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Abstract

By modifying a domain first suggested by Ruth Goodman in 1945 and by exploiting the explicit solution by Fedorov of
the Pólya–Chebotarev problem in the case of four symmetrically placed points, an improved upper bound for the univalent
Bloch–Landau constant is obtained. The domain that leads to this improved bound takes the form of a disk from which some
arcs are removed in such a way that the resulting simply connected domain is harmonically symmetric in each arc with respect
to the origin. The existence of domains of this type is established using techniques from conformal welding, and some general
properties of harmonically symmetric arcs in this setting are established.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

En modifiant un domaine comme l’a suggéré Ruth Goodman en 1945 et en utilisant la solution explicite de Fédorov du problème
de Pòlya–Chebotarev dans le cas de quatre points symétriques, on obtient une meilleure borne supérieure de la constante de
Bloch–Landau univalente. Le domaine qui conduit à cette amélioration a la forme d’un disque auquel on a retiré quelques arcs
de telle sorte que le domaine restant, simplement connexe, soit harmonique par rapport à l’origine. L’existence de domaines de
ce type est établie en utilisant des techniques de soudure conforme ; dans ce contexte on démontre quelques propriétés des arcs
symétriques.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. The univalent Bloch–Landau constant and harmonic symmetry

We write RD for the supremum radius of all disks contained in a planar domain D, this geometric quantity being
known as the inradius of the domain. We write D for the disk with centre zero and radius one in the complex plane.
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Fig. 1. The domain D0 and the extremal disks.

Let us suppose that f is a univalent map of the unit disk D. There is a number U , independent of f , such that

Rf (D) � U
∣∣f ′(0)

∣∣. (1.1)

Thus the image of the unit disk under any univalent map f of D contains some disk of every radius less than U |f ′(0)|.
The number U , known as the univalent or schlicht Bloch–Landau constant, is the largest number for which (1.1)
holds, in that if U > U then there is a conformal mapping f of the unit disk for which f (D) contains no disk of
radius U |f ′(0)|. This constant was introduced in 1929 by Landau [14], following on from Bloch’s famous paper [6]
of a few years earlier. It is a consequence of the Koebe one-quarter theorem that U � 1/4. Landau himself proved
U > 0.566 in [14]. Laudau’s estimate for U was improved by Reich [17] (U > 0.569), Jenkins [11] (U > 0.5705),
Toppila [20] (U > 0.5708), Zhang [22] and Jenkins [13] (U > 0.57088). Most recently, Xiong [21] has proved that
U > 0.570884. Over the years, several domains have been put forward that provide upper bounds for U , among them
those of Robinson [18] (U < 0.658) in 1935, Goodman [9] (U < 0.65647) in 1945 and, most recently, Beller and
Hummel [3] (U < 0.6564155) in 1985. Our first result is an improved upper bound for U .

Theorem 1. There is a simply connected domain D0 that has inradius 1, and a conformal map f of the unit disk D
onto D0 for which

U � 1

|f ′(0)| � 0.6563937.

The significance of this result is not so much the numerical improvement in the upper bound for U , but rather the
shape of the domain that produced it, which is shown in Fig. 1.

We may write:

U = inf

{
Rf (D)

|f ′(0)| : f is univalent in D and f (0) = 0

}
. (1.2)

This infimum is attained. If f is univalent in D with f (0) = 0, f ′(0) = 1, and if Rf (D) = U , then f is a Bloch function
of the third kind and the domain D = f (D) is said to be an extremal domain for the inequality (1.1). A proof that
extremal domains exist was first written down explicitly by Robinson [19]. Jenkins [13] has proved that an extremal
domain must contain an extremal disk, that is, a disk of radius U . In [12], Jenkins described a condition that any
extremal domain for the univalent Bloch–Landau inequality (1.1) must satisfy. This condition was extended by the
first author in [7]. In order to describe this more general condition, we need the notion of harmonic symmetry.

