + a)

Barnes [3, p. 283] expressed logG(z + a) as an integral of log�(t + a):∫ z

0
log�(t + a) dt=

1
2
[log(2�) + 1− 2a] z − z2

2
+ (z + a− 1) log�(z + a)− logG(z + a)

+ (1− a) log�(a) + logG(a); (5.1)

which, in the special case when a= 1, reduces at once to Alexeweisky’s theorem:∫ z

0
log�(t + 1) dt =

1
2
[log(2�)− 1] z − z2

2
+ z log�(z + 1)− logG(z + 1): (5.2)

Barnes’s integral formula (5.1) was derived also by Choi et al. [9, p. 385, Eq. (2.4)].
Setting z = t + a − 1 in (1.2) and (1.4), and taking the logarithmic derivatives of the resulting

equations, we obtain
∞∑
k=1

(
1

t + a− 1 + k
− 1

k

)
=−�′(t + a)

�(t + a)
− 
 (5.3)
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and
∞∑
k=1

(
k

t + a− 1 + k
− 1 + t + a− 1

k

)
=

G′(t + a)
G(t + a)

− 1
2
log(2�) + 1

2
+ (1 + 
)(t + a− 1);

(5.4)

respectively.
Next we set z = t + a − 1 in (2.5) and take the logarithmic derivative of the resulting equation.

We thus �nd that

�′
3(t + a)

�3(t + a)
=
(
3
8
− 1
4
log(2�)− logA

)

+
1
2

(

+ log(2�) + 1

2

)
(t + a− 1)− 1

2

(

+

�2
6
+
3
2

)
(t + a− 1)2

+
t + a− 1

2

[ ∞∑
k=1

(
k

t + a− 1 + k
− 1 + t + a− 1

k

)

+
∞∑
k=1

(
1

t + a− 1 + k
− 1

k

)
+
�2
6
(t + a− 1)

]
; (5.5)

which, by virtue of (5.3) and (5.4), becomes

�′
3(t + a)

�3(t + a)
=
(
3
8
− 1
4
log(2�)− logA

)

+
(
1
2
+
1
4
log(2�)

)
(t + a− 1)− (t + a− 1)2

4

+
1
2
(t + a− 1)G

′(t + a)
G(t + a)

− 1
2
(t + a− 1)�

′(t + a)
�(t + a)

: (5.6)

Integrating both sides of (5.6) with respect to t from t = 0 to t = z with the aid of Barnes’s
integral formula (5.1), we obtain∫ z

0
logG(t + a) dt=

[
1
2
(a− 1) log(2�)− 2 logA− a2

2
+ a− 1

4

]
z

+
1
4
[log(2�) + 2− 2a] z2 − 1

6
z3

+ (z + a− 2)logG(z + a)− 2 log�3(z + a)

+ (2− a) logG(a) + 2 log�3(a): (5.7)

In their special cases when a=1, if we further set z=1 and z= 1
2 , and make use of the aforecited

known recurrence relations for �(z); G(z), and �3(z), together with (4.1) and (4.8), we obtain the
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following de�nite integral formulas:∫ 1

0
log�(t + 1) dt =

1
2
log(2�)− 1; (5.8)

∫ 1=2

0
log�(t + 1) dt =−1

2
− 7
24
log 2 +

1
4
log �+

3
2
logA; (5.9)

∫ 1

0
logG(t + 1) dt =

1
12
+
1
4
log(2�)− 2 logA (5.10)

and ∫ 1=2

0
logG(t + 1) dt =

1
24
(1 + log 2) +

1
16
log �− 1

4
logA− 7

4
logB; (5.11)

of which (5.11) was derived directly from (1.4) by Choi and Srivastava (cf. [11, p. 105, Eq. (3.8)]).
The �rst term on the right-hand side of (5.11) appears erroneously with a negative sign in the work
of Choi and Srivastava [11, p. 105, Eq. (3.8)].
We can also evaluate each of the following integrals by direct use of the triple Gamma function

