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1. Introduction

Let
@ oo == [ [(1—ag"
n=0

and let the RamanujandBriitz-Gordon continued fraction be defined as

@ ¢ q* q°
H(Q) = 1
@ = g+ T +TrE+Trq+ A

On page 229 of his second notebook [13], Ramanujan recorded a product representation ¢
H(q), namely,

CHSCIC
(0% 080 (0% 0¥ o0
Without any knowledge of Ramanujan’s workol®iitz [10] and Gordon [11] rediscovered

and proved1.1) independently. Shortly thereafter, Andrews [1] proved (1.1) as a corollary
of a more general result.

H(q) =q? (1.1)
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In addition to (1.1), Ramanujan offered two other identities [13, p. 229Hfa):

¢(9?)

—  _H@ =23 1.2

Ao 9= g2y gh (1-2)
and

R Ty C (1.3)

H(q) a2y (g4
where

@ = Y q¢
k=—00

and

w(q) — Z qk(K+l)/2.
k=0

Proofs of identities (1.2) and (1.3) can be found in Berndt's book [3, p. 221].

In this paper, we will establish several identities which will give us a better understand-
ing of H(q). Some of these identities are motivated by identities involving the Rogers-
Ramanujan continued fraction [4]

[

¢ a o &
1 +1+1+1+--

and Ramanujan’s cubic continued fraction [7]

F@ =

a> a+d® o+q* o+

CO=T4+ T + 1 + 1 +-

In Section 2, we will develop some basic identities satisfiedHtfg). These identities
are proved by using (1.1) and some elementary theta-functions identities. In particular, we
will reprove (1.2) and (1.3) by an approach slightly different from that in [3]. Then, by
using these identities, we are able to establish relations betiégnand H(—q), and
H(qg) andH (g?).

Let, as customary,

= @k(b)k Z¢
Fi(@ b;c;2) = e
2F1(a,b; ¢; 2) kX:(; ©r K

where(@)x = (a)(@a+1)---(a+k—1),and|z] < 1. We say that thenodulus8 has degree
n over themodulusx when

2Fi(3. 3 11-8) nzﬁ(%

2':1(2’ 2’1’ /3) 2F

.3 Ll1-a)
2’ (1.4)
(323 5e)
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A modular equation of degreein a relation betweea and g which is induced by (1.4).
In Section 3, we will prove an important theorem which will allow us to deduce relations
betweerH (q) andH (g") from modular equations of degraend vice versa. In particular,
we will use this theorem to obtain relations betwe#(q) and the two continued fractions
H (g% andH (g*).
In Section 4, we will establish some explicit formulas for evaluatih@ ™ v™2) in terms
of Ramanujan-Weber class invariants. Using these formulas, we derive many numerica
continued fractions. One such example, which first appeared in [10, (2.32)], is

He™) = \/4+ 2&—\/3+2ﬁ.

Observe thaH (e ™) is a unit. In fact, in the final section, we will show thdi(+e-"v"/2)

is a unit when n is a positive integefhis is an analogue of a result recently established by

Berndt et al. [4], which states th&t(e " ¥™) is a unit when n is a positive rational number
We conclude this introduction with the remark that the results establishddi(fpr are

also valid for

NI

+2 4 3+6 8
Hyq = &2 9t a®+a® q

q
I+ 1 +1+ 1 41+

This follows from the identities (1.1) and

CH DG
(0% 085 (9% 98’

[N

Hi(@) =q (1.5)

which was stated by Ramanujan [13, p. 290; 14, p. 44] and first proved by Selberg [15].
Other proofs of (1.5) have also been given by Andrews [2] and Ramanathan [12].
2. Some identities satisfied by1(q)

Let

f(a, b) = Z akk+D/2pk(k=1/2, labl < 1.

k=—o00

By Jacobi’s triple product identity, we have [3, p. 35, Entry 19]
f(a, b) = (—a; ab)o(—b; ab)..(ab; ab)u. (2.1)
Using (2.1), we rewrite (1.1) as

s f(=9.-q"

T~ (2.2)

H@=q
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Theorem 2.1.
2
. 42 :w(Q)—w(Q)’
0 D= T e@
(i) H™@ - H@ _ ¢@)
H-Y@)+H@ @
_ P(Pe(g?)
(iii) H Z(Q) - HZ(Q) = W,
2
: H-1q) — H(q) = 2@
(iv) (C)] @ 2y )
and
(v) H2(@)H?(—q) = —H%(g?).