A simple C 1 arc γ is said to be an internal boundary arc for a domain D if γ is part of the boundary of D and if,
to each non-endpoint ζ of γ , there corresponds a positive ε such that the disk with centre ζ and radius ε is part of
D ∪ γ . In the case that D is simply connected, each non-endpoint ζ of the arc γ corresponds to two prime ends of D
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and each has a Poisson kernel associated with it, which we denote by P1(ζ, z) and P2(ζ, z). For z0 in D, we say that
D is harmonically symmetric in γ with respect to z0, if

P1(ζ, z0) = P2(ζ, z0) whenever ζ is a non-endpoint of γ.

For example, if D = D \ γ then D is harmonically symmetric in the arc γ with respect to 0 if and only if γ = [r,1]
for some r in (0,1), up to rotation. More generally, if γ is an internal boundary arc for D and if also D ∪ γ is simply
connected then D is harmonically symmetric in γ with respect to z0 if and only if γ is in a geodesic arc through z0 in
the hyperbolic metric for D ∪ γ . This can be seen by conformally mapping D ∪ γ onto D so that z0 corresponds to 0
and γ corresponds to an arc γ̃ , and then using the conformal invariance of the Possion kernel to conclude that D \ γ̃

is harmonically symmetric in γ̃ with respect to 0.
The extension of Jenkins’ condition in [7] shows that there is a close relationship between the univalent

Bloch–Landau constant and harmonic symmetry.

Theorem. Suppose that D is an extremal domain for the univalent Bloch–Landau constant. Suppose that γ is an
internal boundary arc for D, no point of which lies on the boundary of an extremal disk. Then D is harmonically
symmetric in γ with respect to 0.

The domains that were constructed in [18,9,3] in order to obtain upper bounds for U are essentially disks with
radial slits removed. The above extremality condition suggests how these domains might be modified so as to make
them closer to being extremal, and in turn leads to Theorem 1.

Harmonic symmetry arises in connection with problems other than the determination of extremal domains for the
univalent Bloch–Landau inequality. It previously appeared in the work of Betsakos [4, Proposition 2.1] in relation
to another extremal problem, that of maximizing |f ′(0)| over the family of all conformal maps f of the unit disk,
with f (0) = 0, onto simply connected subdomains of the unit disk whose complement must contain some specified
points. But the idea goes back much further than this, to Lavrentiev [15] and Grötzsch [10], in the context of the
Pólya–Chebotarev problem [16] that consists in determining the continuum that has minimal capacity and that contains
a given finite set of points in C. In Lavrentiev’s formulation of harmonic symmetry, the preimage of each subarc of
an internal boundary arc of the simply connected domain D, under a conformal map of the disk onto D under which
0 corresponds to z0 in D, will comprise of two arcs of equal length on the unit circle. Thus the two ‘sides’ of each
subarc of the internal boundary arc have the same harmonic measure at z0. This is also the formulation adopted in [7].

In our second main result we study domains formed when the disk is slit along simple arcs in such a way that the
resulting domain is simply connected and is harmonically symmetric in each arc with respect to 0. We show that the
harmonic measure of each arc may be specified, together with the harmonic measures between the endpoints of the
arcs on the unit circle. To be precise, we consider families Γ consisting of a finite number of simple arcs that do not
intersect, do not pass through the origin, and lie inside the unit disk D except for one endpoint of each arc that lies
instead on the unit circle. For the purposes of this paper, we call such a family of arcs ‘admissible’. We associate with
Γ the domain D(Γ ) that is the complement of the traces of the arcs in the family, so that D(Γ ) is a simply connected
domain containing 0. Our second result concerns the problems of existence and uniqueness in this context. Together
with a conformal mapping of the unit disk, it can be used to introduce harmonically symmetric slits in more general
simply connected domains.

Theorem 2. Suppose that n positive numbers a1, a2, . . . , an and n non-negative numbers b1, b2, . . . , bn are specified
with,

n∑
k=1

ak < 1 and
n∑

k=1

ak +
n∑

k=1

bk = 1.