�3 in (2.5):∫ 1

0
log�3(t + 1) dt =− 1

24
log(2�) + 3

2
logB (5.12)

and ∫ 1=2

0
log�3(t + 1) dt =− 1

256
− 29
1920

log 2− 1
48
log �+

1
16
logA+

3
4
logB+

15
16
logC:

(5.13)

For example, in order to evaluate the integral in (5.13), we take the logarithms on both sides of
the equation (2.5) and integrate the resulting equation from t = 0 to t = 1

2 . We then obtain∫ 1=2

0
log�3(t + 1) dt =

37
768

+
1
128


− 1
48
log(2�)− 1

8
logA+

1
16
lim
n→∞ Sn; (5.14)

where

Sn=
n∑

k=1

[
− {(2k + 1)3 log(2k + 1) + (2k)3 log(2k)}+ {(2k + 1)log(2k + 1) + (2k) log(2k)}

+(16k3 + 12k2 + 2k) log(2k) + (4k2 + 5k) +
5
6
− 1
8k

]
;

which immediately yields

Sn=−
2n+1∑
k=1

k3 log k +
2n+1∑
k=1

k log k + 16
n∑

k=1

k3 log k + 12
n∑

k=1

k2 log k
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+2
n∑

k=1

k log k + 16 (log 2)
n∑

k=1

k3 + (4 + 12 log 2)
n∑

k=1

k2

+ (5 + 2 log 2)
n∑

k=1

k − 1
8

n∑
k=1

1
k
+
5
6
n:

Using (1.3), (1.5), and (3.2), we have

Sn=
11
120

log 2− 1
8

+ 3 logA+ 12 logB+ 15 logC

−
(
4n4 + 12n3 + 11n2 + 3n− 11

120

)
log
(
1 +

1
2n

)

+2n3 +
11
2
n2 +

25
6
n− 13

48
+ O

(
1
n

)
(n → ∞);

which, by means of the following asymptotic formula [cf. Eq. (4.4)]:

log
(
1 +

1
2n

)
=
1
2n

− 1
8n2

+
1
24n3

− 1
64n4

+ O
(
1
n5

)
(n → ∞);

yields

lim
n→∞ Sn =− 5

6 +
11
120 log 2− 1

8
+ 3 logA+ 12 logB+ 15 logC: (5.15)

Finally, by substituting from (5.15) into (5.14), we obtain the desired formula (5.13).

6. Integrals involving the Psi function

In this section, we shall show that integrals of the forms:∫ z

0
tk (t + a) dt (k ∈ N)

can be expressed in terms of multiple Gamma functions.
First of all, integrating by parts with the aid of (5.1), we obtain∫ z

0
t  (t + a) dt=

1
2
[2a− 1− log(2�)]z + z2

2
+ (1− a) log�(z + a)

+ logG(z + a) + (a− 1) log�(a)− logG(a): (6.1)

On the other hand, integrating by parts with the aid of (5.1) and (5.7), we obtain

2
∫ z

0
t log�(t + a) dt=

(
1
4
− 1
2
a+

1
2
a2 − 2 logA

)
z +

(
1
2
log (2�)− a

2
+
1
4

)
z2

− z3

2
+ [z2 − (a− 1)2] log�(z + a) + (2a− 3) logG(z + a)
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− 2 log�3(z + a) + (a− 1)2 log�(a) + (3− 2a) logG(a)
+2 log�3(a): (6.2)

Next, integrating by parts with the aid of (6.2), we obtain∫ z

0
t2 (t + a) dt=

(
−1
4
+
1
2
a− 1

2
a2 + 2 logA

)
z +

(
−1
2
log (2�) + a

2
− 1
4

)
z2

+
z3

2
+ (a− 1)2 log�(z + a) + (3− 2a) logG(z + a)

+2 log�3(z + a)− (a− 1)2 log�(a) + (2a− 3) logG(a)− 2 log�3(a):
(6.3)

Furthermore, integrating by parts with the aid of (5.7), we obtain

2
∫ z

0
t logG(t + a) dt= (2− a)

