FROM DISCRETE TO CONTINUUM:
A VARIATIONAL APPROACH

The one-dimensional case

Andrea Braides and Maria Stella Gelli

Abstract These Lecture Notes cover the course given at SISSA by AB in Spring
2000 (Chapters 1 and 2) and some general results just hinted at in the course
(Chapter 3). They include mainly results by the authors and by Chambolle, Dal
Maso, Garroni and Truskinovsky, but some results are new; e.g., Sections 1.4-1.8
(except 1.4.1 and 1.7.2), and Section 3.3.
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INTRODUCTION

In these lecture notes we treat the problem of the description of variational limits
of discrete problems in a one-dimensional setting. Given n € N we consider
energies of the general form

n n—j

Mot (FE)

j=11¢=0 n
defined on (n+1)-tuples {u; }. We may view {u; } as a discrete function defined on
a lattice covering a fixed interval [0, L] by introducing points ' = i\, (A, = L/n
is the lattice spacing) If we picture the set {#]'} as the reference configuration of
an array of material points interacting through some forces,; and let u; represent
the displacement of the i-th point, then + can be thought as the energy density
of the interaction of points with distance jA, (j lattice spacings) in the reference
lattice. Note that the only assumption we make is that ¢J depends on {u;}
through the differences w;y; — u;, but we find it more convenient to highlight its
dependence on the ‘discrete difference quotients’

UH_]' — Uy

JAn

One must not be distracted from this notation and should note the generality of
the approach.
Our goal is to describe the behaviour of problems of the form

min{En({ui}) — Zn:ulj} s ug = Uy, up = UL}

i=0

(and similar), and to show that for a quite general class of energies these problems
have a limit continuous counterpart. Here { f;} represents the external forces and
Up, Ur are the boudary conditions at the endpoints of the interval (0, L). More
general statement and different problems can be also obtained. To make this
asymptotic analysis precise, we use the notation and methods of I'-convergence,
for which we refer to the lecture notes by A. Braides I'-Convergence for Be-
ginners (a more complete theoretical introduction can be found in the book by
G. Dal Maso An Introduction to T'-convergence). We will show that, upon suit-
ably identifying discrete functions {w;} with suitable (posssibly discontinuous)
interpolations, the free energies E, ‘I'-converge’ to a limit energy F. As a con-
sequence we obtain that minimizers of the problem above are ‘very close’ to
minimizers of
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min{F(u) — /OL fudt: w(0) =Uy, u(l) = UL}.

The energies F' can be explicitly identified by a series of operations on the
functions 7,. In order to give an idea of how F' can be described, we first consider
the case when only nearest-neighbour interactions are taken into account:

Ea({u}) = Zw(g—‘)

In this case, the limit functional F' can be described by introducing for each n
a ‘threshold’ 7, such that 7,, = +oco and A, 7T, — 0, and defining a limit bulk
energy density

f(%) = lim (convex envelope of 1/~)n(z)),

and a limit interfacial energy density

g(z) = lim (subadditive envelope of A, 1~/:n (/\i) ),

n

where

1/371(2):{1/)”(2) if [2| < T, {/:n(z):{¢"(z) if |z| > T,

400 otherwise, 400 otherwise.

Note the crucial separation of scales argument: essentially, the limit behaviour
of ¢ (z) defines the bulk energy density, while A, ¢, (z/A,) determines the in-
terfacial energy. The limit F is defined (up to passing to its lower semicontinuity
envelope) on piecewise-Sobolev functions as

Flu) = /( RS %)gw(m — u(t-),

where S(u) denotes the set of discontinuity points of u. Hence, we have a limit
energy with two competing contributions of a bulk part and of an interfacial
energy. In this form we can recover fracture and softening phenomena.

The description of the limit energy gets more complex when not only nearest-
neighbour interactions come into play. We first examine the case when interac-
tions up to a fixed order K are taken into account:

n—j

Enf{u}) = i Mot (FE)

j=11=0

(or, equivalently, ¥ = 0 if j > K). The main idea is to show that (upon some
controllable errors) we can find a lattice spacing n, (possibly much larger than
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An) such that F, is ‘equivalent’ (as I'-convergence is concerned) to a nearest-
neighbour interaction energy on a lattice of step size 5, of the form

Fa({ui}) = mz_jl (),

n

and to which then the recipe above can be applied.

The crucial points here are the computation of ¢, and the choice of the
scaling 7,,. In the case of next-to-nearest neighbours this computation is partic-
ularly simple, as it consists in choosing 7, = 2\, and in ‘integrating out the
contribution of first neighbours’: in formula,

Tal) = ¥2(2) 3 min{h(21) + ¥h(22) 2 22 = 22

In a sense this is a formula of relazation type. If K > 2 then the formula giving
1, resembles more a homogenization formula, and we have to choose n, = K, A,
with K, large. In this case the reasoning that leads from F,, to E,, is that the
overall behaviour of a system of interacting point will behave as clusters of large
arrays of neighbouring points interacting through their ‘extremities’

When the number of interaction orders we consider is not bounded the de-
scription becomes more complex. In particural additional non-local terms may
appear in F'.

Note that first order I'-limits may not capture completely the behaviour of
minimizers for variational problems as above. Additional information, as phase
transitions, boundary layer effects and multiple cracking, may be extracted from
the study of higher order I'-limit.
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DISCRETE PROBLEMS WITH LIMIT ENERGIES DEFINED
ON SOBOLEV SPACES

1.1 Discrete functionals

We will consider the limit of energies defined on one-dimensional discrete systems
of n points as n tends to +o00. In order to define a limit energy on a continuum
we parameterize these points as a subset of a single interval (0, L). Set

I .

A==, #l=-L=i\y, i=0,1,...n (1.1)

n n
We denote I,, = {z7,...,2} and by A, (0, L) the set of functions u : I, = R.
If n is fixed and u € A, (0, L) we equivalently denote

Given K € N with 1 < K < n and functions f/ : R — [0,40o0], with j =

1,..., K, we will consider the related functional E : An(0, L) = [0, 4+0] given
by
K n— '

E(u) =% I (wigy —wi). (1.2)

j=11¢=0

.

Note that F can be viewed simply as a function E : R® — [0, +0o0].

An interpretation with a physical flavour of the energy F is as the internal
interaction energy of a chain of n+1 material points each one interacting with its
K-nearest neighbours, under the assumption that the interaction energy densities
depend only on the order j of the interaction and on the distance between the
two points u;4; — u; in the reference configuration. If K = 1 then each point
interacts with its nearest neighbour only, while if K = n then each pair of points
interacts.

Remark 1.1 From elementary calculus we have that £ is lower semicontinuous
if each f7 is lower semicontinuous, and that F is coercive on bounded sets of

A, (0, L)

1.2 Equivalent energies on Sobolev functions

We will describe the limit as n = 400 of sequences (E,) with E, : A,(0,L) —
[0, +00] of the general form
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K, n—

u

f Uits — z) (13)

j=11¢=0

Since each functional E,, is defined on a different space, the first step is to
identify each A, (0, L) with a subspace of a common space of functions defined on
(0, L). In order to identify each discrete function with a continuous counterpart,
we extend u by @ : (0, L) = R as the piecewise-affine function defined by

i(s) = ui 1—1—%(5—@;1) if s € (zi_1, 2:). (1.4)
In this case, A, (0, L) is identified with those continuous u € WH1(0, L) (actually,
in WHe°(0, L)) such that u is affine on each interval (z;_1,z;). Note moreover

that we have
/ U — Uj—1

An

on (#;_1, ;). If no confusion is possible, we will simply write u in place of @y

U

(1.5)

As we will treat limit functionals defined on Sobolev spaces, it is convenient to
rewrite the dependence of the energy densities in (1.3) with respect to difference
quotients rather than the differences u;4; — u;. We then write

>

n n—J

Uj 4 Uj;
2 At (7‘7 " ) (1.6)

.,
1

where ]
V() = 3 A2,
With the identification of u with u, F, may be viewed as an integral functional

defined on W1 1(0, L). In fact, for fixed j € {0,...,K — 1}, k € {0,...,n — 1}
and ¢ such that ¢ < k < 74 7 we have

i—k+4j—1 i—k+4j—1

wipg —up 1 Ukdmil — UWegm 1 ~1
T Ty X TR X e

m=i—k

for all x € (x}, x}, ), so that

s — s 1i+j—1 SRR k+j-1
AWJ(M)Z_, Z/ 1/»7(—. > ﬂ'(a:—I—m/\n)) dz.
An J o= Jer T om=ick

We then get

n—j TR lj—l L—(G-1-DXn 1‘7'—1—1~
;/\”Ml( Jrj/\n ): _Z/l ‘Zl(; Z Ul(l‘-i-k’/\n))dx.