There is an admissible family of real analytic arcs Γ = {γ1, γ2, . . . , γn} such that

(T2.1) each arc γk has harmonic measure ak at 0 with respect to D(Γ ),
(T2.2) the domain D(Γ ) is harmonically symmetric in each arc γk with respect to 0,
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Fig. 2. The first two stages of Goodman’s domain.

(T2.3) the endpoints of the arcs on the unit circle, which we denote by ζ1, ζ2, . . . , ζn, respectively, are in anticlockwise
order and, moreover, the harmonic measure at 0 and with respect to D(Γ ) of the anticlockwise arc of the unit
circle from ζk to ζk+1 is bk for k = 1,2, . . . , n − 1.

This configuration is unique up to rotation.

The plan of the paper is as follows. We briefly describe Goodman’s domain and its modification by Beller and
Hummel in the next section. In Section 3, we construct the domain D0 and prove Theorem 1. In order to do so, we
use an explicit solution by Fedorov of the Pólya–Chebotarev problem in the case of four symmetrically placed points.
Theorem 2 is proved in Section 4, using techniques drawn from conformal welding. Related results on harmonic
symmetry are also established in this section.

2. Goodman’s domain and the Beller–Hummel domain

Ruth Goodman’s domain [9] is constructed in stages. The first stage consists of the removal from the plane of three
radial halflines that start from the cube roots of unity. The second stage consists of the removal of three further radial
halflines starting from two times the cube roots of −1. The domain G2 formed by the plane minus these six halflines
is shown in Fig. 2. Goodman continues the construction by, at each stage, removing radial halflines that bisect the
sectors formed by previous generations of halflines in such a way as to maintain inradius 1.

The circle C1 with unit radius and with centre P1 = (c,1), where c = 1 +
√

2
√

3 − 3, is tangent to the halfline
[1,∞] and passes through the tip 2eiπ/3 of the halfline above it. Thus the boundary of Goodman’s domain includes
a halfline with argument π/6 and one endpoint on C1, together with the successive rotations of this halfline through
an angle π/3. The modification of the Goodman domain constructed by Beller and Hummel [3] to obtain their upper
bound for U agrees with Goodman’s domain up to the second generation of halflines – indeed, it is difficult to imagine
(but apparently equally difficult to prove) that the construction of an extremal domain might begin any differently.
Their improved estimate was motivated by the observation that the circle C1 in Fig. 2 is not tangent to the halfline
with angle π/3 so that its centre does not have argument π/6. This led them to vary the angles of the third generation
of halfline slits in Goodman’s domain to find an optimal configuration of this type. In their configuration, the third
generation of slits are far from being bisectors of the six sectors in the domain G2.
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Fig. 3. Fedorov’s continuum of minimal capacity containing four specified points: 0, eiα , e−iα and c.

Fig. 4. Examples of domains Ωz0,R and Uw,R .

3. An improved upper bound for the univalent Bloch–Landau constant

Whether they suggest possible extremal domains for the Bloch–Landau constant or seek a numerical upper bound
for U , all authors start from the six-slit plane G2, as described in Section 2, and proceed by inserting further radial
halflines to divide the sectors as they widen with the aim of preserving the inradius. It is necessary to truncate at
some point when seeking an upper bound, which we do. It is now clear from [7] (see also the concluding remark in
[2]) that any new boundary arcs need to be inserted in such a way that the final domain is harmonically symmetric
in each arc. It is not clear that this can be achieved in an iterative manner, in that the insertion of later boundary arcs
may destroy the harmonic symmetry of earlier arcs. Nevertheless, at least from a computational point of view, it is
natural to begin with the domain G2 and to insert six extra arcs to obtain a domain that is harmonically symmetric
in each new arc with respect to 0 and remains symmetric under reflection, and therefore harmonically symmetric, in
each of the original six halflines that form the boundary of the domain G2. The domain we construct is of the type
shown in Fig. 4. To perform the necessary calculations, we exploit the connection between harmonic symmetry and
the Pólya–Chebotarev problem, in particular results of Fedorov [8].

