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1. Introduction

Let

(a; q)∞ :=
∞∏

n=0

(1 − aqn)

and let the Ramanujan-G¨ollnitz-Gordon continued fraction be defined as

H(q) := q
1
2

1 + q +
q2

1 + q3 +
q4

1 + q5 +
q6

1 + q7 + · · · , |q| < 1.

On page 229 of his second notebook [13], Ramanujan recorded a product representation of
H(q), namely,

H(q) = q
1
2

(q; q8)∞(q7; q8)∞
(q3; q8)∞(q5; q8)∞

. (1.1)

Without any knowledge of Ramanujan’s work, G¨ollnitz [10] and Gordon [11] rediscovered
and proved(1.1) independently. Shortly thereafter, Andrews [1] proved (1.1) as a corollary
of a more general result.
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In addition to (1.1), Ramanujan offered two other identities [13, p. 229] forH(q):

1

H(q)
− H(q) = ϕ(q2)

q1/2ψ(q4)
(1.2)

and

1

H(q)
+ H(q) = ϕ(q)

q1/2ψ(q4)
, (1.3)

where

ϕ(q) :=
∞∑

k=−∞
qk2

and

ψ(q) :=
∞∑

k=0

qk(k+1)/2.

Proofs of identities (1.2) and (1.3) can be found in Berndt’s book [3, p. 221].
In this paper, we will establish several identities which will give us a better understand-

ing of H(q). Some of these identities are motivated by identities involving the Rogers-
Ramanujan continued fraction [4]

F(q) := q
1
5

1 +
q

1 +
q2

1 +
q3

1 + · · ·
and Ramanujan’s cubic continued fraction [7]

G(q) = q
1
3

1 +
q + q2

1 +
q2 + q4

1 +
q3 + q6

1 + · · · .

In Section 2, we will develop some basic identities satisfied byH(q). These identities
are proved by using (1.1) and some elementary theta-functions identities. In particular, we
will reprove (1.2) and (1.3) by an approach slightly different from that in [3]. Then, by
using these identities, we are able to establish relations betweenH(q) and H(−q), and
H(q) andH(q2).

Let, as customary,

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
,

where(a)k = (a)(a+1) · · · (a+k−1), and|z| < 1. We say that themodulusβ has degree
n over themodulusα when

2F1
(

1
2, 1

2; 1; 1 − β
)

2F1
(

1
2, 1

2; 1; β
) = n

2F1
(

1
2, 1

2; 1; 1 − α
)

2F1
(

1
2, 1

2; 1; α
) . (1.4)
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A modular equation of degree nis a relation betweenα andβ which is induced by (1.4).
In Section 3, we will prove an important theorem which will allow us to deduce relations
betweenH(q) andH(qn) from modular equations of degreen and vice versa. In particular,
we will use this theorem to obtain relations betweenH(q) and the two continued fractions
H(q3) andH(q4).

In Section 4, we will establish some explicit formulas for evaluatingH(e−π
√

n/2) in terms
of Ramanujan-Weber class invariants. Using these formulas, we derive many numerical
continued fractions. One such example, which first appeared in [10, (2.32)], is

H(e−π ) =
√

4 + 2
√

2 −
√

3 + 2
√

2.

Observe thatH(e−π ) is a unit. In fact, in the final section, we will show thatH(±e−π
√

n/2)

is a unit when n is a positive integer. This is an analogue of a result recently established by
Berndt et al. [4], which states thatF(e−π

√
n) is a unit when n is a positive rational number.

We conclude this introduction with the remark that the results established forH(q) are
also valid for

H1(q) := q
1
2

1 +
q + q2

1 +
q4

1 +
q3 + q6

1 +
q8

1 + · · · .

This follows from the identities (1.1) and

H1(q) = q
1
2

(q; q8)∞(q7; q8)∞
(q3; q8)∞(q5; q8)∞

, (1.5)

which was stated by Ramanujan [13, p. 290; 14, p. 44] and first proved by Selberg [15].
Other proofs of (1.5) have also been given by Andrews [2] and Ramanathan [12].