J =0
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and the equality

En(u) = Fa(a), (1.7)
where
K, j—1 L—(j—-1-DX, Jj—1-1
1/ e ,
- I\ = v'(x+ kA ) de
I ( k;l | ))

if ve A,(0,1)

+o00 otherwise.

Note that in the particular case K, = 1 we have (set 1, = ¢})

(v) = /0 VY, (v)dz ifve A,(0,L)

Fy (1.9)

+o00 otherwise.

Definition 1.2. (Convergence of discrete functions and energies) With the
identifications above we will say that u, converges to u (respectively, in L', in
measure, in Whl etc.) if @, converge to u (respectively, in L', in measure,
weakly in Whi etc.), and we will say that E, ['-converges to F' (respectively,
with respect to the convergence in L', in measure, weakly in Wh1 etc.) if F}, I-
converges to F' (respectively, with respect to the convergence in L!, in measure,
weakly in Wh etc.).

1.3 Convex energies

We first treat the case when the energies ¢ are convex. We will see that in the
case of nearest neighbours, the limit is obtained by simply replacing sums by
integrals, while in the case of long-range interactions a superposition principle

holds.

For simplicity we suppose that the energy densities do not depend on n; i.e.,
v =

1.3.1 Nearest-neighbour interactions

We start by considering the case K = 1, so that the functionals E, are given by
n—1 ws —w
En(u) = 3 A (421, 1.10
(0= S ("5 (1.10)
The integral counterpart of E, is given by

(v) = /0 Y(v)de ifve A,(0,L)

F, (1.11)

+o00 otherwise.
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Note that F,, depends on n only through its domain A, (0, ).
The following result states that as n approaches co the identification of E,
with its continuous analog is complete.

Theorem 1.3 Let ¢ : R — [0, 400) be conver and let E, be given by (1.10).
(i) The T-limit of E, with respect to the weak convergence in WH1(0, L) is
given by F defined by

Fu) = ’ L)1/)(u/)da:. (1.12)
(i) If
Jim 1/’|(ZZ|) = too (1.13)

then the T-limit of E, with respect to the convergence in L*(0, L) is given by F
defined by

' . 1,1
F(u) = (O,L)w(U)dx fue W (0.0 (1.14)

+o00 otherwise
on L1(0,L).

Proof (i) The functional F' defines a weakly lower semicontinuous functional
on WH(0, L) and clearly F,, > F; hence also we have T-liminf; Fj(u) > F(u).
Conversely, fixed u € WH1(0, L) let u,, € A, (0, L) be such that u, (27) = u(2?).

By convexity we have

I n
z z

hence, summing up,
L
/ Y(u') dt > Ep(uy).
0

This shows that (u,) is a recovery sequence for F'.

(i) If (1.13) holds then the sequence (E,) is equi-coercive on bounded sets
of L1(0, L) with respect to the weak convergence in W11(0, L), from which the
thesis is easily deduced. a

1.3.2 Long-range interactions

Let now K € N be fixed. The energies E, take the form

n—j

= i At (M) (1.15)

j=11i=0 An
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Theorem 1.4 Let ¢/ : R — [0, +00) be conver and let E,, be given by (1.15).
Let b satisfy
v(2)

|z| =0 |Z|

= oo (1.16)

then the T-limit of E, with respect to the convergence in L*(0, L) is given by F
defined by

(0,L)
+o00 otherwise

Plu) = { Yy de if u e WHH0, L) w17)

on LY(0,L), where
K .
=> . (1.18)
j=1

Proof Note that (E,) is equi-coercive on bounded set of L'(0, L) as in the
proof of Theorem 1.3. Then it suffices to check the I-limit on W1(0, L).

To prove the I-liminf inequality let u, — u weakly in WH1(0, L). Then, for
every j € {0,..., K} and l € {0,...,j — 1}, also the convex combination

i—1-1
14

u{;l = - Z Un (2 + kAn)

J k=—1

converge weakly to u in Wllo’i(O, L). By (1.7) then we have, for all fixed 5 > 0,

hm inf B, (u) > lim mfZ ! Z/ /) dx

The liminf inequality follows by the arbitrariness of 5.
Again, fixed u € WH1(0, L) let u,, € A, (0, L) be such that u,(z?) = u(2?).

By Jensen’s inequality,

K n—j

Tl K
Z Anw( /x udt)gz

which implies the limsup inequality. a
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1.4 Energies with superlinear growth

We now investigate the effects of the lack of convexity, always in the framework
of limits defined on Sobolev spaces. Again we suppose that the energy densities
do not depend on n; i.e.,

J— o
Yy =,
but are not necessarily convex.

1.4.1 Nearest-neighbour interactions

We consider the case K = 1. In this case the only effect of the passage from the
discrete setting to the continuum is a convexification of the integrand.

Theorem 1.5 Let ¢ : R — [0,400) be a Borel function satisfying (1.13). Let
En be given by (1.10); then the T-limit of E,, with respect to the convergence in
LY0, L) is given by F defined by

P . 1,1
F(u) = (o,L)w () e € W0 L) (1.19)

+o00 otherwise
on L1(0,L).

Proof The I'-liminf inequality immediately follows as in the proof of Theorem
1.3(1).

As for the limsup inequality, first note that if v € WH(0, L) and ¢(v') =
¢**(u') a.e. then we may simply take u, as in the proof of Theorem 1.3(i), so
that for such « we have T'-lim,, E,(u) = F(u). If ¢ is lower semicontinuous and
w is affine with w' = z, let 21,25 € R and X € [0, 1] be such that

z=Az1 4+ (1 = N)za, Y(z1) = " (21), ¥(22) = ™" (22)

and
U (2) = AU (z1) + (1= A)h(22).

Then there exists u; weakly converging to u such that u} € {z1,22} and F(u) =
lim; F(u;). By the lower semicontinuity of the I'-limsup we then have

I-limsup By (u) < liminfT-limsup £, (v;) = liminf F'(u;) = F(u),
J

n J n

as desired. If ¢ is not lower semicontinuous then suitable z; ; and z; must
be chosen such that u; weakly converges to u such that u} € {z1,29,;} and
F(u) = lim; F(u;).

To conclude the proof it remains to suitably approximate any function u €
WH1(0, L) by some its affine interpolations (uy ) and remark that by the convexity
of F' we have F(u) = limy, F'(ug). m|



Energies with superlinear growth 7

1.4.2 Next-to-nearest neighbour interactions

In the non-convex setting, the case K = 2 offers an interesting way of describing
the two-level interactions between first and second neighbours. Such description
is more difficult in the case K > 3. Essentially, the way the limit continuum
theory is obtained is by first integrating-out the contribution due to nearest
neighbours by means of an inf-convolution procedure and then by applying the
previous results to the resulting functional.

Theorem 1.6 Let ¢! 4% : R — [0, 4+00) be Borel functions such that

v(2)

2|00 2]

— 40, (1.20)
and let Ep(u) 1 Ap(0, L) = [0, 400) be given by
n—1 u u n—2 u u
_ 1 i+1 — g 2 i+2 — Ug
En(u) = ; At (7% ) n ; At (72% ) (1.21)
Let ¥ : R — [0, +00) be defined by

U(2)

V) 4 U () 4 (22) 1+ = 22)

inf{1/)2(z) n %(1/)1(@) P () o g = 22}, (1.22)

and let R
= Prr. (1.23)

Then the T-limit of E, with respect to the convergence in L*(0, L) is given by F
defined by

’ . 1,1
F(u) = (o,L)w(u)dx Jue W4 (1.24)

+o00 otherwise
on L1(0,L).

Remark 1.7 (i) The growth conditions on ¢? can be weakened, by requiring
that ¥? : R — R and
—er! <7 <ep(l+ )

provided that we still have

lim Y

|z| =0 |Z|

= 400

(ii) If ¢! is convex then ¥ = ! + 2. If also ¥? is convex then we recover a
particular case of Theorem 1.4.
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Proof Let ue A,(0,L

_ ni M (v (T

n

). We have, regrouping the terms in the summation,

)+ 1/)1(Uz+22/\ um) n %1/)1(%“2;”%“))

+ Z An (1/’2(%2 )+ 1/’1(UZ+22A ) 1/’1(UZ+21A )
g odd
v (g ;;:"-1) * %w(“;;f)
i even i odd
i even i odd

| e (+2ln-1/2DA
- 5(/ 1/)(u1)dt—|—/ b(a) dt),
0 A

where
tions such that

~y Uiy — Uy

2

U, =

for ¢, respectively, even or odd.

n

on (x}

xz+2)

(1.25)

U, respectively, with & = 1,2, are the continuous piecewise-affine func-

(1.26)

Let now w, — u in L'(0,L) and sup, E,(u,) < +oo; then u, — u in

W0, L). Let uy , be defined as in (1.26); as in the proof of Theorem 1.4, we
deduce ug , — u as n — +oo, for k = 1,2. For every fixed n > 0 by (1.25) we

obtain
1 L—n L—n
liH}linfEn(un) > 3 lim inf/ P(ul ) dt —I—IiH}Linf/ P(uy,,) dt
1 1

n

I—
> /n "y dt,

and the liminf inequality follows by the arbitrariness of > 0.

