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Abstract

The purpose of the present paper is to introduce several new classes of meromorphic functions defined by using a
meromorphic analogue of the Choi-Saigo—Srivastava operator for the generalized hypergeometric function and investigate
various inclusion properties of these classes. Some interesting applications involving these and other classes of integral
operators are also considered.
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1. Introduction

Let .# denote the class of functions of the form
1 o0
f(2) =—+Zakzk,
Z =

which are analytic in the punctured open unit disk D ={z€ C:0 < |z| < 1}. If f and g are analytic in
U = D U {0}, we say that f'is subordinate to g, written f < g or f{z) < g(z), if there exists a Schwarz function
w in U such that f{z) = g(w(z)). For 0 < 5, f <1, we denote by .#F(n), # # (n) and .4%€(n, ) the subclasses
of ./ consisting of all meromorphic functions which are, respectively, starlike of order #, convex of order 7
and close-to-convex of order f# and type n in U (cf. e.g., [8,9,16]).
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Let /" be the class of all functions ¢ which are analytic and univalent in U and for which ¢(U) is convex
with ¢(0) =1 and Re{¢(z2)} > 0 (z € U).

Making use of the principle of subordination between analytic functions, we introduce the subclasses
ML (n, &), MA (n,p) and MC(n, B; P, ) of the class .4 for 0 < u, <1 and ¢, € A, which are defined by

wttd)={r e (- ) ~n) <) inul

-\ /G)
wxtngy={rea o (L) coe nu)
and
AP0 b) = {f €M E M) st %ﬁ(—;())—ﬁ) <U() in [u}.

We note that the classes mentioned above is the familiar classes which have been used widely on the space of
analytic and univalent functions in U [2,14] and for special choices for the functions ¢ and i involved in these
definitions, we can obtain the well-known subclasses of .#. For examples, we have

l+z A 14z
ﬂy(’??:) =AMS(n), MA <17§:) = MAH (n)

and

l+z 1+z
Qﬂ(g("’ﬁ;m’l—z> = AME(n, B)-

For complex parameters

or,...,0, and  By,...,f
(B, €C\Zy;Zy :={0,—1,-2,...};j=1,...,s),

we now define the generalized hypergeometric function ,Fy(ay, ..., a4 B, ..., B4 2) [19,20] as follows:

qFS(Otl,..-7O(q7ﬁ17"'7ﬁll7 ) ~ (ﬁl)k"'(ﬂs)k kel

(g<s+1;9,s € Ng:=NU{0};N:={1,2,...};z € U),

where (v); is the Pochhammer symbol (or the shifted factorial) defined (in terms of the Gamma function) by

") I'(v+k) {1 if k=0and ve C\ {0},
V), = ———— =
k I'(v) viv+1)---(v+k—1) ifkeNandveC.
Corresponding to a function Z (ay, ..., 0, f,. .., f,;z) defined by
y(dl,...,d([;ﬁl,...,ﬁs;Z) ::Ziqus(oclw"7aq;ﬁl7"'7 s;Z)' (11)

Liu and Srivastava [13] considered a linear operator H(a, ..., 0y, ..., p,) : -4 — ./ defined by the follow-
ing Hadamard product (or convolution):

H({xlw~'7aq;ﬁla"'7ﬁs)f(z) = 9(“1;"'7aq;ﬁla"'aﬁs;z) *f(Z) (12)

We note that the linear operator H(ay, . ..,a,; B, . .., f;) was motivated essentially by Dziok and Srivastava [3].
Some interesting developments associated with the generalized hypergeometric function were considered
recently by Dziok and Srivastava [4,5] and Liu and Srivastava [11,12].

Corresponding to the function Z(ay,...,a.p0,...,0;z) defined by (1.1), we introduce a function
F (01,1043 Brs -, Biz) given by
1
g(alv"‘ﬂaq;ﬁlv"‘5ﬁs;z)*9:).(0‘17‘"7aq;ﬁ17"'7ﬁx;z) = (’1>0) (13)

z(1—z)*
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Analogous to H(oy,...,o4pB1,...,Bs) defined by (1.2), we now define the linear operator H(oy,..., 0,
f1,...,ps) on X as follows:

Hi(o,...,00 B, ..., B)f(z) = F (o, ...,00 B, ..., Bsz) * f(z) (1.4)
(0, B; € C\Zys i=1,....q; j=1,...,85 A>0; ze D; f €.4).
For convenience, we write
Hjgo(on) =H(or,...,05 P15, By).
It is easily verified from the definition (1.3) and (1.4) that
2(H g (o1 + 1)1 (2)) = o1 Hj g5 () f (2) = (o1 + 1)H g 5(o1 + 1)1 (2) (1.5)
and