2. Some identities satisfied byH(q)

Let

f (a, b) :=
∞∑

k=−∞
ak(k+1)/2bk(k−1)/2, |ab| < 1.

By Jacobi’s triple product identity, we have [3, p. 35, Entry 19]

f (a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (2.1)

Using (2.1), we rewrite (1.1) as

H(q) = q
1
2

f (−q, −q7)

f (−q3, −q5)
. (2.2)



              

P1: PMR/ASH P2: PMR/ASH P3: PMR/ASH QC: PMR

THE RAMANUJAN JOURNAL KL380-06-Chan December 17, 1996 15:10

78 CHAN AND HUANG

Theorem 2.1.

H2(q) = ϕ(q) − ϕ(q2)

ϕ(q) + ϕ(q2)
,(i)

H−1(q) − H(q)

H−1(q) + H(q)
= ϕ(q2)

ϕ(q)
,(ii)

H−2(q) − H2(q) = ϕ(q)ϕ(q2)

qψ2(q4)
,(iii)

H−1(q) − H(q) = ϕ(q2)

q1/2ψ(q4)
,(iv)

and

H2(q)H2(−q) = −H2(q2).(v)

Proof of (i): We recall from [3, p. 51] that

ϕ(−q) + ϕ(q2) = 2
f 2(q3, q5)

ψ(q)
(2.3)

and

ϕ(−q) − ϕ(q2) = −2q
f 2(q, q7)

ψ(q)
. (2.4)

Dividing (2.4) by (2.3), and replacingq by −q, we find that

q
f 2(−q, −q7)

f 2(−q3, −q5)
= ϕ(q) − ϕ(q2)

ϕ(q) + ϕ(q2)
.

The result follows by (2.2). 2

Proof of (ii): We first rewrite Theorem 2.1(i) as

H2(q) =
1 − ϕ(q2)

ϕ(q)

1 + ϕ(q2)

ϕ(q)

. (2.5)

Sinceb = 1−a
1+a is equivalent toa = 1−b

1+b , we find that

1 − H2(q)

1 + H2(q)
= ϕ(q2)

ϕ(q)
,

by (2.5), and this clearly implies Theorem 2.1(ii). 2
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Proof of (iii): We recall from [3, p. 40, Entry 25(v), (vi)] that

ϕ2(q) + ϕ2(−q) = 2ϕ2(q2) (2.6)

and

ϕ2(q) − ϕ2(−q) = 8qψ2(q4). (2.7)

By Theorem 2.1(i) and (2.6), we deduce that

H−2(q) − H2(q) = ϕ(q) + ϕ(q2)

ϕ(q) − ϕ(q2)
− ϕ(q) − ϕ(q2)

ϕ(q) + ϕ(q2)
= 4ϕ(q)ϕ(q2)

ϕ2(q) − ϕ2(q2)

= 4ϕ(q)ϕ(q2)

ϕ2(q) − ϕ2(q) + ϕ2(−q)

2

= 8ϕ(q)ϕ(q2)

ϕ2(q) − ϕ2(−q)
. (2.8)

Using (2.7), we simplify (2.8) to obtain

H−2(q) − H2(q) = ϕ(q)ϕ(q2)

qψ2(q4)
,

which is Theorem 2.1(iii). 2

Proof of (iv): By Theorem 2.1(ii) and (iii), we have

(H−1(q) − H(q))2 = (H−2(q) − H2(q))
H−1(q) − H(q)

H−1(q) + H(q)

= ϕ(q)ϕ(q2)

qψ2(q4)

ϕ(q2)

ϕ(q)
= ϕ2(q2)

qψ2(q4)
. (2.9)

Taking square roots on both sides of (2.9), we deduce Theorem 2.1(iv). 2

Proof of (v): From [3, p. 46, Entry 30(iv)], we have

f (a, b) f (−a, −b) = f (−a2, −b2)ϕ(−ab). (2.10)

By (2.2) and (2.10), we deduce that

H2(q)H2(−q) = − q2

(
f (−q, −q7) f (q, q7)

f (−q3, −q5) f (q3, q5)

)2

= − q2

(
f (−q2, −q14)ϕ(−q8)

f (−q6, −q10)ϕ(−q8)

)2

= −H2(q2).