(
−1
4
+
1
2
(a− 1) log(2�)− 2 logA− a2

2
+ a

)
z

+
1
2

(
7
4
+
1
2
log(2�)− 2 logA+ a2

2
− 2a

)
z2

+
1
6
[log(2�)− a]z3 − 1

8
z4 + (z2 − a2 + 4a− 4) logG(z + a)

+2(a− 2− z) log�3(z + a) + (a− 2)2 logG(a)

+2(2− a) log�3(a) + 2
∫ z

0
log�3(t + a) dt: (6.4)

Finally, integrating by parts with the aid of (6.2) and (6.4), we obtain

3
∫ z

0
t2 log�(t + a) dt=

[
−a2 +

3
2
a− 1

4
+ 2(2a− 3) logA− 1

2
(a2 − 3a+ 2) log(2�)

]
z

+
[
9
8
− 7
4
a+

3
4
a2 +

1
4
(3− 2a) log(2�)− logA

]
z2

+
1
3
[log(2�)− 1]z3 − 3

8
z4 + {z3 + (a− 1)3} log�(z + a)

− (3a2 − 9a+ 7) logG(z + a) + 2(2a− 3− z) log�3(z + a)

+ (1− a)3 log�(a) + (3a2 − 9a+ 7) logG(a) + 2(3− 2a) log�3(a)

+2
∫ z

0
log�3(t + a) dt (6.5)

and ∫ z

0
t3 (t + a) dt=

[
a2 − 3

2
a+

1
4
+ 2(3− 2a) logA+ 1

2
(a2 − 3a+ 2) log (2�)

]
z
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+
[
−3
4
a2 +

7
4
a− 9

8
+
1
4
(2a− 3) log(2�) + logA

]
z2 +

1
3
[1− log(2�)]z3

+
3
8
z4 + (1− a)3 log�(z + a) + (3a2 − 9a+ 7) logG(z + a)

+2(z − 2a+ 3) log�3(z + a) + (a− 1)3 log�(a)− (3a2 − 9a+ 7) logG(a)

+2(2a− 3) log�3(a)− 2
∫ z

0
log�3(t + a) dt: (6.6)

7. Series involving the Zeta functions

This subject has a long history and many techniques to evaluate various series involving the
Zeta functions have been developed (see, for details, [25]). We show how beautifully the theory of
multiple Gamma functions can be applied to evaluate certain classes of series associated with the
Zeta functions. Many of our closed-form evaluations of series involving the Zeta function will be
applied in Section 8 in order to compute the determinant of the Laplacian on the four-dimensional
unit sphere S4 explicitly.
We begin by recalling the known result (cf., e.g., [25, p. 18]):

∞∑
n=2

(−1)n�(n; a) t
n

n
= log�(a+ t)− log�(a)− t  (a) (|t|¡ |a|); (7.1)

which readily yields
∞∑
n=2

�(n; a)
tn

n
= log�(a− t)− log�(a) + t  (a) (|t|¡ |a|); (7.2)

∞∑
n=1

�(2n; a)
t2n

n
= log�(a+ t) + log�(a− t)− 2 log�(a) (|t|¡ |a|) (7.3)

and
∞∑
n=2

�(2n− 1; a) t2n−1

2n− 1 =
1
2[log�(a− t)− log�(a+ t)] + t  (a) (|t|¡ |a|): (7.4)

Di�erentiating both sides of (7.4) with respect to t and multiplying the resulting equation by t,
we have

∞∑
n=2

�(2n− 1; a)t2n−1 =− 1
2 [t  (a− t) + t  (a+ t)] + t  (a) (|t|¡ |a|): (7.5)

Integrating both sides of (7.5) with respect to t from t = 0 to t = z, we obtain
∞∑
n=2

�(2n− 1; a)z
2n

n
=−

∫ z

0
t  (a+ t) dt −

∫ −z

0
t  (a+ t) dt +  (a)z2 (|z|¡ |a|): (7.6)
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In view of (6.1), we �nd from (7.6) that
∞∑
n=2

�(2n− 1; a)z
2n

n
= [ (a)− 1]z2 + (a− 1) log [�(a+ z)�(a− z)]