3.1. Fedorov’s results on certain configurations of minimal capacity

Given α and c such that 0 < α � π/2 and 0 < c < 2 cosα, Fedorov finds the continuum E(α, c) with minimal
capacity that contains each of the points 0, c, eiα and e−iα . The typical extremal configuration is shown in Fig. 3. The
point b is determined explicitly by Fedorov in terms of c and α. Moreover the capacity of the extremal compact set is

cap
(
E(α, c)

) = (1 + p)2Θ2(0)

4cΘ2(w)
. (3.1)

Here Θ is the Jacobi Theta function [1, p. 577],

p =
√

1 − 2c cosα + c2,

w = F

(
arccos

(
1 − p

1 + p

)
; k

)
,

where

k =
√

p + 1 − c cosα

2p
,
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and the function F is an incomplete elliptic integral of the first kind, that is

F(x; k) =
x∫

0

dt

(1 − t2)(1 − k2t2)
.

3.2. The required conformal mapping

The mapping function h of the complement of a compact set E onto the complement of the closed unit disk may
be expanded as

h(z) = z

cap(E)
+ O(1), as z → ∞, (3.2)

up to rotation. This provides a link between the problem solved by Fedorov and the example that will yield an improved
upper bound for the Bloch–Landau constant, in that minimising the capacity of the set therefore corresponds to
maximising the derivative of the mapping h at infinity. Moreover, following the argument in [7], the arcs making
up the extremal configuration will be harmonically symmetric at infinity. As noted in the introduction, this latter
observation was first made by Lavrentiev [15].

We work with domains Ω = Ωz0,R as shown in Fig. 4, where R > 3, |z0| < R3, and the arc γz0 is chosen so that
Ωz0,R is harmonically symmetric in γz0 with respect to 0. If g is a conformal map of the unit disk D onto such a

domain Ωz0,R , with g(0) = 0, then f (z) = z 3
√

g(z3)

z3 is a conformal map of D onto a domain Uw,R as also shown in
Fig. 4. The arcs that appear are all harmonically symmetric, and thus the conformal mapping of the unit disk onto
Uw,R is a good candidate for having a relatively large derivative at the origin. This derivative is |f ′(0)| = 3

√|g′(0)|. In
order that this provide a useful estimate of the Bloch–Landau constant, we need to arrange for Uw,R to have inradius 1.
We leave this aside for the moment and show how to use Fedorov’s results on capacity to compute |f ′(0)| for given
z0 and R. We write k for the Koebe mapping k(z) = z/(1 − z)2 of the unit disk onto the plane slit along the negative
real axis from minus infinity to −1/4.

Proposition 1. We write f for a conformal map of the unit disk D onto Uw,R for which f (0) = 0. Then, with z0 = w3,∣∣f ′(0)
∣∣ = R

[∣∣ψ(z0) − ψ(1)
∣∣ cap

(
E(α, c)

)]−1/3
, (3.3)

where

ψ(z) = − 1

k(z/R3)
, (3.4)

and

eiα = ψ(z0) − ψ(1)

|ψ(z0) − ψ(1)| , c = ψ(−8) − ψ(1)

|ψ(z0) − ψ(1)| . (3.5)

Proof. The map

φ(z) = ψ(z) − ψ(1)

|ψ(z0) − ψ(1)| , (3.6)

where ψ is given by (3.4), maps Ωz0,R onto the complement of Fedorov’s continuum E(α, c) with α and c given
by (3.5). The harmonic symmetry of arcs is preserved because each mapping extends continuously to all internal
boundary arcs and because the domains involved are all symmetric with respect to the real axis. If h is the mapping
of the complement of E(α, c) onto the complement of the unit disk mentioned in (3.2), then a suitable mapping g of
the unit disk onto Ωz0,R , with g(0) = 0, is the inverse of the mapping 1/h(φ(z)) of Ωz0,R onto D. Now g′(0) can be
computed explicitly, in terms of z0, R and h′(∞), for example by computing the power series for g−1. One obtains:

∣∣g′(0)
∣∣ = R3 h′(∞)

|ψ(z0) − ψ(1)| . (3.7)

The value of h′(∞) is 1/cap(E(α, c)) and is given explicitly, in its turn, by Fedorov’s result (3.1). �
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Fig. 5. The choice of the point w in Proposition 2.