This completes the proof of Theorem 2.1(v). 2
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By using Theorem 2.1, we can find relations betweenH(q) andH(−q), andH(q) and
H(q2).

Theorem 2.2. Let u = H(q), v = H(−q), andw = H(q2). Then

(
1

u
− u

)2

+
(

1

v
− v

)2

= 0(i)

and

u2 = w
1 − w

1 + w
.(ii)

Proof of (i): Squaring both sides of the identity (iv) in Theorem 2.1, we arrive at

(
1

u
− u

)2

= ϕ2(q2)

qψ2(q4)
. (2.11)

Replacingq by −q in (2.11), we find that

(
1

v
− v

)2

= − ϕ2(q2)

qψ2(q4)
. (2.12)

Adding (2.11) and (2.12), we complete the proof. 2

Proof of (ii): We first rewrite (i) as

(
1

u
− u

)2

= − 1

v2
+ 2 − v2. (2.13)

From (2.13) and Theorem 2.1(v), we have

(
1

u
− u

)2

=
(

u

w

)2

+ 2 +
(

w

u

)2

. (2.14)

Simplifying (2.14), we obtain

1

u
− u = u

w
+ w

u
,

which yields the desired result, after some simple manipulations. 2
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3. Modular equations of degreen and relations betweenH(q) and H(qn)

Theorem 3.1. If

q = exp

(
−π

2F1
(

1
2, 1

2; 1; 1 − α
)

2F1
(

1
2, 1

2; 1; α
) )

, (3.1)

then (
H−1(

√
q) − H(

√
q)

2

)4

= 1

α
. (3.2)

Proof: If we replaceq by
√

q in Theorem 2.1(iv), divide both sides by 2, and then raise
both sides to the fourth power, we find that(

H−1(
√

q) − H(
√

q)

2

)4

= ϕ4(q)

16qψ4(q2)
. (3.3)

On the other hand, we recall from [3, p. 40, Entry 25(vii)] that

ϕ4(q) − ϕ4(−q) = 16qψ4(q2). (3.4)

Substituting (3.4) into (3.3), we find that(
H−1(

√
q) − H(

√
q)

2

)4

= ϕ4(q)

ϕ4(q) − ϕ4(−q)
= 1

1 − ϕ4(−q)

ϕ4(q)

. (3.5)

From [3, p. 100, Entry 5], we know that the identity (3.1) implies that

α = 1 − ϕ4(−q)

ϕ4(q)
. (3.6)

Combining (3.6) and (3.5), we complete the proof. 2

Now, letα andq be related by (3.1). Ifβ has degreen overα, then Theorem 3.1 gives us(
H−1(qn/2) − H(qn/2)

2

)4

= 1

β
. (3.7)

Hence, by (3.2), (3.7), and any given modular equation of degreen, we can obtain a relation
betweenH(

√
q) andH(qn/2). Replacingq by q2 will then yield a relation betweenH(q)

andH(qn). We illustrate these ideas withn = 3 and 4.

Corollary 3.2. Let u = H(q), v = H(q3), andw = H(q4). Then

3uv(1 − uv)(u + v) + (u3 − v)(1 + uv3) = 0(i)
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and

u =

√√√√√(
2w(1 − w)

1 + w2

)2

+ w(1 − w)

1 + w
− 2w(1 − w)

1 + w2
.(ii)

Proof of (i): Let

x := H(
√

q) and y := H(q3/2),

whereq is given by (3.1). Whenβ has degree 3 overα, we have [3, p. 231, Entry 5(xiii)](
β

α

)1/4

−
(

α

β

)1/4

= 2((αβ)1/8 − (αβ)−1/8). (3.8)

By Theorem 3.1, (3.8) is equivalent to

x−1 − x

y−1 − y
− y−1 − y

x−1 − x
= 2

(
2√

(x−1 − x)(y−1 − y)
−

√
(x−1 − x)(y−1 − y)

2

)
. (3.9)

UsingMathematica, we simplify (3.9) to arrive at

(x4y3 − 3x3y2 + x3 − 3x2y3 + 3x2y − xy4 + 3xy2 − y)

× (x3y4 − 3x2y3 + y3 − 3x3y2 + 3xy2 − x4y + 3x2y − x) = 0.