Now we prove the limsup inequality. By arguing as in the proof of Theorem
1.5, note that it suffices to treat the case when 1 is lower semicontinuous, u(z) =
za and ¢(z) = ¥(z). With fixed n > 0 let 21, z2 be such that z; + z0 = 2z and
<d(2) +

P2() (0 (1) + 8 ()

We define the recovery sequence u,, as
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zx? if 7 1s even
z(i = 1A + 21 A,  if ¢ is odd.

We then have

_ ’i " (u”(x?+1)/\n_ un(l‘?))

n Z Anth? ( z+2)/\n Un(l’?))

< (@M (21) + ¥ (22) + LY (2)

< Lj(z) = Ly(z) = F(u)
as desired. a

Remark 1.8. (Multiple-scale effects) The formula defining ¢ highlights a
double-scale effect. The operation of inf-convolution highlights oscillations on
the scale A, while the convexification of ¢ acts at a much larger scale.

w|h

1.4.3 Long-range interactions

We consider now the case of a general K > 1. In this case the effective energy
density will be given by a homogenization formula. We suppose for the sake of
simplicity that ¢/ : R — [0,400) are lower semicontinuous and there exists
p > 1 such that

V) > ezl = 1), W (2) <L+ [f). (1.27)

forall j =1,..., K. Before stating the convergence result we define some energy
densities.
Let N € N. We define ¢ : R — [0, +00) as follows:

—=J

_ mm{N Z Z W(lﬂ—())

j=1 =0

w:{0,...,N} >R, u(i) = zifor i < K oriZN—K}. (1.28)

Proposition 1.9 For all z € R there exists the limit (z) = limy ¥ (2).

Proof Withfixed z € R let N, M € N with M > N, and let uyy be a minimizer
for ¢ (2). We define upr : {0,..., M} = R as follows:

. un(i—IN)+INz ile§i§(1+1)N(0§l§%_1)
UM(Z):
z1

otherwise.
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Then we can estimate

<5 izw(w’“)‘“m“)

K K .
4 Z<2K—j>w<z>+2M‘[M/N]N+’“‘Jw<z>

2K N+ K »
T )(1—|—|z| ). (1.29)

<Un(z) +e (
Taking first the limsup in M and then the liminfin N we deduce that

limsup ¢ar(2) < liminfeyn(2)
M N

as desired O

Remark 1.10 (i) co(]z|P — 1) < ¥l (2) < ¥(2) < (1 + |2[P);
(ii) ¢ is lower semicontinuous;
(iii) ¢ is convex;

(iv) for all N € N we have ¥(z) < ¥n(2) + (14 [2[").
We can state the convergence theorem.

Theorem 1.11 Let ¥ be as above and let E,, be defined by (1.15). Then the
U-limit of E,, with respect to the convergence in L*(0, L) is given by F defined
by

/ . 1,
)= { Sy 00 e WO (1.30)

400 otherwise
on LY(0, L), where v is given by Proposition 1.9.

Proof We begin by establishing the liminf inequality. Let w, — u in L*(0, L)
be such that sup, F,(u,) < +00. Note that this implies that

L
sup/ lun, [P dt < 400,
0

n

so that indeed u,, — u weakly in WH?(0, L) and hence also u,, — u in L>(0, L).
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For all k € {0,...,N — 1} let

B, (k) = |, [P d.

leN /((k+Nl—2K)>\n,(k+Nl+2K)>\n)O(O,L)
We have

N-1 L

> @ (k) < 21{/ lul |Pdt < e,
k=0 0

so that, upon choosing a subsequence if necessary, there exists k& such that

For the sake of notational simplicity we will suppose that this holds with &£ = 0,
and also that n = M N with M € N, so that the inequality above reads

Z/ |l [P dt. (1.31)
NI=2EK)A,,(NI+2K)A,.)n(0,L)

We may always suppose so, upon first reasoning in slightly smaller intervals than
(0, L) and then let those intervals invade (0, L).
Let v be the piecewise-affine function defined on (0, L) such that

) . on (a7, 2;y), M+ K <i<NI+l-K-1
y up (Nl+ N — K)A,) —un (N + K)Ap) N

(N —2K)\, P
on (N, (NL+ K)X\)U((N(I+ 1) = K)Ap, NI+ 1)A,).

The construction of vY deserves some words of explanation. The function v\ is
constructed on each mterval (NlA,, (N 4+ 1)A,) as equal to the function u, (up
to an additive constant) in the middle interval (Nl + K)A,, (N({ 4+ 1) = K)Ay),
and as the affine function of slope le in the remaining two intervals. Note that
the construction implies that the function

v :{0,..., N} > R
defined by
v (1) = vn (N +9)An)
is a test function for the minimum problem defining 1/)N( ), and that

N(I+1)
K (+1) v

Z Z /\n1/)]( n ( z+]j)/\n n (l‘?))

j=1 4=NI
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K N(i+1)—j
- Z Z /\M/)J( nl((l+ﬂ)) ())> N/\an( ) (1.32)

j=1 4=NI J

Note moreover that, by Holder’s inequality, we have

2K N\1-1/p IK
N/ / , ,
_ dt<(—L) , 2K o
[ty =< Cen) ™ oo + 5 oo

so that, since u,(0) = v¥ (0) we have a uniform bound

C
llon = wnllzeo,0) < - (1.33)

We have that

M-1 K N(4+1)-K—j

En(un) > ; Z Anw(“"@ﬁj?—un(ﬂﬁ?))

A
0 j=1 $=NI+K JAn
M-1 K N(4+1)-K—j N

_ ; Z At (Un (ﬂﬁ?ﬂ';/\; Yn (1’?))

0 j=1 ¢=NI+K

M-1 K N({+1)- N(.n

_ Z Z /\n1/)‘7(n(l+]) vn(%))

JAn
=0 j=1 i=NI{
-1 K NI+K el z+]) o (27)
-3 X 3 e ()
{=0 j=1 i=NI JAn
Sl o (@) — o (a7)
LY X ()
=1 j=1i=NI-K-j JAn
M-1 K N({+1)-j N n
i (Un (xz ) Un (l‘l)
= 3 /\nw( +J./\ ) nop
=0 j=1 4=NI JAn
M-1 K
1 2
> YD Nn () — I =1 (1.34)
=0 j=1

the last estimate being given by (1.32).
We give an estimate of the term I}; the term I2 can be dealt with similarly.

Let i < NI+ K < i+ j; by the growth conditions on t/ and the convexity of
z +— |z]P we have

5 (vrjlv(x?{j;/\; vl (] ))
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o (27, ) — vl (z2)
n i+7 n 7
< c(l + B )
i+tj-1 N N(,.n
1 Y P
<C(1—|——, vn( z+1) vn (xz) )
J An
k=i
1
<e (1—|—A NP +—/ |u;|pdt)
An JUNI=2E) X (NI+2K )X )A(0,L)
We then deduce by (1.31) and the fact that
|27 < e(l+¥n(2))
that
M-1 K NI4+K
BN ae(trunt g [ ol
1=0 j=1 i=NI An ((NI+E)An (NI4+2K)A5) )
. o Ml
< N + N N/\nl/)N(ZrJLV,l)~ (1.35)

Plugging this estimate and the analog for I2 into (1.34) we get

En(tn) > (1 - %)A;lmnw(zﬁ,) - % (1.36)
By Remark 1.10(iv) we have
Ua(e) > ) = (L ) > (1= el -+
From (1.36) we then have
M-
Fnun) (1 - —) NAnth(zhy) = (1.37)

1=0
Now, note that the piecewise-affine functions u’) defined by
ul (0) = u, (0) and (ulN) = ZTJXl on (NI, NI+ 1)A,)

are weakly precompact in W?(0, L), so that we may suppose that u — ¥,

Then by Theorem 1.3 we have

M-1 L L
hmmfZNAm(sz,):hmmf/ w((unN)’)dtZ/ Y((uNY)dt,  (1.38)
n =0 n 0 0
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so that
liminf B, (uy) > 1—— / P((u dt—— (1.39)

By (1.33) and the uniform convergence of u, to u we have

C
[ = ul| Lo,z < v (1.40)

By letting N — +00 we then obtain the thesis by the lower semicontinuity of

b
d To prove the limsup inequality it suffices to deal with the case u(#) = zz since
from this construction we easily obtain a recovery sequence for piecewise-affine
functions and then reason by density. To exhibit a recovery sequence for such u
it suffices to fix N € N, consider v"¥ a minimum point for the problem defining

¥ (z) and define
wn (27) = vN (i = ND) A 4+ 2NN, if Nl<i< N(+1).
We then have

limsup By (un) < ¢¥n(z —|——Z1/)J

n

and the thesis follows by the arbitrariness of N. a

1.5 A general convergence theorem

By slightly modifying the proof of Theorem 1.11 we can easily state a general
[-convergence result, allowing a dependence also on n for the energy densities.