Proof of (i): We recall from [3, p. 51] that

203, g%

2
_ S, Y o B A
p(—q) + (@) @

and

2
—a) — -2
o(—a) — (@) q 7@

Dividing (2.4) by (2.3), and replacing by —q, we find that

f2(—q,—-q") 9@ — ¢(@?)

f2(0.q")

q

The result follows by (2.2).

Proof of (ii): We first rewrite Theorem 2.1(i) as

RACE)

H2q) = — 2@
@ 9()
(@)

Sinceb = ﬁ is equivalent taa = }%’g we find that

1-HX@ _ 9@
1+H2@ e@’

by (2.5), and this clearly implies Theorem 2.1(ii).

f2(—03,—0% @@ +¢(@?)’

CHAN AND HUANG

(2.3)

(2.4)

(2.5)
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Proof of (iii);:  We recall from [3, p. 40, Entry 25(v), (vi)] that
9*(@) + ¢*(=a) = 2p*(?)
and
o*(@ — ¢*(—a) = 8qy*(@".

By Theorem 2.1(i) and (2.6), we deduce that

e@+9@)  o@—9@) _ 4@¢@*)

H™2(q) — H3(q) =

B 49(9)p(?) _ 8p(@e(g?)
- 2 2, - 2 _2(_ .
o) — ¢ (C)) +2<p (=) 7@ — (-9

Using (2.7), we simplify (2.8) to obtain

(@ e(g?)

H72 _HZ — ,
@~ K@ = T

which is Theorem 2.1(jii).

Proof of (iv): By Theorem 2.1(ii) and (iii), we have

. - H (@ - H@
H @) - H 2 _ (H 2%(qg) — H? - v
(H™ (@ @)= (H™(a) @) H-1(q) + H(Q)

_ e@e@) (@) _ %@
qQy?@Y) e@  ay@h

Taking square roots on both sides of (2.9), we deduce Theorem 2.1(iv).

Proof of (v): From [3, p. 46, Entry 30(iv)], we have
f(a, b)f(—a, —b) = f(—a?, —b?p(—aby).

By (2.2) and (2.10), we deduce that

f(-q, —q") f (@, 9" >2
f (_q39 _q5) f (qs: q5)

o [ F(—q?, —q“)w(—q%)z 2012
=— = _H(q?).
a < f(—a% —g9¢(—0q®) @)

This completes the proof of Theorem 2.1(v).

H2(q)H?(-q) = —q2<

P(@) — 0@ 9@ +e@  92(Q) — 92(g?)

79

(2.6)

2.7)

(2.8)

(2.9)

(2.10)
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By using Theorem 2.1, we can find relations betwekiq) andH (—q), andH (q) and
H(@?.

Theorem 2.2. Letu= H(q), v = H(—q), andw = H(g?. Then

2 2
0 () (2-0) =

and

(ii) uW=uw

Proof of (i): Squaring both sides of the identity (iv) in Theorem 2.1, we arrive at

1 L5
- — = . 2.11
<u ”) Qw2 @11

Replacingg by —q in (2.11), we find that

1\ &A@
-——v) =-— . 2.12
(v ) qy¥2(a*) (12)
Adding (2.11) and (2.12), we complete the proof. o

Proof of (ii):  We first rewrite (i) as

1 2 1 )
(2oo) =tz e

From (2.13) and Theorem 2.1(v), we have

(% - u)2 - <%>2 y2q (%)2 (2.14)

which yields the desired result, after some simple manipulations. ]
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3. Modular equations of degreen and relations betweenH (q) and H(q")

Theorem 3.1. If

2F1(%,%;1;1—06)
= — 3.1
q exp( i Fi(3.5La) ) (3-1)
then
_1 _ 4
(H (ﬂ>2 HW@) _1 (3.2)
o

Proof. If we replaceq by /g in Theorem 2.1(iv), divide both sides by 2, and then raise
both sides to the fourth power, we find that

(H—lwa) —H(/ )“ _ @ 3.3)
2 16qy4(g?)’ '
On the other hand, we recall from [3, p. 40, Entry 25(vii)] that
¢* (@ — ¢* (=) = 16qy*(@?). (3.4)
Substituting (3.4) into (3.3), we find that
<H-wﬁ> ~H/® )“ e 1 35
2 I R '
9*(@)
From [3, p. 100, Entry 5], we know that the identity (3.1) implies that
4
" (=q)
— . 3.6
¢*(Q) (3.9
Combining (3.6) and (3.5), we complete the proof. o

Now, leta andq be related by (3.1). IB has degrea overa, then Theorem 3.1 gives us

—1/4n/2y _ n/2y\*
<H @9 -Hq )>=1 (3.7)

2 B
Hence, by (3.2), (3.7), and any given modular equation of degree can obtain a relation

betweenH (,/g) andH (q"/?). Replacingy by g2 will then yield a relation betweehl (q)
andH (q™). We illustrate these ideas with= 3 and 4.

