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I list several proofs of the celebrated identity:
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As it is clear that

(1) is equivalent to
g1 _w
(2r+1)2 8
Many of the proofs establish this latter identity first.

None of these proofs is original; most are well known, but some are not as familiar as
they might be. I shall try to assign credit the best I can, and I would be grateful to anyone
who could shed light on the origin for any of these methods. I would like to thank Tony
Lezard who spotted some errors in an earlier version, and Richard Carr for pointing out

an egregious solecism.
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and by the monotone convergence theorem we get
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We change variables in this by putting (u,v) = ((z + v)/2, (y — z)/2), so that (x,y) =

(v —v,u+v). Hence
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where S is the square with vertices (0,0), (1/2,—1/2), (1,0) and (1/2,1/2). Exploiting
the symmetry of the square we get
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Now tan~'(u/(v/1 — u?)) = sin"'u, and if § = tan~'((1 — u)/(v/1 — u?)) then tan%6 =
(1 —u)/(1+ u) and sec’* ) = 2/( +u). It follows that u = 2cos?# — 1 = cos 260 and so

Qzécosflu:g—%sin L. Hence
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as required.
This is taken from an article in the Mathematical Intelligencer by Apostol in 1983.

Proof 2: We start in a similar fashion to Proof 1, but we use (2). We get
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We make the substitution

1—y? 1 —a?
(u,v)—-(an x”l—aﬂ’ an y”l—yz)
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so that
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The Jacobian matrix is

cosu/ cosv sinusinv/ cos? v
sinusinv/cos’u  cosv/cosu

1 sin? u sin® v
cos? 1 cos? v

= 1—2%7

Hence
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A={(u,v):u>0,v>0,u+v<m/2}

where

has area 72/8, and again we get ((2) = 72/6.
This is due to Calabi, Beukers and Kock.

Proof 3: We use the power series for the inverse sine function:
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valid for |z| < 1. Putting z = sint we get
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for |t| < 7. Integrating from 0 to § and using the formula
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which is (2).
This comes from a note by Boo Rim Choe in the American Mathematical Monthly in
1987.

Proof 4: We use the L?*-completeness of the trigonometric functions. Let e,(z) =
exp(2minz) where n € Z. The e, form a complete orthonormal set in L?[0,1]. If we
denote the inner product in L?[0,1] by {, ), then Parseval’s formula states that
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for all f € L2[0 1]. We apply this to f(z) = 2. We easily compute (f, f) = 5, (f.e0) = 3
and (f,e,) = for n # 0. Hence Parseval gives us
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and so ((2) = 7%/6.
Alternatively we can apply Parseval to g = x[o.1/2- We get (g,9) = 3, (g,e0) = 5 and
(g,€n) = ((—1)™ = 1)/2min for n # 0. Hence Parseval gives us
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and using (2) we again get ((2) = 72/6.
This is a textbook proof, found in many books on Fourier analysis.

Proof 5: We use the fact that if f is continuous, of bounded variation on [0,1] and
f(0) = f(1), then the Fourier series of f converges to f pointwise. Applying this to

f(z) = z(1 — x) gives

1 > cos2mnx
-2 =g+ —5a
n=1

and putting z = 0 we get ((2) = 72/6. Alternatively putting z = 1/2 gives
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which again is equivalent to ((2) = 7%/6.
Another textbook proof.
Proof 6: Consider the series
>, cosnt
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This is uniformly convergent on the real line. Now if € > 0, then for ¢ € [¢, 27 — €| we have
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and so this sum is bounded above in absolute value by
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Hence these sums are uniformly bounded on [€,2m — €] and by Dirichlet’s test the sum
¢]
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is uniformly convergent on [¢€,2m — €]. It follows that for t € (0, 27)
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By the fundamental theorem of calculus we have

fm) - 50) = [T ar= =T
But f(0) = ¢(2) and f(—1) = ¥ (~1)"/n® = —((2)/2. Hence ((2) = 72/6.

Alternatively we can put
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the dilogarithm function. This is uniformly convergent on the closed unit disc, and satisfies
D'(z) = —(log(1 — z))/z on the open unit disc. Note that f(t) = D(e*). We may now
use arguments from complex variable theory to justify the above formula for f'(t).

This is just the previous proof with the Fourier theory eliminated.

Proof 7: We use the infinite product
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for the sine function. Comparing coefficients of 2® in the MacLaurin series of sides im-
mediately gives ((2) = m2/6. An essentially equivalent proof comes from considering the
coefficient of x in the formula
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meotmr = — + -5~
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The original proof of Euler!

Proof 8: We use the calculus of residues. Let f(z) = mz"2cot 2. Then f has poles at
precisely the integers; the pole at zero has residue —7?/3, and that at a non-zero integer
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n has residue 1/n?. Let N be a natural number and let Cly be the square contour with
vertices (£1 £14)(N + 1/2). By the calculus of residues
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say. Now if mz = x + iy a straightforward calculation yields

cos® x +sinh®y

|cot mz|* = ——; —.
sin”x 4 sinh” y

It follows that if z lies on the vertical edges of C,, then

sinh? y

—— <1
1 +sinh?y

|cot mz|* =

and if z lies on the horizontal edges of C),

1+ sinh® 7(N +1/2)

snb? (N 1 1/2) = coth? (N + 1/2) < coth? 7/2.
T

|cot mz|* <

Hence | cot mz| < K = coth 5 on Cy, and so | f(z)] < 7K /(N +1/2)? on Cy. This estimate

shows that
|] | < 1 K
"= o (N +1/2)2

and so Iy — 0 as N — oo. Again we get ((2) = 72/6.
Another textbook proof, found in many books on complex analysis.