Theorem 1.12 Let K > 1. Let ¥J : R — [0, 400) be lower semicontinuous
functions and let p > 1 exists such that

Un(2) 2 collel = 1), Wh(2) < (1 +]2). (1.41)

forallje{l,...,K} and n € N. For all N-n € N let Yn,, : R — [0,4+00) be
defined by

N—j

Ynn(z) = min{% i Wl (H']—())

j=1 =0
w:{0,... , N} >R, u(i) =zt fori < K ori> N—K}(l.42)
Suppose that ¢ : R — [0, 4+00) exists such that

P(z) = lij{fnlim YN (2) foral z € R (1.43)
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(note that this is not restrictive upon passing to a subsequence of n and N ). Let

E, be defined on A, (0, L) by

n—j

- i At (M) (1.44)

j=114=0 An

Then the T-limit of E, with respect to the convergence in L*(0, L) is given by F
defined by

/ Y(u')dr if ue WHP(0, L)
(0.L)

F(u) = (1.45)

400 otherwise
on L1(0,L).
Proof Let u, — uin L*(0, L). We can repeat the proof for the liminfinequality

for Theorem 1.11, substituting ¢ by ¥ and 5 by YN, We then deduce as in
(1.38)—(1.39) that

L
lim inf By (un) > (1 - %)liminf/ enn((@Y) dt — <
n n 0

L
- [ ot
where Yn = lim, Y3}

', and the thesis by letting N — +o0.

To prove the limsup inequality it suffices to deal with the case u(#) = zz since
from this construction we easily obtain a recovery sequence for piecewise-affine
functions and then reason by density. To exhibit a recovery sequence for such u
it suffices to fix N € N, consider z; ,, 22, and n, € [0, 1] such that

*%

Nyn(z) — 77n1/)N,n(Zl,n) + (1 - nn)'l/)N,n(ZZ,n)a 2 =1Tn%ln + (1 - nn)ZZ,rr

Let v{\jn, vé\jn be minimum points for the problem defining ¢'n 1, (21.1), ¥~ n (22,0 );
respectively. For the sake of simplicity assume that there exists m such that
mNn, € N for all n. Define

v{\jn(i— NOAp + zmNIA, i mNI<i<mNl+mNnp,

vé\jn(z — Nl —mNny)An + 2mNl+ 21 ymNnp Ay
if mNl+mNn, <i<mN({+1).

By the growth conditions on ¥4 it is easily seen that (2k,n) are equi bounded
and that
sup{vkn( ) —zpni: 1€40,...,N},n€ N} < oo,

so that u, converges to zx uniformly. We then have
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limsup B, (un) < Llimsupyy, (2)

n

and the thesis follows by the arbitrariness of N. a

1.6 Convergence of minimum problems

We first give a general convergence theorem, and subsequently state a finer the-
orem for next-to-nearest neighbour interactions.

1.6.1 Limit continuum minimum problems
From Theorem 1.12 we immediately deduce the following theorem.

Theorem 1.13 Let F,, and F be given by Theorem 1.12, let f € L'(0,L) and
d > 0. Then the munimum values

m, = min{En(u) + /OL fudt: uw(0) =0, u(L) = d} (1.46)

converge to

m = min{F(u) + /OL fudt: w(0) =0, u(L) = d}, (1.47)

and from each sequence of minimizers of (1.46) we can extract a subsequence
converging to a minimizer of (1.47).

Proof Since the sequence of functionals (F),) is equi-coercive, it suffices to show
that the boundary conditions do not change the form of the I'-limit;i.e., that for
all u € WHP(0, L) such that u(0) = 0 and u(L) = d and for all £ > 0 there exists
a sequence u, such that u,(0) = 0, u, (L) = d and limsup, E,(u,) < F(u) +e.
Let vy, — win L%°(0, L) be such that lim, E,(v,) = F(u). With fixed > 0
and N € N let K,, € N be such that
lim Ky Ay = L.
n N
For all { € {1,...,N} let ¢! : [0, L] — [0,1] be the piecewise-affine function
defined by ¢X:'(0) = 0,

L (Y(Ead)  on (1= DK, 1K N,)
Nt =3 —1/(Kahn) on ((n— 1K) A, (n — 1K, + K —n)A,)

0 otherwise.
Let
unN’l = (/)nN’lvn +(1- anN’l)u.
We have

n+KA, L
Bn(u) < En(un)—i—c(/o (1—|—|u’|p)dt—|—/L o (1+ )7 dt)
—n=KX,
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+e |ul, [P dt

(/l lK K n,(lKn‘FK))\n)n(OvL)

+

/ i, P di
(n=IK = E)Ap,(n=IK,+ K +K)X,)0(0,L)

+/0L u|p)
§En(un)—l—c(/ozn(l—i—|u’|p)dt—|—/LL

+c /
( ((@=2)n/N,((+1)n/N)U(L—(+1)n/N,L-(1-2)n/N))n(0,L)

(1+ ') dt)
—2p

o P dt
NP
+Cn—p||vn - U||Z£w(o,L)

for n large enough. Since
N

/ ol P
—1 J(U=2)n/N,(((+1)n/N)u(L-(+1)n/N,L—(I1-2)n/N)n(0,L)

/ (1+ v, |P)dt <ec,

for all n there exists I, € {1,..., N} such that

2n L
Eau ) < Balon) e [Py [ @) )
0 L-2n
c NP »
oy e llon =l )

N

Setting u, = u;, '~ we then have

L

2n
limsup By (u,) < F(u) + c(/ (1+ |u/|p)dt+/ (1+ |u/|p)dt) + %,
0

n L—2n
and the desired inequality by the arbitrariness of  and N. a

1.6.2 Next-to-nearest interactions: phase transitions and boundary layers

If the function ¢ giving the limit energy density in Theorem 1.12 is not strictly
convex, converging sequences of minimizers of problems of the type (1.46) may
converge to particular minimizers of (1.47). This happens in the case of next-to-
nearest interactions, where the formula giving ¢ is of particular help.

We examine the case when 1/; in (1.22) is not convex and of minimum problems
(1.46) with f = 0. Upon some change of coordinates it is not restrictive to
examine problems of the form
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my, = min{ Ep,(u) : u(0) =0, u(L) =0}, (1.48)

and to suppose
(H1) we have

miny = (1) = ¥(=1). (1.49)

For the sake of simplicity we make the additional assumptions
(H2) we have

¥(z) > 0if |2 £ 1; (1.50)

(H3) there exist unique zi, 2f and 2], z5 such that

U2 (1) + %(wuf) + 1/)1(,2;)): ming,  zif, 2F = 42

We set

M+:{(ZI|—’Z;—)’(Z;—’ZII—)}’ M~ :{(21_’22_)’(22_’21_)} (1'51)
M = MTUM-™. (1.52)

(H4) we have z;F £ z; forall i, j € {1,2};
(H5) all functions are C'L.

Under hypotheses (H1)—-(H2) Theorem 1.12 simply gives that m, — 0 and
that the limits u of minimizers satisfy |u’| < 1 a.e. We will see that indeed they
are ‘extremal’ solutions to the problem

min{F(u) : «(0) =0, u(L) =0}. (1.53)

The effect of the non validity of hypotheses (H3)-(H5) is explained in Remark
1.18.

The key idea is that it is energetically convenient for discrete minimizer to
remain close to the two states minimizing 1/;, and that every time we have a
transition from one of the two minimal configurations to the other a fixed amount
of energy is spent (independent of n). To exactly quantify this fact we introduce
some functions and quantities.

Definition 1.14. (Minimal energy configurations) Let z = (z1,22) € M;
we define u* : Z — R by

u*(i) = {%}zz + (i— {%Dzl (1.54)
and vZ : \,Z — R by
Z(2]) = u* (DA, (1.55)
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Definition 1.15. (Crease and boundary-layer energies) Let v : Z — R.
The right-hand side boundary layer energy of v is

Bi(v) = mf mln{2(1/)2 (L()) + Yt (u(i 4 1) — u(i)) — min@)

cu:NU{0} = R, u(i) = v(3) ifiZN},

The left-hand side boundary layer energy of v is

B_(v) = inf mln{2(1/)2 (M) + ot (u(i) — u(i — 1)) — min@)

NeN
~NU{0} = R, u(i) = v(§) if i < —N},

Let vt : Z — R. The transition energy between v~ and vt is

Cv™,vt) = mf mm{Z( (L()) + ¢ (u (z—i—l)—u(i))—minﬂ:)
u:Z—R, ¢ ER,u(i):vi(i)—l—ci if :I:iZN}.