Corollary 3.2. Letu= H(q), v = H(g®, andw = H(g*. Then

(i) 3uv(1 —uv)(U+v) + (U =)L+ uv®) =0
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and

. B 2wl -w)\  wld-w) 2wl-w)
(ii) U_J\/( T >+ e 1ier

Proof of (i): Let

x:=H(/Q and y:=H(@¥?,

whereq is given by (3.1). Wher$ has degree 3 over, we have [3, p. 231, Entry 5(xiii)]

B 1/4 o \V4
(—) - (—) = 2((aB)Y® — (aB)~®). (3.8)
a B
By Theorem 3.1, (3.8) is equivalent to
-1 _ -1 _ -1 __ -1 _
XTox Y oY, 2 IRt et AN 3.9)
yl-y x1-x VT —x)(y1-y) 2

UsingMathematicawe simplify (3.9) to arrive at
(x*y® — 3x3y? + x3 — 3x%y® + 3x%y — xy* + 3xy? — y)
x (3y* — 3x2y® + y® — 3x3y? + 3xy? — x*y + 3x%y — x) = 0.
The second factor in the product is a non-zero function wher> 0, since there is only
one termx with leading termg/4. Hence, we conclude that

4,,3

x4y — 3x3y? + x3 — 3x%y® + 3x%y — xy* + 3xy? —y =0,
ie.,
3XY(L = X)) (X +Y) + (& = y) (1 +xy*) = 0.
Replacingy by g, we complete the proof. m]

Proof of (ii)): Wheng has degree 4 over, we have [3, p. 215, Eq. (24.22)]
_(1-1-a)¥h?
Ve = <1+ (1—a>1/4) '

Replacingxr by 1 — 8 andg by 1 — «, we arrive at another modular equation of degree 4,
which is

1_131/4 2

by [3, p. 216, Entry 24(v)].
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ulou)t 1
( > ) == (3.11)
and
wlow\* 1
— =-. A2
(=) -5 612
Squaring both sides of (3.10) and combining it with (3.11) and (3.12), we find that
2 4 wl—w—2\
1- ={—]). 3.13
<u—1—u> (w—l—w—i—Z) (3.13)

Upon simplifying (3.13) usinglathematicawe arrive at

u*w?® + utw? + u*w + u* — 4w + dPw + vt — Wi+ w? —w)
x (14 v*w?* — v*w® + v*w? — v*w — w3 + WPw + w + w? + w) = 0.

Clearly, the second factor in the product does not vanish wijer 0. Therefore,

utw?® 4+ u*w? + utw + u* — Pw® + AWPw 4+ wt — w +w?—w=0. (3.14)
Rearranging (3.14), we find that

(w + D (w? 4+ Hu* — dw(w — )(w + Hu? + w(w — H(w?+1) = 0. (3.15)

By regarding (3.15) as a quadratic equationi§fwe conclude that

2 —2w(l—w) 2wl — w) 2 w(l—w)
W=z +\/< 1+ w? )+ 1+w ~ (3.16)

where thet sign in front of the radical is verified by letting€ g < 1. Finally, taking the
square roots on both sides of (3.16) yields the result. |

4. Explicit formulas for the evaluations of H(q)

Letq, := e "¥", and let the corresponding value®fn (3.1) be denoted by,; /an is
called a singular modulus. Then, by applying Theorem 3.1 and solving (3.B){@pp, we
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It is known from [3, p. 97] thatry = 1/2, > = (+/2 — 1)2, andas = (+/2 — 1)*. Hence,
by using (4.1), we deduce that

HEe™?) = JVa+1-4va (4.2)

H(e*”/ﬁ)Z\/\/EﬂLZ—\/‘/EJFL (4.3)

have

and

H(e*”)z\/4+ zﬁ—\/s+2ﬁ. (4.4)
In fact, more values offl (q) can be obtained simply by using (4.1) and known values of

an [5]. But this process does not always give us elegant radicals for the valu¢gof
Hence, we require another expression for the right hand side of (4.1).

Theorem 4.1. Let the Ramanujan-Weber class invariants be defined by

Gn = 271/4qn71/24(_qn§ qg)oo (4.5)
and

On =20, (an: 07) . (4.6)

where g = e "V", and set p= G}?and p = g}2 Then

() HE ™) = \//p(p+D+vp(p-1+1-yVp(p+D+vpP—1

=\/p1+\/p§+1+1—\/p1+,/p§+1

and

(i) HE™™ =/ (/pt1+vP)(/P+yp—1) +1
- (V/P+1+VP)(VP+VP-1)

- (\/¢p<p+1>+¢p<p—1>+1—\/¢p<p+1)+¢p<p—1))

x <\/¢p<p+1>+Jp(p—1>—\/¢p(p+1>+¢p<p—1>—1)
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= <\/p1+\/p§+1+1—\/p1+\/p§+1)
><<\/p1+,/pf+1—\/p1+\/pf+l—1>.