3.3. The choice of w and R

We know how to build, for any w and R, a conformal map f of the unit disk onto Uw,R and we have a formula for
its derivative at 0. For this to lead to an upper bound for the univalent Bloch–Landau constant, we must choose w and
R in such a way that

• The domain Uw,R has inradius one,
• The derivative |f ′(0)| is as big as possible.

Proposition 2. We suppose that R is fixed with 3 < R < 4.5. We set:

P2 = (R − 1)ei( π
3 −α) where α = arcsin

[
1/(R − 1)

]
, (3.8)

and write d = |P2 − P1|, where P1 is as in Section 2. We set θ = arccos(d/2), and

w = P1 + 1

d
e−iθ (P2 − P1). (3.9)

Then Uw,R has inradius one.

Proof. The circle C1 is the same as that shown in Fig. 2: it has centre (c,1), where c = 1+
√

2
√

3 − 3, has unit radius
and is tangent to the slit [1,R] and passes through the tip 2eiπ/3 of the slit above it. The circle C2 with centre P2, as
specified in (3.8), and of unit radius is tangent to the circle |z| = R and tangent to the halfline of argument π/3. It is
elementary to check that if R � 4.5 then d = |P2 − P1| < 2, so that these two circles meet, as in Fig. 5. The position
of the intersection point w can be computed explicitly, which results in (3.9).

Let C3 be the circle of unit radius that is tangent to the circle |z| = R and also tangent to the line segment [1,R].
Considering that w lies on its boundary, the domain Uw,R will have inradius 1 if the circle C3 contains the point w

(the position of the harmonically symmetric arc through w being irrelevant to this consideration). In fact the circles
C2 and C3 meet at points on the halfline with argument π/6. Thus w, which lies on C2, lies inside the circle C3 if it
has argument less than π/6: it is elementary to check that this is the case if R < 4.5. �
Proof of Theorem 1. With the choice R = 4.0546358 in Proposition 2, it is then the case that Uw,R has inradius 1
and Proposition 1 can be used to compute the derivative of the conformal map f of the unit disk D onto Uw,R for
which f (0) = 0. This leads to the value 0.65639361315219, correct to 10 decimal places, for the reciprocal of this
derivative, which proves Theorem 1.

For the actual picture of the domain, shown in Fig. 1, one has to draw Fedorov’s domain and transport it to Uw,R

with the inverse of the map φ given in (3.6). The key point for drawing the domain is to compute the curvilinear arc
of E(α, c). The point b is given explicitly by Fedorov [8, Formula 6]:

b(α, c) = √
p

Θ ′(w) + c
.

Θ(w) p + 1
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The quotient Θ ′(w)/Θ(w) is the Jacobi Zeta function and can be computed numerically (see Abramowitz and
Stegun [1, p. 578]). To determine the arcs that grow from b to eiα one integrates the quadratic differential equation
z′(t)2Q(z(t)) = 1, where

Q(z) = (z − b)2

z(z − c)(z2 − 2z cosα + 1)
,

[8, Formula 5] – we point out for the reader’s convenience that there is a typographic error in the referenced formula in
that the term z2 −2c cosα +1 in the denominator of the quadratic differential should read z2 −2z cosα +1: Fedorov’s
formula (14) for Q is correct. �
4. Harmonic symmetry and conformal glueing

4.1. Proof of Theorem 2

We first prove the existence of a family of arcs with the required properties, and postpone a proof of the uniqueness
statement. We begin by assuming that each bk is strictly positive.