Remark 1.16 Condition (H4) implies that

if 2% € M*.
We can now describe the behaviour of minimizing sequences for (1.46).

Theorem 1.17 Suppose that (H1)—(Hb5) hold. We then have:
(Case n even) The minimizers (u,) of (1.46) for n even converge, up to
subsequences, to one of the functions

_ x if0<xz<L/2 N —z if0<z<L/2
L—z ifL/2<z<]I, u-(v) = —(L—z) ifLj2<z<L"

D= min{B+(uz+) + C’(uz+, u® )4 B_(u* ),
By (u*) +C’(uz_,uz+) —|—B_(uz+) szt eMt 2z eMT}.

If (un) converges (up to subsequences) to Uy then there ewist z+ € M™T and
— € M~ such that

D =By (u"" )+ C(u* u*" )+ B_(u*) (1.56)
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and

En(tn) = D Ay + 0(An). (1.57)

(Case n odd) In the case n odd the same conclusions hold, upon substituting
terms of the form

7zt

By (u") + C(u* ™) + B_(u*7)

by terms of the form

+ + =
By (u® )+ C(u™ ,u®") + B_(v*7),
where we have set (z1,722) = (z2,71).

Proof We only deal with the case n even, as the case n odd 1s dealt with
similarly.

Let u, be a minimizer for (1.46). We may assume that w, converge in
WHr(0, L) and uniformly. By comparison with E, (%) we have

En(tn) < Lmint + chy. (1.58)

We can consider the scaled energies

El(u) = %(En(u) — Lming). (1.59)

Note that we have

3
|
N

E,ll(u) =

™

I
=)

(55

K3

_1_%(1/)1 (Ui+2/\_nui+1) + ot (Uz+i\n_ “i)) — minl/;)
%(1/)1(“";7:”—1) +¢1(“1%n“0)) — min. (1.60)

From (1.58) and (1.60) we deduce that

> (v ()

%(W(un(xhz);n(xﬁl)) . wl(umﬁll; lt))) ~ ming) <.

We infer that for every 5 > 0 we have that if we denote by I, (1) the set of indices
¢ such that

e (Un (l’?+22)/\; Un (l’?))
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n

(1/)1 (Un(l’ﬁz) - Un(l’?ﬂ)) i 1/)1 (Un(l’ﬁl) — U (7]

t X, Ao

))) §min1/~)+77

N | —

then
sup I, (1) < +oo.

Let € = &(n) be defined so that if

v () () 40 () —mind <

then
dist ((#1, z2), M) < &(n).

Choose nn > 0 so that
2¢(n) < min{|zt —z7|, 2zt € M*t, z= e M~ }.

We then deduce that if i — 1,i & I,(n) then there exists z € M such that

‘(un(l‘hl) - un(l‘?)’ un (25) — un(l‘hl)) <
An An B
and
‘(un(l‘?) - u”(x?—l)’ un (24) — un(l‘?)) e
An An -
Hence, there exist a finite number of indices 0 = 3p < 93 < iy < -+ < iy, =N

such that for all j = 1,..., N, there exists z7 € M such that for all i € {ijo1+
1,...,4; — 1} we have

‘ (un(l‘hl) — (@) un(@fy,) — un(l‘hl)) _
An ’ An I

<e.

Let {jo,Jj1,---,7m,} be the maximal subset of {ig,i1,...,in,} defined by the
requirement that if zf, € M= then Zi4 € MT¥. Note that in this case we
deduce that Ep(un) > eM,, so that M, are equi-bounded. Upon choosing a
subsequence we may then suppose M,, = M independent of n, and also that
zf — x, € [0,L] and 27 = z;. By the arbitrariness of 7 we deduce that
lim, up, = u, and u is characterized by w(0) = (L) = L and «' = +1 on
(z_1,xg), the sign determined by whether zy € M™T or z; € M*. Let yy =
0,y1,...,yv = L be distinct ordered points such that {y;} = {®r} (the set of
indices may be different if x5 = x441 for some k). Choose indices kq,... ky
such that @} — (Yj-1 +y;)/2. Let z; be the limit of z7 related to the interval

(yj,Y;5+1). We then have, for a suitable continuous w : [0, +o0) — [0, +00),

ki1—2

S (ve (et = telet))

i=0
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n

1(1/)1 (u”(x?w) — “”(l’ﬁl)) n 1/)1 (Un(l’?ﬂ)/\n_ Un (2] ))) B minl/:)

3 (v (et

_1_% (1/)1 (Un($?+2); Un(l‘?ﬂ)) 4l (Un($?+1)/\— “"(ﬁ))) - miIM/;)
> Cu™ u™+) — w(E; forall je{l,...,N =1}, '

3 (il etet)

o (e ) gl )

By the arbitrariness of ¢ and the definition of D we easily get lim inf, E}(u,) >
D, and by Remark 1.16 that if u # @y then liminf, El(u,) > D.

It remains to show that limsup, E!(u,) < Dj; i.e., for every fixed n > 0
to exhibit a sequence %, such that u,(0) = u,(L) = 0 and limsup, E}(u,) <
D + cn. Suppose that

D =By () + O u?) + B_(u"),

with zt = (2], 25), 2= = (27, 27), the other cases being dealt with in the same
way. Let n > 0 be fixed and let N € N, vy, v_,v:7Z — R be such that

vy (i) = u® (9) fori> N,

v_ (i) = u* (4) for i < —N,
uz+(i) fori < —N

u? (i) fori> N
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> (v (W) + 6 i+ 1) = v(i) — mind ) < O )+,

1€Z

We then set

24+ N<i<n-N

(v_(n—1d) —v_(0))A, ifn— N <i<n,
where .
g u? (%)/\n — % + v (0)A,
" (2 —2N)A,
o _ v (B4 5o (0
" (2 —2N)A,

Note that lim, 2} = lim, 22 =

0. Using (H5) we easily get the desired inequality.
O

Remark 1.18 From the proof above it can be easily seen that hypotheses (H3)-
(H5) may be relaxed at the expense of a heavier notation and some changes in
the results. Clearly, if (H3) does not hold then the sets of minimal pairs M,
M~ are larger, and the definition of D must be changed accordingly, possibly
taking into account also more than one transition.

If hypothesis (H4) does not hold then C’(uz+,uz_) = C’(uz_,uz+) = 0 for
some z¥ € MT, z= € M~. In this case the energetic analysis of E! is not
sufficient to characterize the minimizers, as we have no control on the number
of transitions between ' = 1 and v’ = —1.

Condition (H5) has been used to construct the recovery sequence (@y). It
can be relaxed to assuming that 1/; is smooth at 41; more precisely, it suffices to
suppose that

P(z) — min1/; B

lim =0. (1.61)

soE1l |z F 1
If this condition does not hold the value D 1s given by a more complex formula,
where we take into account also the values at 0 of the solutions of the boundary
layer terms.
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The proof of Theorem 1.17 easily yields the corresponding I'-limit result for
EL. We leave the details to the reader.

1.7 More examples

In this section we examine some situations when some of the hypotheses consid-
ered hitherto are relaxed. Namely,
(1) (weak nearest-neighbour interactions) when the condition

Un(2) 2> co(|e” = 1)

does not hold. In this case, the limit energy may be defined on a set of vector
functions;

(i) (very-long-range interactions) when the energy F, takes into account
interactions up to the order K, with K,, — +co. In this case, the limit energy
may be non-local;

(iii) (non spatially homogeneous interactions) when the interaction between
u; and u;4; may depend also on 7. In this case a homogenization process may
take place.

For the sake of presentation we will explicitly treat only the case of quadratic
energies, of the form

>

n—j

n

An gl (w)z (1.62)

Tl

14=0

.,
1

with pJ? > 0and 1 < K, < n.

Remark 1.19 In the case when pli = p/| K, = K and p' > 0 then the I-limit
in Theorem 1.4 of E, is given by

L K
Fu) = p/ |u'|? dt, where p = Zp]
0 j=1

The same conclusion holds if pl! = p/, K,, =n, p* >0, and p = Z;ozl o

1.7.1  Weak nearest-neighbour interactions: multiple-density limits

We only treat the case of next-to-nearest neighbour interactions with weak
nearest-neighbour interactions; i.e., in (1.62) we take K, = 2, p2' = c3, and
pLt = a, with

The energies we consider take the form

Enl —CQZ/\ (““’2 )2+§Anan(w%ﬂ)2. (1.63)
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For all n u, € A, (0, L), we consider the functions up c, un o : {0,...,[n/2]} —
R, defined by

Un (1) = un (21X,), Un,o(i) = un ((271 + 1)A,)

(for simplicity, u, (') = u,(L) if ¢ > n), which take into account the values of
upn, on even and odd points, respectively. Note that the energy F,(u,) can be
identified with an energy E,(up e, un o) defined by

En(un,ea un,o) = C2

n,0 ) — n,e ] 1 2
u ’ (Z) u ’ (Z+ )) . (164)
An
We say that the sequence (u,,) converges (in L' (0, L)) to u to the pair (ue, uo)
if the piecewise-affine interpolates #y, ¢, %, o defined by

s Une(i 1) = e(7)
e 2

on (a:,zf, x,zf'i'z),
el 1) )
n,0 2An

respectively, converge to (ue, o), respectively. We then have the following result.