−log [G(a+ z)G(a− z)] + 2(1− a) log�(a) + 2 logG(a) (|z|¡ |a|):
(7.7)

We now di�erentiate both sides of (7.4) with respect to t and multiply the resulting equation by
t3. Upon integrating this new equation with respect to t from t = 0 to t = z, we obtain

∞∑
n=3

�(2n− 3; a)z
2n

n
=−

∫ z

0
t3 (a+ t) dt −

∫ −z

0
t3 (a+ t) dt +

 (a)
2

z4 (|z|¡ |a|); (7.8)

which, by virtue of (6.6), yields
∞∑
n=3

�(2n− 3; a)z
2n

n
=
[
3
2
a2 − 7

2
a+

9
4
+
(
3
2
− a

)
log(2�)− 2 logA

]
z2

+
1
4
[2 (a)− 3]z4 + (a− 1)3 log[�(a+ z)�(a− z)]

− (3a2 − 9a+ 7) log[G(a+ z)G(a− z)]

− 2(z − 2a+ 3) log�3(a+ z) + 2(z + 2a− 3) log�3(a− z)

+2(1− a)3 log�(a) + 2(3a2 − 9a+ 7) logG(a)

+4(3− 2a) log�3(a) + 2
∫ z

0
log�3(t + a) dt

+2
∫ −z

0
log�3(t + a) dt (|z|¡ |a|): (7.9)

Setting a= 2 in (7.7), and applying (1.12) and (1.17), we obtain
∞∑
n=3

[�(2n− 1)− 1]z
2n

n
=−
z2 +

1
2
[1− �(3)]z4

+ log [�(2 + z)�(2− z)]− log [G(2 + z)G(2− z)] (|z|¡ 2): (7.10)

Setting z = 3
2 in (7.10), and making use of (1.12) and (4.1), we obtain

∞∑
n=3

1
n

(
3
2

)2n
[�(2n− 1)− 1] = 73

32
− 9
4

+ 3 logA− 81

32
�(3) + log (2−(1=12) × 5): (7.11)

Setting a= 4 in (7.7), and applying (1.12), (1.17), (1.8), and (1.16), we obtain
∞∑
n=3

[
�(2n− 1)− 1− 1

22n−1
− 1
32n−1

]
z2n

n
=
(
5
6
− 

)
z2 +

1
2

[
251
216

− �(3)
]
z4

+ 3 log [�(4 + z)�(4− z)]− log [G(4 + z)G(4− z)] + log (2−4 × 3−6) (|z|¡ 4): (7.12)
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Setting z = 3 in (7.12), we obtain

∞∑
n=3

32n

n

[
�(2n− 1)− 1− 1

22n−1
− 1
32n−1

]
=
873
16

− 9
− 81
2
�(3) + log (3−3 × 52): (7.13)

Setting a= 4 in (7.9), and applying (1.12) and (1.17), we obtain

∞∑
n=3

(
�(2n− 3)− 1− 1

22n−3
− 1
32n−3

)
z2n

n
=
(
49
4

− 5
2
log(2�)− 2 logA

)
z2

+
1
2

(
1
3
− 

)
z4 + 27 log [�(4 + z)�(4− z)]

− 19 log [G(4 + z)G(4− z)]

+2(5− z) log�3(4 + z)

+2(5 + z) log�3(4− z) + log (2−16 × 3−54)

+2
∫ z

0
log�3(t + 4) dt

+2
∫ −z

0
log�3(t + 4) dt (|z|¡ 4): (7.14)

Using (5.8), (5.10), and (5.12), we readily obtain∫ 3

0
log�3(t + 4) dt=10

∫ 1

0
log (t + 1) dt + 4

∫ 1

0
log (t + 2) dt +

∫ 1

0
log (t + 3) dt

+19
∫ 1

0
log�(t + 1) dt + 12

∫ 1

0
logG(t + 1) dt + 3

∫ 1

0
log�3(t + 1) dt

=−33 + 259
8
log 2 + 9 log 3 +

99
8
log �− 24 logA+ 9

2
logB (7.15)

and ∫ −3

0
log�3(t + 4) dt=−

∫ 1

0
log�(t + 1) dt − 3

∫ 1

0
logG(t + 1) dt − 3

∫ 1

0
log�3(t + 1) dt

=
3
4
− 9
8
log(2�) + 6 logA− 9

2
logB: (7.16)