The second factor in the product is a non-zero function when|q| → 0, since there is only
one termx with leading termq1/4. Hence, we conclude that

x4y3 − 3x3y2 + x3 − 3x2y3 + 3x2y − xy4 + 3xy2 − y = 0,

i.e.,
3xy(1 − xy)(x + y) + (x3 − y)(1 + xy3) = 0.

Replacingq by q2, we complete the proof. 2

Proof of (ii): Whenβ has degree 4 overα, we have [3, p. 215, Eq. (24.22)]

√
β =

(
1 − (1 − α)1/4

1 + (1 − α)1/4

)2

.

Replacingα by 1− β andβ by 1− α, we arrive at another modular equation of degree 4,
which is

√
1 − α =

(
1 − β1/4

1 + β1/4

)2

, (3.10)

by [3, p. 216, Entry 24(v)].
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If

q2 = exp

(
−π

2F1
(

1
2, 1

2; 1; 1 − α
)

2F1
(

1
2, 1

2; 1; α
) )

,

then, by Theorem 3.1, we deduce that(
u−1 − u

2

)4

= 1

α
(3.11)

and (
w−1 − w

2

)4

= 1

β
. (3.12)

Squaring both sides of (3.10) and combining it with (3.11) and (3.12), we find that

1 −
(

2

u−1 − u

)4

=
(

w−1 − w − 2

w−1 − w + 2

)4

. (3.13)

Upon simplifying (3.13) usingMathematica, we arrive at

(u4w3 + u4w2 + u4w + u4 − 4u2w3 + 4u2w + w4 − w3 + w2 − w)

× (1 + u4w4 − u4w3 + u4w2 − u4w − 4u2w3 + 4u2w + w3 + w2 + w) = 0.

Clearly, the second factor in the product does not vanish when|q| → 0. Therefore,

u4w3 + u4w2 + u4w + u4 − 4u2w3 + 4u2w + w4 − w3 + w2 − w = 0. (3.14)

Rearranging (3.14), we find that

(w + 1)(w2 + 1)u4 − 4w(w − 1)(w + 1)u2 + w(w − 1)(w2 + 1) = 0. (3.15)

By regarding (3.15) as a quadratic equation ofu2, we conclude that

u2 = −2w(1 − w)

1 + w2
+

√(
2w(1 − w)

1 + w2

)2

+ w(1 − w)

1 + w
, (3.16)

where the+ sign in front of the radical is verified by letting 0< q < 1. Finally, taking the
square roots on both sides of (3.16) yields the result. 2

4. Explicit formulas for the evaluations of H(q)

Let qn := e−π
√

n, and let the corresponding value ofα in (3.1) be denoted byαn;
√

αn is
called a singular modulus. Then, by applying Theorem 3.1 and solving (3.2) forH(qn), we
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have

H(e−π
√

n/2) =

√√√√√
1

αn
+ 1 −

√√√√√
1

αn
. (4.1)

It is known from [3, p. 97] thatα1 = 1/2, α2 = (
√

2 − 1)2, andα4 = (
√

2 − 1)4. Hence,
by using (4.1), we deduce that

H(e−π/2) =
√√

2 + 1 −
√√

2, (4.2)

H(e−π/
√

2) =
√√

2 + 2 −
√√

2 + 1, (4.3)

and

H(e−π ) =
√

4 + 2
√

2 −
√

3 + 2
√

2. (4.4)

In fact, more values ofH(q) can be obtained simply by using (4.1) and known values of
αn [5]. But this process does not always give us elegant radicals for the values ofH(q).
Hence, we require another expression for the right hand side of (4.1).