24 2i+2)
)

on (x2, x;

Theorem 1.20 The energies F, I'-converge with respect to the convergence of
Up, to (Ue, o), to the functional

1 L 1 L L
562/ |ul|? dt + 562/ |ug|2dt—|—c1/ [tte — uo|? dt
0 0 0
F(Ueauo) = Zf Ue, Ug € Hl(O,L)

+o00 otherwise.

If e1 = 400 the formula above is understood to mean that F(ue, o) = 400 if
Ue F Uo, SO that, having set u = u. = u, we recover for F' the form

L
*dt  ifue H'(0,L
Flu) = 62/0 o] ifue HY0,L)

+o00 otherwise.
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Proof It suffices to treat the case a, = Cl/\i with ¢; < 400, as all the others
are easily obtained from that by a comparison argument. To obtain the liminf
inequality, it suffices to use Theorem 1.3 for the first two terms in (1.64) and
note that each of the last two terms converges to

1 L
561/0 |ue—uo|2dt,

as the convergence of @y, e, tin o t0 (e, Uo), respectively, is uniform.
The limsup inequality is obtained by direct computations on piecewise-affine
functions, and then reasoning by density as usual. a

1.7.2  Very-long interactions: non-local limits

For all n € N let p, : \yZ — [0,+00). We consider the following form of the
discrete energies

D S I ] (1.65)
z,YyEXLZN[0,L]
TEY

defined for u : A\,Z — R. Note that we may assume that p, is an even function,
upon replacing pn(z) by pn(z) = (1/2)(pn(2) + pn(—2)). We will tacitly make
this simplifying assumption in the sequel.

We will consider the following hypotheses on p,:

(H1) (equi-coerciveness of nearest-neighbour interactions) inf, p, (An) > 0;

(H2) (local uniform summability of py) for all T > 0 we have

sup Z pn (1) < +o00.
" ZEN.ZN(0,T)

Remark 1.21 Note that (H2) can be rephrased as a local uniform integrability
property for A, p, on R%: for all T > 0

sup Z Anpn(t — y) < +00.
" T YEALZ
o2y |z, |ly|<T

As a consequence, if (H2) holds then, up to a subsequence, we can assume that
the Radon measures

Hn = Z Anpn (T — y)(s(x,y)

TYEARZ, THY

(8, denotes the Dirac mass at z) locally converge weakly in R? to a Radon
measure pg, and that the Radon measures
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2ZEANLZ

locally converge weakly in R to a Radon measure 3. These two limit measures
are linked by the relation

pol4) = = [ Llaa(s). (1.66)
where |A;| is the Lebesgue measure of the set
A;={t €R: (s(ex —ea) +1(e1 +e2))/V2 € A}
If (H1) holds then we have the orthogonal decomposition
Bo = B1 + 160, (1.67)
for some ¢; > 0 and a Radon measure 3; on R. We also denote
p=pol (R*\ A) (1.68)

(the restriction of po to R?\ A), where A = {(z,z) : € R}. By the decompo-
sition above, we have

1
=u+ —c HlLA,
Ho H \/5 1

where H! stands for the 1-dimensional Hausdorff measure.
The main result of this section is the following.

Theorem 1.22. (Compactness and representation) If conditions (H1) and
(H2) hold, then there exist a subsequence (not relabeled), a Radon measure p on
R? and a constant ¢y > 0 such that the energies E, T'-converge to the energy F
defined on L1(0, L) by

_ 2
cl/ |u/|2dt—|—/ (M) dp(z,y)  ifue WH(0, L)
(0,L) (0,L)2 =Y

Fu) =
400 otherwise,
(1.69)
wit respect to convergence in measure and L*(0, L), where the measure p and ¢;
are given by (1.68) and (1.67), respectively.

Proof Upon passing to a subsequence we may assume that the measures p, in
Remark 1.21 converge to pg. Then, p and ¢; given by (1.68) and (1.67) are well
defined. Hence, it suffices to prove the representation for the I'-limit along this
sequence.
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We begin by proving the liminf inequality. Let u, — u in L'(0, L) be such
that sup,, B (un) < +00. By hypothesis (H1), the sequence u,, converges weakly
in Wh2((0, L).

With fixed m € N, we have the equality

Bui) = Y pule— g, (Ll

r—Yy
z,YyEXLZN[0,L]
le—y|<1/m, o7y

+ Z o (2 — ) (M)z

r—Yy
z,YyEXLZN[0,L]
le—y|>1/m

= I} (un) + 12 (un). (1.70)

We now estimate these two terms separately.
We first note that there exist positive a, converging to 0 such that

[O‘n/An] 1
lm2 > pa(Ank) > e — —.

m
k=1

Let (a,b) C (0, ). For all N € N and for n large enough we then have

Up(2) — upn(y)\ 2
Iy (un) > Yo dapale—y) ((x)fy())
z,YyEXRZN(a,b)
lz—y|<an, c#y
N [Ofn/An]

> 9 Z /\npn(/\nk)(w)z

i=1 k=1 T,YEXRZN(Yi—1,Y:)
|x—y|—>\ k
N [an/Xn
(b—a) u(yi) — u(yi-1)\?
n(Ank) ( ——— 1
Z:: Z:: N p )( Yi — Yi-1 )+O()

as n — 00, where we have set
v = a+ N(b —a),

we have used the fact that u, — u uniformly and the convexity of z + z%. This
shows that

m

1
lim inf I} (u,) > (61 - —) / |u'|? dt.
" (a,b)

From this inequality we obtain that

lim inf 7} (w,) > (61 - i) / |u'|? dt.
" m7sJo,L)
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As for the second term, for all n > 0 let A, = {(z,y) € R* : |z —y| > n}.
Note that the convergence

un(2) —unly) _, ul@) —uly)
=Y =Y
is uniform on (0, L)*\ A,, so that, by the weak convergence of yi,, we have

(711(95) — u(y))zdﬂ(x,y)~

lim inf 72 (u,) > /
n r—Yy

(0,L)2\Ay )
By summing up all these inequalities and letting m — 400 we eventually get

o ulr) —uly)\?
o dt*/@,mz( ) dutz.v).

liminf B, (uy) > cl/
n =Y

(0,L

To prove the limsup inequality it suffices to show it for piecewise-affine func-
tions, since this set is strongly dense in the space of piecewise W12 functions.
In this case it suffices to take u,, = u. O

1.7.3  Homogenization

We only treat the case of nearest-neighbour interactions; i.e., in (1.62) we take
K, =1 and pL? = p; with i + p; defining a M-periodic function Z — R::

Pi+M = pPi.

The energies we consider take the form

n—1
En(u) = Z/\npi(y)z. (1.71)
i=0 "

Theorem 1.23 The energies E, I'-converge to the energy defined by

L
7 2dt  ifue HY(0,L
P A7 [ W e oL
400 otherwise,

where

M
p=u(o)
i=1 "

Proof Note that

M

M
7= min{MZpizf : ZZZ = 1},
i=1

i=1
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so that
M M
Pzt = min{MZpizf : ZZZ = z}
i=1 i=1

We then immediately have

TS/\ '(Ui+1—ui)2>[n/M]_1M/\ _(UM(i+1) T UMi\?
p BT G (TR

which gives the liminf inequality.
The limsup inequality for the function u(x) = zz is obtained by choosing u,

defined by

‘1
un(2]) = pzAn —.
(«7) ; o

O
1.8 Energies depending on second difference quotients
We consider the case of energies
= u 2u; + u
i1 — 2u; U
En(u) = Z/\nf( . ) (1.72)
i=1 n

with f convex and such that ¢1(|z]P — 1) < f(2) < ca(1 4+ |2|P) (p > 1).
In this case we identify the discrete function u with a function in W2?(0, L).
Given the values u;_1,u;, u;41 we define the function u on the interval

n noogn n A, A,
1":(%—1”2 xl+1+xl):(x"—7,x?+ =)

7 9 ) 9 7 Iy

Ui U Uy — U Tyt
u(p) = L ML (2 )
Uit —22/1\%-1- Uj—1 ( _ xi—l; i )2 (1.73)
Note that
o ui+1—2/\1;z’+ui—1 on I",
and
(x?—1+l‘?) U + uj_q /(x?_l-l-l‘?) Wi tia
5 9 ’ 2 An
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u(l’? +l’?+1) Uity U,(l‘? +$?+1) Ui — U
5 = = )

Finally, we set

on (0,A,/2) and

Up + Up— Up — Up— An
uft) = ==+ T 1(t_L_7)

on (L — (A,/2),L). In this way u € C*1(0,L) and u"” is piecewise constant, so
that w € W2P(0, L) (actually, u € W% (0, L)). Moreover,

Fo(u) = /0 Flu) dt. (1.74)

We have the following result.