If we set z = 3 in (7.14), and make use of (7.15) and (7.16), we obtain

∞∑
n=3

32n

n

(
�(2n− 3)− 1− 1

22n−3
− 1
32n−3

)
=
237
4

− 81
2

− 54 logA+ log(212 × 3−27 × 58):

(7.17)
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Setting a= 2 in (7.9), and applying (1.12) and (1.17), we obtain
∞∑
n=3

[�(2n− 3)− 1]z
2n

n
=
(
5
4
− 1
2
log(2�)− 2 logA

)
z2

− 1
4 (1 + 2
)z

4 + log[�(2 + z)�(2− z)]− log [G(2 + z)G(2− z)]

+2(1− z)log�3(2 + z) + 2(1 + z)log�3(2− z)

+2
∫ z

0
log�3(t + 2) dt + 2

∫ −z

0
log�3(t + 2) dt (|z|¡ 2): (7.18)

Making use of (5.8) to (5.13), we �nd that∫ 3=2

0
log�3(t + 2) dt=

∫ 1

0
logG(t + 1) dt +

∫ 1

0
log�3(t + 1) dt

+
∫ 1=2

0
log�(t + 1) dt + 2

∫ 1=2

0
logG(t + 1) dt +

∫ 1=2

0
log�3(t + 1) dt

=−259
768

− 29
1920

log 2 +
9
16
log �− 15

16
logA− 5

4
logB+

15
16
logC

(7.19)

and ∫ −(3=2)

0
log�3(t + 2) dt=−2

∫ 1

0
log�3(t + 1) dt +

∫ 1=2

0
log�3(t + 1) dt

+
∫ 1

0
logG(t + 1) dt −

∫ 1=2

0
logG(t + 1) dt −

∫ 1

0
log�(t + 1) dt

+
∫ 1=2

0
log�(t + 1) dt −

∫ −(1=2)

0
log (t + 1) dt

=
29
768

− 29
1920

log 2− 3
16
logA− 1

2
logB+

15
16
logC: (7.20)

Setting z = 3
2 in (7.18), and applying (4.1), (4.8), (7.19), and (7.20), we obtain

∞∑
n=3

1
n

(
3
2

)2n
[�(2n− 3)− 1] =−17

96
− 81
32


+
27
4
logA+

15
4
logC + log(2−(269=480) × 5): (7.21)

8. The determinant of the Laplacian on S4

Choi [9] computed the determinants of the Laplacians on the n-dimensional unit sphere Sn

(n= 1; 2; 3) by factorizing the analogous Weierstrass canonical product form of a shifted sequence
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of eigenvalues of the Laplacians on Sn into multiple Gamma functions. Here we compute the de-
terminant of the Laplacian on S4 by using the method proposed by Choi and Srivastava [12] for
the computation of the determinants of the Laplacians on Sn (n= 1; 2; 3); together with the results
given in Section 7.
Let {�n} be a sequence such that
0 = �0¡�16�26 · · ·6�n6 · · · ; �n ↑ ∞ (n → ∞); (8.1)

henceforth we consider only such nonnegative increasing sequences. Then we can show that

Z(s) =
∞∑
n=1

1
�s
n

converges absolutely in the half-plane R (s)¿� for some real number �.

De�nition 8.1 (cf. Osgood et al. [22]). The determinant of the Laplacian � on the compact mani-
fold M is de�ned to be

det′ � :=
∏
�j 6=0

�j;

where {�n} is the sequence (8.1) of eigenvalues of the Laplacian � on M . But this is always
divergent; so, in order for this expression to make sense, some sort of regularization procedure must
be used. It is easily seen that, formally, e−Z′(0) is the product of nonzero eigenvalues of �. This
product does not converge, but Z(s) can be continued analytically to a neighborhood of s= 0, and
we de�ne

det′ � := e−Z′(0)

to be the Functional Determinant of the Laplacian � on M .