We divide the unit circle into 2n arcs I1, J1, I2, J2, . . . , In, Jn, in anticlockwise order so that |Ik| = 2πak ,
|Jk| = 2πbk , for 1 � k � n. We write φk for the following involution; φk : Ik → Ik so that ζ and φk(ζ ) are equidistant
from the centre of Ik , but lie on opposite sides of the centre. Our goal is to produce a conformal map f of D into D,
continuous on the closure of D, that glues each of these involutions, in that

f (ζ ) = f
(
φk(ζ )

)
, ζ ∈ Ik, 1 � k � n. (4.1)

We produce a quasiconformal glueing to begin with, and then correct this to a conformal glueing in a standard way
(see, for example, [5, Remark 8]).

We divide a second unit circle into 2n equal arcs Ĩ1, J̃1, Ĩ2, J̃2, . . . , Ĩn, J̃n, in anticlockwise order. Next we construct
a quasi-symmetric homeomorphism T of the first unit circle to the second unit circle such that T (Ik) = Ĩk , T (Jk) = J̃k

for each k and T is linear on each interval Ik and Jk . By the Beurling–Ahlfors Extension Theorem, T may be extended
to a quasiconformal map of D onto D, which we again call T , with T (0) = 0.

Next we write Γ1 for the admissible family of arcs formed by the straight line segment γ̃1 = [r,1], together with
its rotations γ̃k+1 = e2πki/nγ̃1, k = 1,2, . . . , n − 1, where r is chosen so that ω(0, γ̃1;D(Γ1)) = 1/(2n). We write g

for the conformal map of D onto D(Γ1) for which g(0) = 0 and g(Ĩk) = γ̃k , for 1 � k � n. Then

S = g ◦ T

is a quasiconformal map of the unit disk onto D(Γ1). The map S extends continuously to the boundary of D. Tracing
the boundary correspondence under the mappings T , and then g, shows that it is a quasiconformal glueing of the
intervals Ik , in that

S(ζ ) = S
(
φk(ζ )

)
, ζ ∈ Ik, 1 � k � n.

By the Measurable Riemann Mapping Theorem, we can now correct S to a conformal glueing by making a quasicon-
formal map R of D onto D for which R(0) = 0, and

f = R ◦ S

is conformal. Then (4.1) holds. The arcs we are looking for are then γk = R(γ̃k), for 1 � k � n, and
Γ = {γ1, γ2, . . . , γn}. Since f is conformal and f (0) = 0, it preserves harmonic measure at 0. Thus

ω
(
0, γk;D(Γ )

) = ω
(
0, f −1(γk);D

) = ω(0, Ik;D) = ak.

This is (T2.1). Moreover, since f is a conformal glueing on the interval Ik , the domain D(Γ ) is harmonically
symmetric in γk with respect to 0, which is (T2.2). Finally, f maps each arc Jk on the unit circle onto the anti-
clockwise arc of the unit circle joining the endpoints ζk of γk and ζk+1 of γk+1 on the unit circle, so that (T2.3)
follows. The fact that the arcs are real analytic comes from the control we have on the quasiconformality of the maps
constructed.
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This construction depends continuously on the parameters ak and bk . In the limit as one or more of the parameters
bk approach zero, it leads to a configuration satisfying (T2.1), (T2.2) and (T2.3) in which two or more of the curves
have a common endpoint on the unit circle. This covers the proof of existence in all cases in Theorem 2.

We now deal with the uniqueness of the configuration we have just constructed. We let Γ 1 = {γ 1
1 , γ 1

2 , . . . , γ 1
n } and

Γ 2 = {γ 2
1 , γ 2

2 , . . . , γ 2
n } be sets of admissible arcs that satisfy (T2.1), (T2.2) and (T2.3) (with Γ replaced by Γ 1 and

by Γ 2 as necessary). We assume that the arcs in Γ 1 are real analytic, but those in Γ 2 need not be. Having set up
the intervals I1 to In and J1 to Jn as in the proof of existence, we consider conformal mappings f1 : D → D(Γ 1)

and f2 : D → D(Γ 2) with f1(0) = 0, f2(0) = 0 and with f1(Ik) = γ 1
k , f2(Ik) = γ 2

k , for each k between 1 and n.
Then f = f2 ◦ f −1

1 is a conformal map from D(Γ 1) to D(Γ 2). Moreover, f extends continuously from D(Γ 1) to D
because of the harmonic symmetry. By the regularity of the arcs in Γ 1, Morera’s Theorem is applicable and we may
deduce that f extends to a conformal self map of the disk D with f (0) = 0. Hence f is a rotation and the uniqueness
statement follows.