Theorem 1.24 With the identification above, the energies E, TI'-converge as
n — 400 to the functional

F"ydt  if ue W2P(0, L)
Fu) =4 Jon
+oo otherwise
with respect to the convergence in LY(0, L) and weak in WP (0, L).
Proof Let u, — win L*(0,L) and sup,, Ey,(u,) < +00. Then we have

L
sup(/ (Jtn| + |ull|P) dt) < 4o00.
n Mo

By interpolation, we deduce that sup, |[uallw=r0,) < +00; hence u, — u
weakly in w € W2?(0, L). In particular u// — «” in LP(0, L), so that

Fu) = (u”’) dt < lim inf

(u)l) dt = liminf E, (u,,).
(0,0) n

(0,0)

If w € C%([0, L]) then, upon choosing (u,); = u(z?) we have u, — u and

K3

Enfun) = [ S+ on)dt

so that lim, B, (u,) = F(u). For a general u € W*?(0, L) it suffices to use an
approximation argument. a



2

LIMIT ENERGIES ON DISCONTINUOUS FUNCTIONS: TWO
EXAMPLES

In this chapter we begin dealing with energy density which do not satisfy a
growth condition of polynomial type. We explicitly treat two model situations.

2.1 The Blake Zisserman model

A finite-difference scheme proposed by Blake Zisserman to treat signal recon-
struction problems takes into account (beside other terms of ’lower order’) ener-
gies defined on discrete functions of the form

i) = 3 Aot (U512 )

with o
Pn(z) = min{zz, E}, (2.2)

for some a > 0. An interesting interpretation of the energy density ¢, can
be given also as relative to the energy between two neighbours in an array of
material points connected by springs. In this case the springs are quadratic until
a threshold, after which they bear no response to traction (broken springs).

Note that the energies above do not fit in the framework of the previous
chapter, as they do not satisfy a growth condition of order p from below. Note
moreover that no interesting result can be obtained by taking into account the
convexifications ¥+* as they are trivially 0.

In this section we will treat the limit of energies modeled on E, above. We
first define the proper convergence under which such energies are equi-coercive.

2.1.1  Coerciveness conditions

We examine the coerciveness conditions for sequences of (piecewise-affine inter-
polations of) functions (u,) such that

sup Fp (un) < +00. (2.3)
For such a sequence, denote by
m={ie{l,...;n}: |un(a}) — up (2] )| > adn} (2.4)

the set of indices such that
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and by

Sﬂ = U (l‘?_l,l‘?)

ielm
the union of the corresponding intervals.
Note that we have
Eow) = [ ) dirag(rn)
(0,L)\5n
so that by (2.3) we deduce that

1
sup# (") < —sup Fyp(un) < +00.
n o n

Upon extracting a subsequence, we may assume then that

#(I")=N for all n € N,

(2.7)

(2.8)

(2.9)

with N independent of n. Let #3, ... %, be points in [0, L] such that j = 0,

t’J(,_I_l =L, 17, <t} and
{i=1,..., N+ 1} = (A I")u{0,L}.
Upon further extracting a subsequence we may suppose that
¢ =t €[0,L] for all .
Denote the set of these limit points by
S={t;:i=0,...,N+1}.

Let n > 0 be fixed; then for n large enough we have

So= U (27 = (0,0) € S+ (=m.m).

iel™

Hence, from (2.7) and (2.11) we deduce that

lim sup (ul,)? dt

n /(OyL)\(S+(—n,n))

< sup/ (u;)2 dt < sup F,(uy) < +00.
(0,L)\ S n

n

(2.10)

(2.11)

(2.12)

(2.13)

We deduce that for every n > 0 u, € WH2((0, L)\ (S+(—n,n))) and, if for every

t=0,..., N we have
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lim inf(ess—inf{|un(t)| cte (U ot — 77)}) < 400, (2.14)

then (uy,,) is weakly precompact in Wh2(¢? 41, %, 1 —n) by Poincaré’s inequality.
Let u be its limit defined separately on each (¢} +n,t7,, —n). By the arbitrariness
of n we have that u can be defined on (0, L) \ S, and hence a.e. on (0, ). By
this construction u € Wf(;fj((o, L)\ S). Moreover, by (2.13) we deduce that for
allp >0

(u')? dt < lim inf

/ / (ul)? dt < sup By (un), (2.15)
(0,L0\(S+(=n)) " (0,LN(S+(=n,n)) n

which gives a bound independent of 7, so that by the arbitrariness of n > 0 we
deduce that u € WHP((0, L) \ S).

We now introduce the following notation.

Definition 2.1 The space P-W1?(0, L) of piecewise-Sobolev functions on (0, L)
is defined as the set of functions u € L1(0, L) such that a finite set S C (0, L)
exists such that u € WHP((0, L)\ S). The minimal such set S is called the set of
discontinuity points of uw and denoted by S(u). For such u we regard the derivative
u € LP(0, L) as defined a.e. and coinciding with its usual definition outside S.

We then have the following compactness result.

Theorem 2.2 Let (u,) be a sequence of functions such that sup, Fn(u,) <
+oo and such that (u,) is bounded in measure. Then there exists a function
u € P-WYH2(0, L) such that u, — u in measure. Moreover there exists a finite

set S such that u, — u weakly in Wl’p((O, L)\ 9).

loc

Proof The proofis contained in (2.4)—(2.15) above, once we remark that bound-
edness in measure implies (2.14). a

2.1.2  Limit energies for nearest-neighbour interactions
From the reasonings above we easily deduce a first convergence result.

Theorem 2.3 Let E, be given by (2.1)—(2.2). Then E,, converge with respect to
the convergence in measure and in L'(0, L) to the energy

L
/ |u'|? dt + a #(S(u)) if u € P-WH2(0, L)
0

F(u) = (2.16)

+o00 otherwise
mn Ll(O, L).

Proof Let u, — u in measure. Then by (2.7)-(2.15) it remains to show that
#(S(u)) < liminf, #(I™). This follows immediately from the facts that S(u) C
S, and that, in the notation of (2.7)—(2.15), #(S) < N = lim,, #(I").

As for the limsup inequality, it suffices to remark that if we take u,, = u €
P-W1e°(0, L) then for n large E,(u,) < F(u). For a general u we may proceed
by density. a
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From the lower semicontinuity properties of I'-limits we immediately have
the following corollary.

Corollary 2.4 The functional F in (2.16) is lower semicontinuous with respect
to the convergence in measure and in L*(0, L).

Remark 2.5 In Theorem 2.3 we can also consider the weak*-convergence of w,,.

2.1.3  Equivalent energies on the continuum

The first difference that meets the eye in Theorem 2.3 from the theory developed
for energy densities with polynomial growth is that we have two different parts of
the energy densities ¥, that give rise to a bulk and a jump energy, respectively.
In particular we cannot simply substitute the difference quotient by a derivative,
or the function v, by its convexification. A continuum counterpart of F, is
immediately obtained if we consider a different identification, other than the
piecewise-affine one, for a discrete functions v : {&f,...,2%} — R: using the

notation
Muwy={ie{l,....n}: |u(@}) —u(zl_ )| > ar,} (2.17)
we may extend u to the whole (0, L) by setting

Ui —1

wio + B ) e (). i g 1)
u(t) = Wit if 27 | <o <l 1+7n,i€[n(u)
U; if 2 — >‘ <z <Ll ieI™(u).

(2.18)

Note that such extension of u belongs to P-W12(0, L),
S(u) = {x” A f"(u)} (2.19)

2 2 I

and we have the identification

En(u) = F(u). (2.20)

In this sense, F' is the continuum counterpart of each F,,.

2.1.4  Limit energies for long-range interactions

We now investigate the limit of superpositions of energies of the form (2.1). Let
(p;) and («;) be given sequences of non-negative numbers. We suppose that if
a;p; = 0 then o; = p; = 0. We define the energy densities

Wi(z) = min{pjzz, /O\[—]} (2.21)

and the energies
n n—j

=33 (M) (2.22)

j=14=0 n
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Theorem 2.6 Suppose that
p >0, ap > 0. (2.23)

Let p, o € (0, 4+00] be defined by

oQ

b= a=Y oy (2.24)
ij=1

j=1

Then the energies E,, T'-converge with respect to the convergence in measure and
in LY(0, L) to the functional F given by

L
p/ || dt + a #(S(v)) if u€ P-WH2(0, 1)
0

F(u) = (2.25)

400 otherwise
in LY(0, L), where it is understood that if « = o0 then F(u) = +oo if S(u) £ 0,
and that if p = +oo then F(u) = o0 if u' £ 0 a.e.

