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Let Z be the set of integers. One of the central problems in Number Theory is
to study the representations of integers as sums of elements chosen from a certain
subset A of Z. When A is the set of prime numbers, we are led to the famous
Goldbach Conjecture (which states that every even integer is the sum of two odd
primes) and Vinogradov’s Theorem (which states that every odd integer is a sum
of three primes). When A is the set of integers of the form kn for some n > 1, we
are dealing with what is known as the Waring Problem. In this article, we set A
to be the set of squares, namely, A = {1, 4, 9, 16, 25, · · · }. This may be viewed as
Waring’s Problem with n = 2. To facilitate our discussion, let rk(n) be the total
number of ways of representing n as a sum of k squares.

The problem of representing integers as sums of squares has a long and interesting
history. It was Diophantus (325 - 409 A.D.) who showed that every integer of the
form 4m + 3 cannot be represented as a sum of two squares. In other words,
Diophantus showed that r2(4m + 3) = 0 (The readers are encouraged to try to
establish this). In 1632, Girard conjectured that n is a sum of two squares if the
prime divisors of n of the form 4m + 3 occur in n in an even power. For example,
n = 32 · 5 = 32 + 62 while n = 33 · 5 cannot be represented as a sum of two squares.
This conjecture was first proved by Euler in 1749. Euler’s proof, however, did not
give an explicit formula for r2(n) and the formula was later discovered by Legendre
in 1798 and Gauss in 1801. Legendre and Gauss showed that

r2(n) = 4(d1(n)− d3(n)),

where dj(n) is the number of divisors of n of the form 4m + j.
In 1770, Lagrange showed that every positive integer is a sum of four squares.

Lagrange’s proof of his Four Squares Theorem involved an identity closely related
to the quaternions but he did not give any formula for r4(n).

In 1829, Jacobi observed that rk(n) can be obtained from the series expansion
of the function ϕk(q) where

ϕ(q) =
∞
∑

k=−∞

qk2
.

Using the theory of elliptic functions to express ϕk(q) in terms of Lambert series,
Jacobi was able to establish explicit formulas for rk(n) for k = 2, 4, 6 and 8. His
formula for k = 4 yields Lagrange’s Theorem immediately. Jacobi’s work marks
the beginning of an important Chapter in the development of mathematics, namely,
the use of complex analysis in the study of number theoretic problems. Since then,
mathematicians such as Glaisher, Ramanujan, R. Rankin, and others succeeded in
deriving formulas for r2k(n) with k > 4. The most general statement in this topic
states that

r2k(n) = δ2k(n) + e2k(n),
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where δ2k(n) is the coefficient of qn in the expansion of certain Lambert series and
e2k(n) is the coefficient of qn of the Fourier expansion of certain cusp form. This
general result was obtained by Rankin using the theory of modular forms in 1965.

The subject was believed to be “dead” until recently. In 1994, V. Kac and M.
Wakimoto announced their new conjectural formulas for ϕk(n) when k = 4l2 and
k = 4l(l + 1). Their formulas were discovered as a consequence of their study of
certain affine superalgebras. These conjectures were later proved by S. Milne using
Jacobi’s elliptic functions, Hankel’s determinants and continued fractions. The
simplest formula arising from Milne’s Theorem is

ϕ24(q) =
1
32 det
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where

G2s(q) =
∞
∑

k=1

k2s−1qk

1− (−q)k .

In general, Milne’s formula expresses ϕk(q) with k = 4l(l + 1) as a sum of at most
l products of G2s(q), s ∈ N. For example, when l = 3, there will be terms involving
products of three G2s(q), s ∈ N. Recently, motivated by Milne’s formula for 24
squares, the author observes that for every even k, ϕk(q) can be expressed as a sum
of products of 2 series (instead of l) analogous to G2s(q). In the case when k = 8l,
the author discovers the following:
Conjecture. Let

sec2 u =
∞
∑

k=0

a2k
u2k

2k!
,

and suppose that
Ak

Bk
=

a2k

22k+3 , where k > 1 and gcd(Ak, Bk) = 1. If s ≡ 0

(mod 4), then
ϕ2s(q) =

∑

m+n=s

am,nE2m(q)E2n(q),

where
E2k+2(q) = Ak − (−1)kBkG2k+2(q), and am,n ∈ Q.

When k = 32, the above conjecture produces the identity

ϕ32(q) =
1

4725
{

−400E6(q)E10(q) + 16E12(q)E4(q) + 21E2
8 (q)

}

.

Since 32 is neither a square nor a product of two consecutive integers, this identity
is not contained in Milne’s Theorems and it is indeed new. The author is currently
working on proving the above conjecture and its analogues for case k = 8l + 4 and
k = 4l + 2. These new results will hopefully provide new insights in the study of
sums of squares and more generally, in the development of the theory of modular
forms via Eisenstein series.