4.2. A variation on Theorem 2

We describe a version of Theorem 2 in which the harmonically symmetric arcs again have specified harmonic
measures, but in which one specifies the lengths, rather than the harmonic measures, of the arcs on the unit circle that
are formed by the endpoints ζk of the arcs γk . In other words, the position of the endpoints of the arcs γk on the unit
circle may be specified.

Theorem 3. Suppose that n positive numbers a1, a2, . . . , an, with
∑n

k=1 ak < 1, and n points ζ1, ζ2, . . . , ζn in
anticlockwise order on the unit circle, are specified. Then there is an admissible family of real analytic arcs
Γ = {γ1, γ2, . . . , γn} such that

(T3.1) each arc γk has harmonic measure ak at 0 with respect to D(Γ ),
(T3.2) the domain D(Γ ) is harmonically symmetric in each arc γk with respect to 0,
(T3.3) the endpoint of γk on the unit circle is ζk , for each k.

Proof. We write b for 1 − ∑n
1 ak . We consider all possible configurations in Theorem 2 in which the numbers

a1, a2, . . . , an are as specified and the non-negative numbers b1, b2, . . . , bn are allowed to vary subject to
∑n

1 bk = b.
For a permissible choice of the parameters bk , k = 1,2, . . . , n, we denote by xk the endpoint of the resulting arc
γk on the unit circle, and we write lk for the length of the anticlockwise arc of the unit circle between xk and xk+1
(with xn+1 = x1). In this way, we have a map T from the simplex,

Σ1 =
{

(b1, b2, . . . , bn): bk � 0 and
n∑
1

bk = b

}
,

to the simplex

Σ2 =
{

(l1, l2, . . . , ln): lk � 0 and
n∑
1

lk = 2π

}
,

given by T (b1, b2, . . . , bn) = (l1, l2, . . . , ln). The map T :Σ1 → Σ2 is continuous and has the key property that lk
is zero if and only if bk is zero. From this it follows that each vertex, edge, and i-face of Σ1 is mapped into the
corresponding vertex, edge, or i-face of Σ2. The proof will be complete once it is shown that the map T is onto Σ2,
for then (T3.3) will hold after a rotation if lk is chosen to be the arc length between ζk and ζk+1 on the unit circle (with
ζn+1 = ζ1).

Let us first consider any two vertices of the simplex Σ2 and the edge e joining them. The pre-images of these
vertices under T are vertices of Σ1, and the image of the edge joining these vertices lies in the edge e. By continuity
of the map, T is onto e. We can now proceed inductively. We consider an (i + 1)-face f1 of Σ1, the i-faces that bound
it, and the corresponding (i + 1)-face f2 of Σ2. Assuming that T maps each of these i-faces onto the corresponding
i-face of Σ2, it follows from the key property of T that the image of the i-faces bounding f1 has winding number
1 (mod 2) about each interior point of f2. Consequently, T is onto f2. �
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4.3. Harmonically symmetric arcs do not grow

It is natural to ask whether the harmonically symmetric arcs γk in Theorem 3 can be described by means of a
differential equation of Löwner type. As our final result, we show that this is not possible, even in the case of two
harmonically symmetric arcs. We note that if the data in Theorem 3 is symmetric with respect to the real axis then, by
construction, the resulting harmonically symmetric curves can be taken symmetric with respect to the real axis.

Theorem 4. We suppose that ζ lies on the upper half of the unit circle and that a1 and a2 lie in (0,1/2) with
a1 < a2. Theorem 3 is applied twice to construct two pairs of harmonically symmetric curves, {γ1, γ 1} and {γ2, γ 2}
respectively, the first from the data a1, a1, ζ , ζ , and the second from the data a2, a2, ζ , ζ . Then γ1 � γ2 except in the
case when ζ = i.

