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1 Introduction

In [1] (see also [2]) Borwein and Borwein proved the identity

a(g)* = b(q)* + ¢(q)? (1)

where , ,

G(Q) — Z qm +mn+n ’

m,n€”Z
m—n_m2+mn+n?
blg)= > " g
m,neZ

and

2 n n 2
c(q) _ Z q(m+1/3) +(m+1/3)(n+1/3)+(n+1/3)

m,ne”Z

where w = exp(27i/3). We call these functions theta series for convenience.
Subsequently Hirschhorn, Garvan and J. Borwein [3] proved the correspond-
ing identity for two-variable analogues of these theta series. Solé [4] (see also
[5]) gave a new proof of (1) using a lattice having the structure of a Z[w]-
module. Here we introduce three-variable analogues of the theta series a(q),
b(q) and ¢(q), and adapt Solé’s method to prove corresponding identities for
them.



2 Theta series

We introduce our three-variable theta series as sums over elements of the

Eisenstein field Q(v/—3).

Let K = Q(v/=3) and let O = Z[w] be its ring of integers, where w =
$(—=1+V/=3) = exp(2mi/3). Write A = w — w? = \/=3. For o € K define
T(a) = a + @, the trace of a. The element A\ generates a prime ideal of O
of norm 3; the inclusion Z — O induces an isomorphism Z/3Z = O/)O.
Hence we can unambiguously define, for o € O, x(a) = w® where a € Z and
a = a (mod \O,).

We now define our theta series. We start with

042 C!
alg, 7 w) = 3 ¢ /N
acQ

Next for any integer k define

042 (0%
W@, 2 w) = 3 x(a)Fglal @y T
aceO

It is apparent that by(q, z,w) depends only on the congruence class of k
modulo 3 and that by(q, z, w) = a(q, z, w). We also define

alg, z,w) = > gl 7@ T(@/N),
acO+k/A

Again ¢x(q, z,w) depends only on the congruence class of £ modulo 3 and

CO(Q7 Z, w) = a(q7 Z, U))
We observe some symmetry properties of these functions.

Lemma 1 We have
alg, z,w) = a(q,z,w™) = a(q, 2~
br(q, z,w) = br(q, z,w™') = b_i(q, 2
and
2 hw™) =g, 27t w). (4)

Proof We replace « in the definition of each series in turn by @, —a and
—a. It helps to note that T'(@) = T'(«), T(a/A) = =T(a/N), x(@) = x(«),
x(—a) = x(a)™! and k/X = —k/X\. Of course (2) is a special case of both
(3) and (4). O

Ck(Q> Z, ’LU) = C*k(Qa Z, w_l) = C*k(qa



From (3) and (4) we see that b;(q,1,1) = b_1(¢q,1,1) and ¢(q,1,1) =
c_1(q,1,1). We write

a(q) = alq,1,1), b(q) =bi1(q,1,1) and ¢(q) = c1(q, 1,1).

We shall soon see that this agrees with our previous definition.

We show that these functions specialize to the two-variable functions
introduced in [3]. First of all, each element a@ € O can be uniquely written
as @ = nw — mw?. Then T(a) = m —n and

la]? = (nw — mw?)(nw? — mw) =m* +mn +n

and so
(q,Z 1 Z qm 2 Lt mn+n? Zm n

m,neZ

which is denoted as a(q, z) in [3]. In particular

q, Z qm 2 +mn+n?

m,neZ

in agreement with the original definition. Also |—wa|? = |a|* and T'(—wa) =
T((m — nw?)/\) = n. Hence

wa —wa/N) m +mn+n
a(q,1,2) = Y gl loeeN = 5
acO m,neZ

which is denoted as d’(q, z) in [3]. Now x(—wa) = w™ " and similarly

bl(q7 172 Z WM nqm2+mn+n

m,n€Z

which is denoted as b(q, z) in [3]. In particular

b <q’1’1 Z wm nqm 2t mn+n?

mneZ
Note that b1(q, 1,z) = b_1(q,1,2) by (3). Finally %(w —w?)=—1/X and so

Z q(m+1/3)2 (m+1/3)(n+1/3)+(n+1/3) -n

m,neZ

_1(q, 2, 1)

and this is denoted by ¢'/3c(q,z) in [3]. Again note that c_i(q,z,1) =
c1(q, z,1) by (3). In particular

(q, 1, 1) — ¢4 q,l,l Z qm+1/3 m+1/3)(n+1/3)+(n+1/3)2‘

m,nez



3 Identities

Our main result is a generalization of (1.25) in [3].
Theorem 1 For each integer k,

3er(g, z,w)* = a(g,w,z%)a(q)?
+ Wi (g, w, 27)b(q)* + w *b_1 (g, w, 2 *)b(q)?
+ c1(q, w, 27%)e(q)® + c-1(g,w, 27%)e(q)*. (5)

In particular

3a(q, z,w)* = alqg,w,z*)a(q)® + bi(q, w, 2~ *)b(q)* + b_1(q,w, 2 *)b(q)?
+a(gw, 27%)e(q)® + co1(g,w, 27%)e(g)”. (6)

Proof Cubing the definition of ¢ (q, z, w) gives

2 2 2
Ck((], Z7w)3 — Z q|a0| +la1 [P+ az| ZT(ao+a1+a2)wT((a0+a1+a2)/)\)‘ (7)
ao,al,agéo-i-k‘/)\
This is a sum over triples o« = (v, a1, ) where « runs through a certain

subset of
A=O>+Z(1/\ 1/ 1/N).