2(H s (00)f(2)) = 2H 1 45(00) f(2) — (A + V) H g (00) f(2). (1.6)
We note that the operator H; , (o) is closely related to the Choi-Saigo—Srivastava operator [2] for analytic
functions, which includes the integral operator studied by Liu [10] and Noor et al. [17,18].
Next, by using the operator H, , (o), we introduce the following classes of meromprphic functions for
o, peN, A>0and 0 <y, f<1:
MY 50 (qs 5505 9) =S € M H,ys(on)f € MS (n; D)},
MA 2 (q,53m;0) = {f € M H,ys(on)f € MA (n:¢)}

and

‘ﬂ(giﬂl (q7 s, ﬁv d)a lp) = {f €M : H),,q,s(al)f € /%(5(777 187 ¢7 lﬁ)}
We also note that

f(2) € MA 5(q,5m;0) = —zf'(2) € MS14,(q,51; ). (1.7)

In particular, we set

14+ 4z
MY ;4 (q,s;n; 1 +Bz> =ML 4 (q,8:m4,B) (-1 <B<A<L1)
and
1+4
MA ;4 (%ﬁ’l;ﬁ) =t MA 55 (q,5:m4,B) (-1 <B<AL]).

In this paper, we investgate several inclusion properties of the classes .#%;,,(q,s;1; ¢), M A 4, (q,5;1; @)
and 4%, (q,s;1, B; ¢, ) associated with the operator H; , (). Some applications involving integral oper-
ators are also considered.

2. Inclusion properties involving the operator H; , (x)

The following results will be required in our investigation.
Lemma 1 [6]. Let ¢ be convex univalent in U with ¢$(0) = 1 and Re{k¢(z) + v} > 0 (k,v € C). If p is analytic in
U with p(0) = 1, then

zp'(2)
p(2) rerTh d(z) (zeU)

implies

pz) < d(2) (zel).
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Lemma 2 [15]. Let ¢ be convex univalent in U and o be analytic in U with Re{w(z)} = 0. If p is analytic in U
and p(0) = ¢(0), then
p(2) + w(2)zp'(z) < ¢z) (z€U)
implies
p(z) < ¢(z) (zel).
At first, with the help of Lemma 1, we obtain the following:

Theorem 1. Let ¢ € A with max,cyRe{¢p(z)} <min{(A+1—n)/(1 —n), (1 +1—=1)/(1 =n)} (4, 00 > 0;
0<n<l). Then

M 510455505 9) C MS 0,(q800) C M }0,51(q, 531 D).
Proof. To prove the first part of Theorem 1, let f' € A4S ;41.4,(q,s;1; ¢) and set
1 2(H . q()f (2))' )
_ _ 2, —n), 2.1
TG e 2
where p is analytic in U with p(0) = 1. Applying (1.6) and (2.1), we obtain
1 2(H 1 45(00)f (2) ) zp'(2)
— = —n) =plz)+ - ze U). 2.2
Bl ey D e rariog FEY 22
Since max.cyRe{¢(z)} < (A+1—1)/(1 —n), we see that
Re{—(1 —n)p(z) + A+1—n} > 0(z € U).

Applying Lemma 1 to (2.3), it follows that p < ¢, thatis, f € .45, (q,s;1; ¢). Moreover, by using the argu-
ments similar to those detailed above with (1.5), we can prove the second part of Theorem 1. Therefore we
complete the proof of Theorem 1. [

p(2)

Theorem 2. Let ¢ € A with max.cyRe{¢p(z)} <min{(A+1—n)/(1 —n),(cs + 1 —1n)/(1 =n)} (4,01 > 0;
0<n<1). Then

MA 410, (q, 8515 ) C MA 50 (q, 5505 0) C MA 5 011(q, 8575 D).

Proof. Applying (1.7) and Theorem 1, we observe that
f(2) € MA 110,(g: 531, 0) = —2f'(2) € MS 1415,(q, 530, 0) = —2f(2) € MS 35, (q, 551, D)
— f(Z) c ’ﬂ<%}vm (C],S; n; ¢)a

and
f@) € MA (g 50;0) <= —zf'(2) € MS 10 (q, 515 0) = —2f'(2) € MS ;0,41(q, 5511, )
= f(2) € MA ;011(q,51; D),

which evidently proves Theorem 2. [
Taking

14+ A4z

¢(Z) - 1 + BZ

in Theorems 1 and 2, we have

(-1<B<A4<l;zeU)

Corollary 1. Let (1 + A)/(1 + B)y<min{(A+ 1 —n)/(1 —n),(a; + 1 = /(1 =)} (L,o;>0;, 0<n<1; —1<
B<A<L1). Then

MY 3110(q,504,B) C MY ;0,(q,5514,B) C MS 4,11(q,5;1; 4, B)
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and
MA 3510,(g, 5314, B) C MA 0 (q, 85054, B) C MHA 5,0,11(4, 5314, B).