Proof. Let us suppose that γ1 ⊆ γ2. Since D \ {γ1 ∪ γ̄1} is harmonically symmetric in γ̄1 with respect to 0, γ̄1 is
a geodesic arc in D \ γ1. Since D \ {γ2 ∪ γ̄2} is harmonically symmetric in γ̄2 with respect to 0, γ̄2, and hence its
subarc γ̄1, is a geodesic arc in D \ γ2. Thus γ̄1 is a geodesic arc with respect to both the domain D \ γ1 and the domain
D \ γ2.

We write Γ1 for the full geodesic in D \ γ1 of which γ̄1 is a part and write Γ2 for the full geodesic in D \ γ2 of
which γ̄1 is a part. Both Γ1 and Γ2 pass through the origin. We map D \ γ1 onto the unit disk by a conformal map f1
so that Γ1 is mapped onto (−1,1) and map D \ γ2 onto the unit disk by a conformal map f2 so that Γ2 is mapped onto
(−1,1).

We consider the map g = f1 ◦ f −1
2 , which maps the unit disk into itself conformally. Moreover, g is real-

valued on f2(γ̄1), which itself is a subinterval of (−1,1). Thus g is real-valued on the entire interval (−1,1). Since
f −1

2 (−1,1) = Γ2, it then follows that

f1(Γ2) ⊆ (−1,1) = f1(Γ1),

so that

Γ2 ⊆ Γ1.

There are now two possible geometric situations to consider, depending on where the geodesic Γ2 might end (both
it and Γ1 begin at the endpoint of γ̄1 on the unit circle). Suppose that Γ2 were to end at a boundary point of D \ γ1. In
this case, Γ2 and Γ1 coincide and the final step is to recall that the harmonic measure of the boundary is split evenly
in two along a hyperbolic geodesic. Let E be that part of the boundary of the domain D \ γ2 that is bordered by the
common endpoints of Γ2 and Γ1 and does not include γ2 \ γ1. At any point P on Γ2, for example 0, the harmonic
measure of E at P with respect to D \ γ2 is 1/2 since Γ2 is a hyperbolic geodesic for D \ γ2. Since P lies on Γ1,
which is a hyperbolic geodesic for D \ γ1, E also has harmonic measure 1/2 at P with respect to D \ γ1. However,
D \ γ1 contains D \ γ2 strictly, so this is impossible. We conclude that the geodesic Γ2 must end at a point of γ2 \ γ1.

Under the map f1, the geodesic Γ1 relative to the domain D \ γ1 is mapped onto the real axis in the unit disk and
the domain D \ γ2 is mapped to the domain:

Ω = D \ [
f1(γ2 \ γ1)

]
.

The arc f1(γ2 \ γ1) begins on the unit circle and ends at an interior point of the unit disk. Moreover, f1(Γ2) is a
geodesic in Ω and is part of the real axis, and so Ω must be symmetric under reflection in the real axis. This forces
f1(γ2 \ γ1) to be part of the interval (−1,1), so that γ2 \ γ1 ⊆ Γ1. Pulling this picture back under f −1

1 , we find that

Γ1 = Γ2 ∪ (γ2 \ γ1),

so that the geodesic Γ1 of D1 = D \ {γ1 ∪ γ̄1} is an arc that joins the endpoints of γ1 and γ̄1 and that passes through 0.
Since Γ1 divides the boundary of D1 into two, each of harmonic measure 1/2 at 0, and the domain D1 is also
harmonically symmetric in both γ1 and γ̄1 with respect to 0, it follows that the two arcs of the unit circle determined
by ζ and ζ̄ have equal harmonic measure b1 = 1/2 − a1 at 0 with respect to D1. By the uniqueness statement in
Theorem 2, there is only one configuration (up to rotation) that realises the configuration in Theorem 2 with n = 2
and symmetric data a1, a1, b1, b1 and this configuration is the disk with the ends of a diameter removed. Since D1 is
symmetric in the real axis, we conclude that γ1 lies along the imaginary axis. �
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