We partition the group A into various cosets. If & € A then ag+a;+as €
O. For integers j and k let
Njp={a € O* +k(1/N\1/X\1/N) tap+a1 +as =3 (mod M)}

Then A;; depends only on the integers j and £ modulo 3. They are the nine
cosets of the subgroup Agg of A. Define, for o € K3,

[af* = Jaol* + |on]” + ool

and
CD(Oz) _ q|o¢\2ZT(a0+a1+a2)wT((ao-i-ocl-‘rOcz)/)\)‘

Then
cr(q, z,w)® = Z d(a). (8)

aEAO,kUAl,kUAfl,k

We now consider the matrix

S

1
w
w2

M=

> =
— =

€



It is straightforward to check that A; ;M = A_; ;. Also M is a unitary matrix
so that if 3 = aM then |3|> = |a|?. Thus

() = q|5|22T(Aﬁo)wT(ﬁo) B2 ,=8T(Bo/A) 4y T(Bo)

=4q
From (8) we get

(g, ) = S IR T), o)
BEA_k oUA_k 1UA_j 1

We split this sum into sums over each of the three cosets A_y ;.
Consider A_j . This can be written as

Ao = {8 € O% : x(Bo)x(BL)x(B2) = w™*}.

Hence

BEA_k0
= Z q\BF (=360/A),,T(Bo)
Be03
2
Wb 3 X(Bo)X(B)x (o) g 2T 380/ T(B0)
Be03
- - 2
w Z X(ﬁo) 1X ) (ﬁz) 1 \/3| T(=300/X) ,yT(Bo)
Be03

= a(g,w,2)a(q)® + w*bi (g, w, 27*)b(q)? + w "b_1(q,w, 27*)b(¢)*(10)

To aid with the remaining cosets consider the matrix

1 0 0
N=|0 w 0
0 0 w

Then N is unitary and one may easily check that A; ;N = Aj .. As N does
not alter the first coordinate of a triple 3 € K? then for k = £1

Z q|5|2z—3T(50/>\)wT(ﬁo)
BeEA; &

is independent of j. Hence for £k = +1

3 Z quQ T(Bo/A) gy T(Bo) Z q|ﬁ|2z—3T(50//\)wT(ﬁo)
BEA K BE(O+k/A)?
= g, w, 27 *)c(q). (11)
From (9), (10) and (11) we obtain (5). The k = 0 case of (5) is (6). O



Corollary 1 We have

2@((], Z, w)3 = bl (q7 w, z73)b(q)2 + b—l(Q; w, 273)b(q)2
+Cl(q7 Z7w)3 +C2(q727w>3' (12)

Also
a(q)® = b(q)* + c(q)®. (13)

Proof To obtain (12) subtract the sum the k = 1 and k = —1 cases of (5)
from twice (6). To obtain (13), either substitute z = w = 1 in (12), or make
this substitution in either (6) or (5). O

Another particular case is obtained by setting w = 1 to give
a(Q? <, 1)3 = bl(q7 17 Z3>b(Q)2 + Cl(Qa Z, 1)3

(using (4)) which is (1.25) in [3].
A variant of the argument of Theorem 1 gives the following result.

Theorem 2 For each k,

3er(q, z, w)en (¢, 2%, w?) = alg,w,27")a(q?)
+ Wb (g, w, 27?)b(¢?) + w Fb_i (g, w0, 27 *)b(¢?)
+ cr(q, w, 27 %)e(q?) + c_1(g,w, 27 ¥)e(q?). (14)

In particular

3a(q, z,w)a(q®, 2%, w?) = alg,w,z"")a(q?)

Proof As the proof follows closely the proof of Theorem 1, we shall suppress
most of the details.

Let V = {(ap,1,0) € K3 : a1 = ag}. The space V is stable under
the action of the matrices M and N. The key is to rewrite the proof of
Theorem 1 restricting the summations to triples in V. We start by noting
that

Ck(q,Z,'IU)Ck(QQ,Z2,U)2) = Z (I)(Oé)
ac(O+1/2)3nV

This gives

cr(q, z, w)en(q?, 22, w?) = 3 P 23T B0/ ) T (o)
BEA_k,oNVIU(A_g,1NVIU(A_g,_1NV)

6



We then get

BEA,;C,OQV

= a(q,w,z7")a(g®) + w'bi (g, w, 27°)b(¢%) + w b1 (g, w, 27*)b(q?)

and for j = +1
,BEA]‘JCI'-\IV
The theorem then follows. O

Corollary 2 We have
2a(q, z,w)a(g?, 2%, w?) = bi(q,w,27%)b(q)* + b1 (q,w, 27*)b(q)?
+c1(q, z,w)? + ca(q, 2, w)?.
Also
a(q)a(q®) = b(q)b(q*) + c(a)c(q?)-

Proof This follows from Theorem 2 in exactly the same way that Corollary 1
follows from Theorem 1. O

Another special case is

a’(q7 Z, 1)a(q27 227 1) = bl(Qa 17 23)b(q2> + Cl(Q? 2, 1)Cl(q27 227 1)
which is (1.26) in [3].
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