De�nition 8.2. Let

� := inf

{
�¿ 0

∣∣∣∣∣
∞∑
k=1

1
��
k

¡∞
}

:

Then we call � the order of the sequence {�k}: We also let

Z(s; a) :=
∞∑
k=1

1
(�k + a)s

and the analogous Weierstrass canonical product:

E(�) =
∞∏
k=1

{(
1− �

�k

)
exp

(
�
�k
+

�2

2�2k
+ · · ·+ �[�]

[�]�[�]k

)}
;

where [�] denotes the integer part of the order � of the sequence {�n}: Let
D(�) = exp(−Z ′(0;−�)):

Formally, indeed, we have

Z ′(0;−�) =−
∞∑
k=1

log(�k − �);
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which implies that

D(�) =
∞∏
k=1

(�k − �):

Voros [29] gave the formula:

D(�) = exp(−Z ′(0)) exp

(
−

[�]∑
m=1

FPZ(m)
�m

m

)

× exp
(
−

[�]∑
m=2

C−m

(
1 + · · ·+ 1

m− 1
)

�m

m!

)
E(�); (8.2)

where the �nite part prescription is applied, as usual, as follows (cf. [27, p. 446]):

FPf(s) =

{
f(s) if s is not a pole;

lim�→0 (f(s+ �)− Residue
� ) if s is a simple pole;

and

Z(−m) = (−1)mm!C−m: (8.3)

Now consider the sequence of eigenvalues on the standard Laplacian �n on Sn: It is known from
the work of Vardi [27] that the standard Laplacian �n (n ∈ N) has eigenvalues �k = k(k + n − 1)
with multiplicity(

k + n

n

)
−
(

k + n− 2
n

)
:

Let us consider the sequence {�k} as the spectrum shifted by ((n−1)=2)2: Then the shifted sequence
{�k} is written in the following simple and tractable form:

�k = �k +
(
n− 1
2

)2
=
(
k +

n− 1
2

)2
(8.4)

with multiplicity(
k + n

n

)
−
(

k + n− 2
n

)
(k ∈ N0):

We will exclude the zero mode, i.e., start the sequence at k = 1 for later use. Furthermore, with
a view to emphasizing n on Sn; we use the notations Zn(s); Zn(s; a); En(�); and Dn(�) instead of
Z(s); Z(s; a); E(�); and D(�); respectively.
We readily observe from (8.2) that

Dn

((
n− 1
2

)2)
= det′ �n; (8.5)

where det′�n are the determinants of the Laplacians on Sn (n ∈ N).
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Letting n = 4 in the shifted sequence (8.4) of eigenvalues of �4 on S4; we obtain a discrete
sequence as follows:

(k + 3
2)
2 with multiplicity 1

6 (k + 1)(k + 2)(2k + 3) (k ∈ N): (8.6)

We see that the sequence in (8.6) has the order � = 2. Now it follows from (8.2) and (8.5) that

det′ �4 = D4( 94) = exp(−Z ′
4(0)− 9

4FPZ4(1)− 81
32FPZ4(2)− 81

32C−2)E4( 94); (8.7)

where det′ �4 denotes the determinant of the Laplacian on S4:
We can express Z4(s) for the sequence (8.6) in terms of the Riemann Zeta function as follows:

Z4(s) =
1
6

∞∑
k=1

(k + 1)(k + 2)(2k + 3)
(k + 3

2)
2s

=
22s

6

∞∑
k=1

(k + 1)(k + 2)
(2k + 3)2s−1

=
22s

6

∞∑
k=2

k(k + 1)
(2k + 1)2s−1

=
22s

24

( ∞∑
k=2

1
(2k + 1)2s−3

−
∞∑
k=2

1
(2k + 1)2s−1

)

=
22s

24

( ∞∑
k=1

1
(2k − 1)2s−3 −

∞∑
k=1

1
(2k − 1)2s−1 −

1
32s−3

+
1

32s−1

)
; (8.8)

which, in view of (1.7), becomes

Z4(s) = 1
3(2

2s−3 − 1)�(2s− 3)− 1
3 (2

2s−3 − 1
4 )�(2s− 1)− 1

3 (
2
3)
2s−3 + 1

8(
2
3)
2s: (8.9)

It follows from (1.11) and (8.8) that Z4(s) has simple poles at s=1 and s=2 with their residues
− 1
24 and

1
6 ; respectively.