Theorem 4.1. Let the Ramanujan-Weber class invariants be defined by

Gn := 2−1/4qn
−1/24

(−qn; q2
n

)
∞ (4.5)

and

gn := 2−1/4qn
−1/24

(
qn; q2

n

)
∞, (4.6)

where qn = e−π
√

n, and set p= G12
n and p1 = g12

n . Then

H(e−π
√

n/2) =
√√

p(p + 1) +
√

p(p − 1) + 1 −
√√

p(p + 1) +
√

p(p − 1)(i)

=
√

p1 +
√

p2
1 + 1 + 1 −

√
p1 +

√
p2

1 + 1

and

H(e−π
√

n) =
√(√

p + 1 + √
p
)2(√

p +
√

p − 1
)2 + 1(ii)

− (√
p + 1 + √

p
)(√

p +
√

p − 1
)

=
(√√

p(p + 1) +
√

p(p − 1) + 1 −
√√

p(p + 1) +
√

p(p − 1)

)
×

(√√
p(p + 1) +

√
p(p − 1) −

√√
p(p + 1) +

√
p(p − 1) − 1

)
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=
(√

p1 +
√

p2
1 + 1 + 1 −

√
p1 +

√
p2

1 + 1

)

×
(√

p1 +
√

p2
1 + 1 −

√
p1 +

√
p2

1 + 1 − 1

)
.

Proof of (i): Since [5]

Gn = (4αn(1 − αn))
−1/24 , (4.7)

we deduce that
1

αn
= (√

p(p + 1) +
√

p(p − 1)
)2

. (4.8)

Using (4.8) in (4.1), we obtain the first equality of (i).
Next, from [5],

1√
αn

− √
αn = 2g12

n . (4.9)

Hence,
1√
αn

= p1 +
√

p2
1 + 1. (4.10)

From (4.10) and (4.1), we deduce the second equality. 2

Proof of (ii): By (4.7) and (4.8), we deduce that

1

1 − αn
= (√

p(p + 1) −
√

p(p − 1)
)2

. (4.11)

From [3, p. 213, Eq. (24.12)], (4.8) and (4.11),

α4n =


√√√√√

1

αn
−

√√√√√
1

αn
− 1


4

= (√
p + 1 +

√
p − 1

)4
(√

p −
√

p + 1 + √
p − 1

2

)4

= (√
p + 1 − √

p
)4(√

p −
√

p − 1
)4

. (4.12)

Using (4.12) in (4.1), we obtain the first equality of (ii). Next, from Theorem 2.2(i) and
(3.2), we observe that

H(−e−π
√

n/2) = −i


√√√√√

1

αn
−

√√√√√
1

αn
− 1

 . (4.13)
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Using (4.1), (4.13) and Theorem 2.1(v), we obtain

H(e−π
√

n) =


√√√√√

1

αn
+ 1 −

√√√√√
1

αn




√√√√√
1

αn
−

√√√√√
1

αn
− 1

 . (4.14)

Substituting (4.8) and (4.10) into (4.14), respectively, we arrive at the second and third
equalities of (ii). 2

Examples. Let n = 1. SinceG1 = 1, Theorem 4.1 yields(4.2) and(4.4). Let n = 2.
Sinceg2 = 1 [16, p. 721], Theorem 4.1 gives(4.3) and

H(e−π
√

2) =
(√√

2 + 2 −
√√

2 + 1

) (√√
2 + 1 −

√√
2

)
.

Whenn = 3, G12
3 = 2 [16, p. 721] and hence,

H(e−π
√

3/2) =
√√

6 +
√

2 + 1 −
√√

6 +
√

2

and

H(e−π
√

3) =
√(√

3 +
√

2
)2(√

2 + 1
)2 + 1 − (√

3 +
√

2
)(√

2 + 1
)

=
(√√

6 +
√

2 + 1 −
√√

6 +
√

2

) (√√
6 +

√
2 −

√√
6 +

√
2 − 1

)
.