Proof of (i): Since [5]

Gn = (don(1 — ap)) 2, (4.7)
we deduce that

ai= (vVP(P+1 +Vp(p—1)". (4.8)

n

Using (4.8) in (4.1), we obtain the first equality of (i).
Next, from [5],

1

- =292 4.9
Hence, .
- = Jp?+ 1 4.10
Jan P +4/P1+ ( )
From (4.10) and (4.1), we deduce the second equality. O

Proof of (ii): By (4.7) and (4.8), we deduce that

1
= = (/p(P+ D - /p(p - D)" (411)

From [3, p. 213, Eq. (24.12)], (4.8) and (4.11),

S (=
N O (Y RECAES ST
= (/Pp+1-vP)'(vP-Vp-1)" (4.12)

Using (4.12) in (4.1), we obtain the first equality of (ii). Next, from Theorem 2.2(i) and
(3.2), we observe that

H(—e™V2) = _j J\/I — J /I -1]. (4.13)
on on
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Using (4.1), (4.13) and Theorem 2.1(v), we obtain

([ (D)1

Substituting (4.8) and (4.10) into (4.14), respectively, we arrive at the second and third
equalities of (ii). m]

Examples Letn = 1. SinceG; = 1, Theorem 4.1 yield$4.2) and(4.4). Letn = 2.
Sinceg, = 1 [16, p. 721], Theorem 4.1 gived.3) and

He™v?) = <\/«/§+2—\/«/§+1> (\/\/i+1—\/£).

Whenn = 3, G1? = 2[16, p. 721] and hence,

H(e ™) = VB + V24 1— V612

and

HEe 3 = \/(~/§+f2)2(\/§+ 1)’ +1- (V3+v2)(V2+1)
_ <\/\f6+«/§+1—\/«/5+«/§> <\/Jé+ﬁ—\/dé+¢§—1>.

It is clear that the continued fractions we discovered are all units. It is therefore natural
to conjecture thaH (e-"v"/2) is a unit whem is a positive integer. To prove this, by (4.1),
it suffices to show that/lx, is an algebraic integer for each positive integer

5 H (:I:e—’“/ﬁ/z) is a unit whenn is a positive integer

We first recall some basic definitions from algebraic number theoryomer O with
conductor fin a quadratic field is a subseD ¢ ¢ K such that
(i) O isasubring oK containing 1,
(i) O is afinitely generate@-module,
(iii) O contains &Q-basis ofK, and
(iv) [Ok:0¢] = T,
whereOQy = 9, is the ring of integers oK.
If 1 anda, generate am ;-ideal ap, overZ, we say thatda, ] is a basis ofag, .
An idealag, is said to beproperif agy, is coprime tof. For more details on orders of an
imaginary quadratic field, we refer the reader to [8].
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If nis an algebraic integer ands anOy ideal, we writen ~ ato meanthayOq = aDg
in some large number field. Similarly, if n; andn, are algebraic integers, we wrife ~ 1,
to mean that); /7, is a unit.

Theorem 5.1. Suppose p is a prime such thalt|§, where f is a positive integer. Let
a,b,c and d be integersand P := (EC1 3) be a matrix with determinant p and(zr) =
a(g; )%, where g= €', with Im(z) > 0. Define

pp(r) = pP———, (5.1)

wherer = Z and A(%) = 7, A (7). Let[a1, a2] be a basis of a proped ¢-ideal ap,
and setx = g‘—; The action of P on the bagja;, «2] is defined as

Plo, ag] := [aa1 + barz, Cary + daz].

1. When p splits completely in Khaamely p= pp, then
(1.1) ¢p(@) is aunitif Play, ao] is a basis of a propep ¢p-ideal,
(1.2) pp(a) ~ p*?if P[ay, o] is a basis of a propeD ¢p-1-ideal, and
(1.3) if pt f, thengp (@) ~ p*? andgp (@) ~ p*2 when Hay, a2] is a basis ofip, po,
and Plag, az] is a basis ofip, py, , respectively.
2. When p ramifies in K, namely -p p?, then
(2.1) gp(a) ~ p¥P"" if P[ay, as] is a basis of a propeD ¢ ,-ideal,
(2.2) pp(a) ~ p*>-7 if P[ay, ay] is a basis of a propeD ,-:-ideal, and
(2.3) gp(a) ~ pbif Play, o] is a basis ofig, po, .
3. When pisinertin Kthen
(3.1) gp(a) = pP P jf Play, ay] is a basis of a propeDd ¢p-ideal, and
(3.2) pp(a) ~ pt-YP (P if P[ay, ay] is a basis of a propeD ¢, 1-ideal.