Using (1.15) and (8.3), we obtain

C−2 =
1
2
Z4(−2) =− 9; 801; 047

212 × 33 × 5× 7 (8.10)

and

Z ′
4(0) = log(2

−(2869=1440) × 32) + 1
12

�′(−1)− 7
12

�′(−3): (8.11)

Now we evaluate FPZ4(1) and FPZ4(2). Since Z4(s) has simple poles at s=1 and s=2, we have
to use the second case of the de�nition of FPf(s) to compute the �nite parts of Z4(s) for s=1 and
s= 2.
Using the expression in (8.9) for Z4(s) and (1.10), we easily see that

FPZ4(1) = lim
�→0

(
Z4(1 + �) +

1
24�

)

=−31
72

− 1
3
lim
�→0

[(
22�−1 − 1

4

){
�(2�+ 1)− 1

2�

}
+
22� − 1
4�

]

=−31
72

− 

12

− 1
6
log 2: (8.12)
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Similarly, we have

FPZ4(2) = lim
�→0

(
Z4(2 + �)− 1

6�

)

=−16
81

− 7
12

�(3) +
1
3
lim
�→0

[
(22�+1 − 1)

{
�(2�+ 1)− 1

2�

}
+
22�+1 − 2
2�

]

=−16
81
+



3
+
2
3
log 2− 7

12
�(3): (8.13)

Since the sequence in (8.6) has the order �=2, the analogous Weierstrass canonical product E4(�)
of the sequence in (8.6) is

E4(�) =
∞∏
k=1

(
1− �

(k + (3=2))2

)(1=6)(k+1)(k+2)(2k+3)

× exp
{
1
6
(k + 1)(k + 2)(2k + 3)

(
�

(k + (3=2))2
+

�2

2(k + (3=2))4

)}
: (8.14)

Upon setting �= 9
4 in (8.14) and taking the logarithms on both sides of the resulting equation, if

we make use of (1.7) and the Maclaurin series of log(1 + x), we obtain

logE4

(
9
4

)
=−1

6

∞∑
k=1

(k + 1)(k + 2)

{ ∞∑
n=3

32n

n(2k + 3)2n−1

}

=− 1
24

∞∑
n=3

32n

n

[ ∞∑
k=1

1
(2k − 1)2n−3 −

∞∑
k=1

1
(2k − 1)2n−1 −

1
32n−3

+
1

32n−1

]

=− 1
24

∞∑
n=3

1
n

[
32n�(2n− 3)− 8

(
3
2

)2n
�(2n− 3)− 32n�(2n− 1)

+2
(
3
2

)2n
�(2n− 1)− 24

]
: (8.15)

Now let p1, p2, p3; and p4 denote the sums of the Zeta series occurring in (7.11), (7.13), (7.17),
and (7.21), respectively. We then �nd from (8.15) that

logE4

(
9
4

)
=− 1

24
(2p1 − p2 + p3 − 8p4)

=−4
9
+
21
32


− 189
128

�(3)

+
17
4
logA+

5
4
logC + log(2−(979=1440) × 3): (8.16)
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Finally, in view of (1.6) and (3.10), it follows from (8.7) and (8.9) to (8.16) that

det′ �4 =
1
3
exp

(
35; 639; 301
217 × 5× 7 − 13

3
�′(−1)− 2

3
�′(−3)

)
; (8.17)

which can be written in the following equivalent from:

det′ �4 =
1
3
A13=3 × C2=3 exp

(
183; 758; 875
217 × 33 × 7

)
: (8.18)
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