It is clear that the continued fractions we discovered are all units. It is therefore natural
to conjecture thatH(e−π

√
n/2) is a unit whenn is a positive integer. To prove this, by (4.1),

it suffices to show that 1/αn is an algebraic integer for each positive integern.

5. H(±e−π
√

n/2) is a unit whenn is a positive integer

We first recall some basic definitions from algebraic number theory. Anorder O f with
conductor f in a quadratic fieldK is a subsetO f ⊂ K such that
(i) O f is a subring ofK containing 1,
(ii) O f is a finitely generatedZ-module,

(iii) O f contains aQ-basis ofK , and
(iv) [OK : O f ] = f ,
whereOK = O1 is the ring of integers ofK .

If α1 andα2 generate anO f -ideal aO f
overZ, we say that [α1, α2] is a basis ofaO f

.
An idealaO f

is said to beproper if aO f
is coprime to f . For more details on orders of an

imaginary quadratic field, we refer the reader to [8].
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If η is an algebraic integer anda is anOK ideal, we writeη ≈ a to mean thatηOÄ = aOÄ

in some large number fieldÄ. Similarly, if η1 andη2 are algebraic integers, we writeη1 ≈ η2

to mean thatη1/η2 is a unit.

Theorem 5.1. Suppose p is a prime such that pt‖ f , where f is a positive integer. Let
a, b, c and d be integers, and P := (

a b
c d) be a matrix with determinant p and1(τ) =

q(q; q)24
∞, where q= e2π i τ , with Im(τ ) > 0. Define

ϕP(τ ) = p12
1

(
P

(
τ1

τ2

))
1

(
τ1

τ2

) , (5.1)

whereτ = τ1
τ2

and1( τ1
τ2

) = τ−12
2 1(τ). Let [α1, α2] be a basis of a properO f -ideal aO f

and setα = α1
α2

. The action of P on the basis[α1, α2] is defined as

P[α1, α2] := [aα1 + bα2, cα1 + dα2].

1. When p splits completely in K, namely p= pp̄, then
(1.1) ϕP(α) is a unit if P[α1, α2] is a basis of a properO f p-ideal,
(1.2) ϕP(α) ≈ p12 if P[α1, α2] is a basis of a properO f p−1-ideal, and

(1.3) if p - f, thenϕP(α) ≈ p̄
12 andϕP(α) ≈ p12 when P[α1, α2] is a basis ofaO f

pO f

and P[α1, α2] is a basis ofaO f
p̄O f

, respectively.

2. When p ramifies in K , namely p= p2, then
(2.1) ϕP(α) ≈ p6/pt+1

if P[α1, α2] is a basis of a properO f p-ideal,
(2.2) ϕP(α) ≈ p12−6/pt

if P[α1, α2] is a basis of a properO f p−1-ideal, and
(2.3) ϕP(α) ≈ p6 if P[α1, α2] is a basis ofaO f

pO f
.

3. When p is inert in K, then
(3.1) ϕP(α) ≈ p12/pt (p+1) if P[α1, α2] is a basis of a properO f p-ideal, and

(3.2) ϕP(α) ≈ p12(1−1/pt−1(p+1)) if P[α1, α2] is a basis of a properO f p−1-ideal.

Proof: See [9, p. 43]. 2

Corollary 5.2. Let the Ramanujan-Weber class invariants be defined by(4.5) and(4.6).
Then
(i) for n ≡ 1 (mod 4), Gn is a unit,
(ii) for n ≡ 3 (mod 8), 2−1/12Gn is a unit,

(iii) for n ≡ 7 (mod 8), 2−1/4Gn is a unit, and
(iv) for n ≡ 2 (mod 4), gn is a unit.

Proof: Throughout the proof, we will assume thatn = f 2d, whered is squarefree. We
will also let K = Q(

√−d).
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(i) Whenn ≡ 1 (mod 4), d ≡ 1 (mod 4), OK = Z[
√−d] and(2) = p2 ramifies inOK .