8(N +1/2)

Proof 9: We first note that if 0 < 2 < § then sinx < x < tanx and so cot’r < x72 <
1+ cot?z. If n and N are natural numbers with 1 < n < N this implies that
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it suffices to show that limy .., Ay/N? = %



If 1 <n < N and 6 = nn/(2N + 1), then sin(2N + 1)6 = 0 but sinf # 0. Now

sin(2N + 1)0 is the imaginary part of (cosf + isin )2V, and so
sin(2N + 1)0 1 N o 2N +1 M oped
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= f(cot?0)

say, where f(x) = (2N + 1)zV — (2]\?1)96]\”1 + ---. Hence the roots of f(x) = 0 are
cot?(nm/(2N + 1)) where 1 < n < N and so Ay = N(2N —1)/3. Thus Ay/N? — 2, as
required.

This is an exercise in Apostol’s Mathematical Analysis (Addison-Wesley, 1974).

Proof 10: Given an odd integer n = 2m + 1 it is well known that sinnz = F,(sinx)
where F,, is a polynomial of degree n. Since the zeros of F,(y) are the values sin(j7/n)
(—m < j <m) and lim,_o(F,(y)/y) = n then

Fu(y) = ny]f:[l (1 y2>

 sin?(jm/n)

and so
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Comparing the coefficients of 2% in the MacLaurin expansion of both sides gives
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Fix an integer M and let m > M. Then
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and using the inequality sinz > %:z: for 0 <z < 7, we get
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Letting m tend to infinity now gives

=56 j:17T2j2_j:M+14j2.
Hence
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This comes from a note by Kortram in Mathematics Magazine in 1996.

Proof 11: Consider the integrals
w/2 /2
1, = / cos? z dx and J, = / 2 cos™ x dx.
0 0
By a well-known reduction formula

[nzl-?)
2-

5
4-6---2n 2 4mnl22
If n > 0 then integration by parts gives

2n /2 /2 : 2n—1
I, = [az cos x} 0 + 2n X SN X COS rdr
0

: g 7/2 /2 : -
= n [xQ sin z cos® ! x}o — n/ r%(cos®™ x — (2n — 1) sin® x cos®™ 2 z) dw
0

= n(2n —1)J,_1 — 2n?J,.

Hence (2n)!
n)lw 9
A2 2 (27’1, — 1)Jn,1 —2n Jn
and so et e o
oA o DR, A
4n? (2n — 2)! (2n)!
Adding this up from n =1 to N gives
T % 4N N2 5
4 = Jo = (2N

Since Jy = 7 /24 it suffices to show that limy ., 4V N'2Jy/(2N)! = 0. But the inequality
r < gsinz for 0 <z < 7 gives
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and so
4N NI 3
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This completes the proof.
This proof is due to Matsuoka (American Mathematical Monthly, 1961).

Proof 12: Consider the well-known identity for the Fejér kernel:
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If we let n = 2N with N an integer then
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But since sin 5 > % for 0 < & < 7 then
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Taking limits as N — oo gives
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This proof is due to Stark (American Mathematical Monthly, 1969).

Proof 13: We carefully square Gregory’s formula
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Let
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By (2) it suffices to show that limy_.., by = m2/4, so we shall show that limy ., (a3 — by) =

0.
If n # m then
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where the dash on the summations means that terms with zero denominators are omitted,

and .
N —1)™
x = 3 (=1
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It is easy to see that c_, y = —c, v and so ¢o v = 0. If n > 0 then

CaN = (_1)n+1 | Z

and so |c, | < 1/(N —n+ 1) as the magnitude of this alternating sum is not more than
that of its first term. Thus
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and so a3 — by — 0 as N — oo as required.
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This is an exercise in Borwein & Borwein’s Pi and the AGM (Wiley, 1987).

Proof 14: This depends on the formula for the number of representations of a positive
integer as a sum of four squares. Let r(n) be the number of quadruples (x,y, z, t) of integers
such that n = 22 4+ y* + 2% + t%. Trivially r(0) = 1 and it is well known that

rin)=8 > m.

m|n,44m

Let R(N) = N r(n). Tt is easy to see that R(N) is asymptotic to the volume of the
4-dimensional ball of radius v/N, i.e., R(N) ~ %QNQ. But

R(N):1+8§: Y o m=1+8 > m{NJ=1+8(9(N)—49(N/4))

n=1 m|n,4n m<N,44m m

where

But

= S +0(1/x)) + Olxloga)

= §(22)a:2 + O(zlog x)

as r — 00. Hence

R(N) ~ 7;2]\72 ~ 4¢(2) <N2 - T)

and so ((2) = 7%/6.
This is an exercise in Hua’s book on number theory.
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