Proof: See |9, p. 43]. ]

Corollary 5.2. Let the Ramanujan-Weber class invariants be define@®y and (4.6).
Then
(i) forn=1(mod 4, G, is a unit
(i) forn=3(mod 8§, 271G, is a unit,
(iiiy forn =7 (mod 8, 2-4G, is a unit and
(iv) forn =2 (mod 4, g, is a unit.

Proof: Throughout the proof, we will assume that= f2d, whered is squarefree. We
will also letK = Q(+/—d).
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() Whenn =1 (mod 4,d = 1(mod 4, Ok = Z[~/—d] and (2) = p? ramifies inO.
Let[v/—n, 1] be a basis 0D andP = (§}). SinceP[v/—n, 1] = [—n+ f, 2]is
a basis 0pO ¢, we deduce from Theorem 5.1(2.3) that

pp(v/—n) ~ 2°. (5.2)
By (5.2), (5.1) and observing thdtis odd, we conclude that
A
A(v=n)

is a unit, which implies the desired result, since (5.3) reducesGg* by using the
definition of A appeared in Theorem 5.1 and (4.5).

(i) Whenn =3 (mod 8§,d = 3 (mod 8, O = Z[@] and (2) is inert inO. Let
[/—N + f, 1] be a basis of &¢-ideal andP = (} ). SinceP[/—n+ f,1]is a
basis of aJ ¢ -ideal, we conclude that

pp(vV—n+ f)~ 28

by Theorem 5.1(3.2). Now, by a similar argument as in (i), we obtain

-6 (5.3)

(21/4Gn)24 ~ 28’

which implies that 212G, is a unit.

(i) Whenn=7(mod 8,d =7 (mod §, Ok = Z[@] and(2) splits completely in
Ok. Let[/—n+ f, 1] be a basis of ®,¢-ideal andP = (é g). SinceP[/—n+ f, 1]
is a basis of @ ¢ -ideal, we find that

op(v/—Nn+ f)~ 212

by Theorem 5.1(1.2). Therefore; 24G, is a unit by (4.5) and (5.1).

(iv) Whenn = 2 (mod 4, d = 2 (mod 4, Ok = Z[~/—d] and(2) = p? ramifies inO.
Let[+/—n, 1] be a basis o andP = (é g). ThenP[./—n, 1]is a basis 0O . By
Theorem 5.1(2.3), we deduce that

pp(v/—n) ~ 28, (5.4)
Hence, by (5.4) and (5.1), we find that
A(v/=n) ’ '

which implies thagy, is a unit, since the left hand side of (5.5) reduces®gt2by the
definition of A and (4.6). This completes the proof of the corollary. o
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Remarks The results given in Corollary 5.2 were briefly mentioned in [6] without any
proofs. There is a misprint on page 291, line 14 of [6]. The statement(w) is a real
unit...” should be replaced by “.Z2¢3(w) is a real unit....”

From Corollary 5.2, we deduce the following theorem.

Theorem 5.3. Let
2F1(3, 3: L, 1—an)

Fi(3 5 Len)

Jn=

Thena, 1 is an algebraic integer for every positive integer n.

Proof: From (4.7) we deduce that

2
(&) o8 () +4e2 =0 (5.6)

an Qn

By Corollary 5.2(i), (i) and (iii), we find thaG2# is an algebraic integer whemis odd.
Hence, by (5.6)¢,; ! is an algebraic integer whemis odd.

By Corollary 5.2(iv) and (4.9), we conclude that? is a unit whenn = 2 (mod 4.
In order to complete the proof of the theorem, it remains to showdthais a unit when
n = 0 (mod 4.

Letm = 41, 2 (mod 4 andk be a positive integer. We will show by induction thgt!
is a unit whem = 4m. Sincea,,! is an algebraic integer whent4n, we conclude from
(4.12) thatugn, is a unit. This proves the cake= 1.

Now, supposee;k}lm is an algebraic integer. Then applying (4.12) again, we conclude

thata;kfn is an algebraic integer. This completes the proof of the theorem. |
Combining (4.1) and Theorems 5.3 and 2.1(v), we deduce the following corollary.

Corollary 5.3.  For every positive integer,nH (+e 7v"2) is a unit.
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