Next, by using Lemma 2, we obtain the following inclusion relation for the class .#%,,,(q,s;n, B; ¢, ).

Theorem 3. Let ¢,y € A" withmax.cyRe{p(z)} <min{(A+1—n)/(1—n), (1 +1—n)/(1—n)} (A0 >0;
0<n<]l). Then

%(gbrlm (CI;SQ’?;/ﬁ(ﬁ,l//) C %(gim (qu;’/laﬁ; (,ZS,lp) C %(gi,,of1+l(Qas;’77ﬁ; qﬁ,lﬁ)

Proof. To prove the first inclusion of Theorem 3, let f € 4% ;114,(q,5;1, B; ¢, ¥). Then, from the definition of
MEC14,(q,5;1, B; ¢, W), there exists a function g € MS j114,(q,s;1; ) such that

1 (_Z(H)Arl,q,s(al)f(z))/

—ﬁ) <UE) (eu).

1 - ;8 Hﬂ.+l,q,s(“1)g(z)
Now let
1 2(H gs(01)f (2)) )
z) = — = - B, 2.3
PE)=12p ( Hig:(o0)8(2) 2
where p is analytic in U with p(0) = 1. Using (1.6), we obtain
1 (_ z(HHl‘q‘s(oc])f(z)) _ B) _ 1 Hjg5(1)g(2) + (i + 1) H/i.,q,:(ocl)g(z) iy (2 4)
1-p Hgs(1)g(2) 1-8 z(gf«qqs x1>)g(z)), o
Ags (01 g(z)
Since g € MS 114,(q,8:1;9) C MS 54,(q,5;1; ¢), by Theorem 1, we set
1 2(H 15(01)8(2)) )
2) — _ —n), 2.5
4(2) 1—n < Hqs(00)g(2) 1 2
where ¢ < ¢ in U with the assumption for ¢ € /. Then, by virtue of (2.3), (2.4) and (2.5), we observe that
L ([ 2(Hings()f(2)) > zp'(2)
_ 4 — =p(z) + <yY(z) (zel). 2.6
(TR ) T g T <V eV 26

Since >0 and g < ¢ in U with max.cyRe{¢p(z)} < (A+1—-1n)/(1 —1n),
Re{—(1 —n)gz) + A+ 1=y} >0 (z€U).
Hence, by taking

1
(I=mq(z) +2+1-n
in (2.6), and applying Lemma 2, we can show that p < in U, so that /' € .#%,,,(q,s;n, B; ¢,¥). Moreover,

we have the second inclusion by using arguments similar to those detailed above with (1.5). Therefore we com-
plete the proof of Theorem 3. [

o(z) = —

3. Inclusion properties involving the integral operator F,
In this section, we consider the integral operator F), (see, e.g., [8]) defined by

R = FNE) = i [ er0a (7 e i o) (3.1)

Tl
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From the definition of F, defined by (3.1), we observe that

Z(H/“»?L/,S(o‘l)Fﬂ(f)(z))/ = 1l g5(00)f (2) — (u+ D) H g5 (00)Fu(f)(2).
We first state Theorem 4 below, the proof of which is much akin to that of Theorem 1.

Theorem 4. Let ¢ € A" with max.cyRe{p(z)} < (u+1—-—n)/(0—n) (u>0,0<n<1). If f€MS )y
(g,5:1; @), then F\\(f) € M S },(q: 5,115 B).

Next, we derive an inclusion property involving F,, which is obtained by applying (1.7) and Theorem 4.

Theorem 5. Let ¢ € A" with max.cyRe{d(z)} < (u+1—n)/(1—n) (u>0;0<n< ). If feMA )y,
(g, 5315 ), then F\(f) € MA 4,(q; 5515 D).

From Theorems 4 and 5, we have

Corollary 2. Let (1 + A)/(1+B)<(u+1-—m/(1 =) (u>0; -1 <B<ALL;0<n<1). Thenif f € MY,
(q,8;m;4,B) (or M A ;4,(q,5;1;A4,B)), then Fo(f) € MS ;4,(q,5:1;4,B) (or M A ;4,(q,5;1;4,B)).

Finally, we obtain Theorem 6 below by using the same techniques as in the proof of Theorem 3.

Theorem 6. Let ¢,y € A with max,cyRe{op(z)} < (u+1—n)/(1—=n) (u>0,0<n< ). If f € MC)y,,
(g, 531, B; @, W), then Fo(f) € ME;.(q,50, ;&)

Remark 1. If wetake A=o; =2, f1=1,0,=f;(i=2,...,s) and oz = 1 in all theorems of this section, then
we extend the results by Goel and Sohi [7], which reduce the results earlier obtained by Bajpai [1].
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