Let [
√−n, 1] be a basis ofO f andP = (

1 f
0 2 ). SinceP[

√−n, 1] = [
√−n + f, 2] is

a basis ofpO f , we deduce from Theorem 5.1(2.3) that

ϕP(
√−n) ≈ 26. (5.2)

By (5.2), (5.1) and observing thatf is odd, we conclude that

2−61
(√−n+1

2

)
1

(√−n
) (5.3)

is a unit, which implies the desired result, since (5.3) reduces to−G24
n by using the

definition of1 appeared in Theorem 5.1 and (4.5).
(ii) When n ≡ 3 (mod 8), d ≡ 3 (mod 8), OK = Z[ 1+√−d

2 ] and (2) is inert inOK . Let
[
√−n + f, 1] be a basis of aO2 f -ideal andP = (

1 0
0 2). SinceP[

√−n + f, 1] is a
basis of aO f -ideal, we conclude that

ϕP(
√−n + f ) ≈ 28,

by Theorem 5.1(3.2). Now, by a similar argument as in (i), we obtain

(21/4Gn)
24 ≈ 28,

which implies that 2−1/12Gn is a unit.
(iii) When n ≡ 7 (mod 8), d ≡ 7 (mod 8), OK = Z

[ 1+√−d
2

]
and(2) splits completely in

OK . Let [
√−n+ f, 1] be a basis of aO2 f -ideal andP = (

1 0
0 2). SinceP[

√−n+ f, 1]
is a basis of aO f -ideal, we find that

ϕP(
√−n + f ) ≈ 212,

by Theorem 5.1(1.2). Therefore, 2−1/4Gn is a unit by (4.5) and (5.1).
(iv) Whenn ≡ 2 (mod 4), d ≡ 2 (mod 4), OK = Z[

√−d] and(2) = p2 ramifies inOK .
Let [

√−n, 1] be a basis ofO f andP = (
1 0
0 2). ThenP[

√−n, 1] is a basis ofpO f . By
Theorem 5.1(2.3), we deduce that

ϕP(
√−n) ≈ 26. (5.4)

Hence, by (5.4) and (5.1), we find that

1
(√−n

2

)
1

(√−n
) ≈ 26, (5.5)

which implies thatgn is a unit, since the left hand side of (5.5) reduces to 26g24
n by the

definition of1 and (4.6). This completes the proof of the corollary. 2
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Remarks. The results given in Corollary 5.2 were briefly mentioned in [6] without any
proofs. There is a misprint on page 291, line 14 of [6]. The statement “...σ 3(ω) is a real
unit...” should be replaced by “...2−1σ 3(ω) is a real unit....”

From Corollary 5.2, we deduce the following theorem.

Theorem 5.3. Let

√
n = 2F1

(
1
2, 1

2; 1; 1 − αn
)

2F1
(

1
2, 1

2; 1; αn
) .

Thenαn
−1 is an algebraic integer for every positive integer n.

Proof: From (4.7) we deduce that(
1

αn

)2

− 4G24
n

(
1

αn

)
+ 4G24

n = 0. (5.6)

By Corollary 5.2(i), (ii) and (iii), we find thatG24
n is an algebraic integer whenn is odd.

Hence, by (5.6),α−1
n is an algebraic integer whenn is odd.

By Corollary 5.2(iv) and (4.9), we conclude thatα−1
n is a unit whenn ≡ 2 (mod 4).

In order to complete the proof of the theorem, it remains to show thatα−1
n is a unit when

n ≡ 0 (mod 4).
Let m ≡ ±1, 2 (mod 4) andk be a positive integer. We will show by induction thatα−1

n
is a unit whenn = 4km. Sinceα−1

m is an algebraic integer when 4- m, we conclude from
(4.12) thatα4m is a unit. This proves the casek = 1.

Now, supposeα−1
4k−1m is an algebraic integer. Then applying (4.12) again, we conclude

thatα−1
4km is an algebraic integer. This completes the proof of the theorem. 2

Combining (4.1) and Theorems 5.3 and 2.1(v), we deduce the following corollary.

Corollary 5.3. For every positive integer n, H(±e−π
√

n/2) is a unit.
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