Proof Preliminarily note that by (2.23) we have that the T-limit (exists and)
is +00 outside P-WhH2(0, L).
With fixed K € N consider for n > K the energies

K n—j )
- Z An it (M)’ (2.26)
j=114=0 An
so that
EX (u) < Bau). (2.27)

Forallj=1,...,Kand k=0,...,j—1let

[n /ZJ]: /\n1/)3 (Uk+ z+1 - Uk-|—ij)’ (228)

so that
-1

> ZZE%’k(U). (2.29)

Note that proceeding as in the proof of Theorem 2.3 by interpreting F/* as an
energy on the lattice jA,Z+ kN, , we easily get that EZ* T-converge as n — 400
to the functional F7 (independent of k) given by

oL
p_]/ |/ | dt + o #(S(u)) if uw€ P-WH2(0, 1)
J Jo

Fi(u) = (2.30)

+o00 otherwise.
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We then immediately get the following liminf inequality: if w,, — u then

liminf By, (u,) > lim inf X (u,)

K j-1

>3y lim inf B3 (uy,)

j=1k=0
K ' K .5 K

> jFi(u) = Z/ /[P dt+ ) ja#(S(u
j=1 j=170 i=1

The desired inequality is obtained by letting X' — 400, and using the Monotone
Convergence Theorem.

Let now u € P-WbH2(0, L) be such that F(u) < +oo. Consider first the
case a < 400, p < +00. By a density argument it suffices to consider the case
u € P-W1°°(0, L). In this case we can choose u, = u, and note that

oQ

K
lim sup E,, ( Z hmF] (up) + ¢ Z (p‘7||u/||(2>o —I—jozj#(S(u))).

" j=K+1

In the case when @ = +o0 it suffices to compare with the convex case as ¥ (2) <
pjz?. When p = +oo F is finite only on piecewise-constant u, for which we take
U, = u and the computation is straightforward. ad

2.1.5  Boundary value problems

In contrast to what happened to functionals with limits defined on Sobolev
spaces, the coerciveness conditions at our disposal do not guarantee that min-
imizers satisfying some boundary conditions converge to a minimizer satisfying
the same boundary condition. We have thus to relax the notion of boundary
values.

We consider boundary value problems given in two ways.

(T) Interaction at the boundary: we fix two values Uy and Uy and add to
the energy FE, the constraint «(0) = Uy, u(L) = Ur;

(IT) Interaction through the boundary: we fix ¢ : R — R and add to
E, the ‘boundary value term’

n+K,

j=1 izmax{-j,—K,}

n+K, min{n+jn+K,}
(o) —u(af ;)
+Z Z;l Mt P =),

which corresponds to setting u = ¢ outside [0, L] and to considering the energy
of this extension on an enlarged interval with an addition of a ‘layer’ of size
K, A\, on both sides of the interval.
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We first treat the case (II). For the sake of simplicity we consider the case
when p; = 0 for j > K, and we choose K,, = K. In this case our energy £, + B,
can be written as

K n
~ P Ui — U4
En(u) =3 /\nﬂ)}yl(i‘?/\ ) (2.31)
— = JAn
J=li=—j
with the constraint
w; = ¢(xh) fori € {—K,...,—1}U{n+1,....n+ K} (2.32)

Theorem 2.7 Let ¢ : R — R be a continuous function. Let E, be given by
(2.31)—(2.32). Then E, T'- converges to the functional F' given by

L
p [P i (e € 0.1 ule4) £ u(a-)
(u) = if ue P-WH2(0, L) (2.33)

400 otherwise,

where
K K
p= ija = ZOZ]',
j=1 j=1

and we have set

u(0=) = 6(0),  u(L+) = o(L). (2.34)
Proof Let E,(v,(—L,2L)) be defined by
K 2n—j ' UH_]' — v
Bnv, (=1, 20)) = 32 37 A (HT).
j=li=—n n

the choice of the interval (—L,2L) has been done only for convenience of no-
tation; indeed any open interval containing [0, L] would do. By the previous
results By (-, (—L,2L)) T-converges to the functional F (-, (=L, 2L)) with domain
P-WhH2(—L,2L) and defined there by

2L

Plor2m) =g [ e+ (50))

Let un, — w in measure on (0, L). Let v,, be defined by

#(0) iti<0
up(2]) = S up(2]) f0<i<n
é(L) it i > n,
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and similarly define also v. Note that v, — v in measure on (—L,2L). We then
have

liminf E,, (u,) = lim inf B, (v,, (=L, 2L))
> F(v,(=L,2L)) = F(u).

To obtain the limsup inequality it suffices to take u, = u. a
In the case (I) we treat arbitrarily long-range interactions.

Theorem 2.8 Let E, be given by (2.22) and let E, be given by

Fo(u) = {En(u) if w(0) = Uy and u(L) = Up, (2.35)

400 otherwise.
Then E, T- converges to the functional F given by
L
p [P i+ adt(S() + antt(le € (0,1 s ula+) # ula—)))
0
Fu) = if u e P-WH2(0, L)

400 otherwise,

(2.36)

p:ij, a:Zjaj, Ozo:ZOzj, (2.37)
j=1 j=1 j=1

and we have set

where

w(0=) =Us,  u(l+)=UL. (2.38)

Proof We begin with the case j = 1 and with a boundary condition on only
one side (e.g. at 0). Consider the functional

B (u) = {En(u) if u(0) = Uy

400 otherwise.
As in the proof of Theorem 2.7 we can write
En(u) = En(v, (=L, L)),
where

K3

ny | Uo ifi<0
v(af) = u(z?) if0<i<n

and

n—1
Ea(v, (=L, L)) = > An%(ui%n—ui)

i=—n
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If w,, — u we then obtain

liH}linfEn(un) > p1/0 |’ |2 dt 4+ a1 #(S(u)) + a1 (1 — xo(u(0+) — Ug)).

The limsup inequality is immediately obtained by taking u, = u.

In the same way we treat the boundary condition at L and the boundary
conditions at both sides.

With fixed K can repeat the same reasoning as above for all j € {1,... K}
such that «;p; # 0 (otherwise the limit is trivial) and obtain that the I'-limit of

n—j
s U5 — U .
05y = § 2 (FH=) it =
n - =0 n
+o00 otherwise

as n — +0o is given by

pj /0 |/ | dt + jo#(S(u)) + a;(1 — xo(u(0+) — Up)).

Symmetrically we can treat the case u, = Up. The case of boundary condition
on both sides gives that the I'-limit of

UH_]' — Uy

n—j
. J : _ _
oL (y) = ZZ_; /\M/)n( N ) if u(0) = Uy and u, = U

+o00 otherwise

1s

pj/o |u'|? dt + ja; #(S(u))
a1 = xo(u(04) — Uo)) + (1 = xo(u(—) — U2).

Summing up these considerations we obtain that for all K

L
I-liminf E, > pK/ lu'|? dt
n 0

+a #(S(u)) + off #({x € {0, L} s ulx+) # u(z—)}),

where p& = Zle pj, o = Zle jaj and off = Zle «;. The liminfinequality
is obtained by taking the supremum in K.
The upper inequality 1s obtained by taking u, = u. a

Remark 2.9 Note that we may have o« = 400 but oy < +o0, in which case F
is finite only on W12(0, L) but may be finite also on functions not matching the
boundary conditions.
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2.1.6  Homogenization

We only treat the case of nearest-neighbour interactions. Let ¢ — p; and 7 — «;
define M-periodic functions Z — R:

PitM = pi, Qg M = Oy for all 1.

The energies we consider take the form

En(u) = %min{Anpi(W)z,ai}. (2.39)
i=0 "

Theorem 2.10 The energies E, I'-converge to the energy defined by

L
ﬁ/ |o/|? dt + @#(S(w))  if u € P-WH2(0, L)
0

Fu) =
400 otherwise,
where
Mo
ﬁ:M(g —) , @ = mina;.
i=1 pi !

Proof By following the proof of Theorem 1.23 we immediately obtain the liminf
inequality.
In order to construct a recovery sequence for the I'-limsup, let u € P-W1H2(0, L)

and define v(t) = u(0+) + fot u'(s) ds. Let v, be a recovery sequence for the T-
limit in Theorem 1.23 computed at v. Let & € {0,..., M—1} be such that @ = ay.
Then for all t € S(u) let j,(t) = k mod M be such that |x?n(t) —t] < MA,. Then
the functions

un () = va(ef) + Y (u(t4) = u(t=)

define a recovery sequence for u. a

2.1.7 Non-local limits

For alln € N let p,, : jZ — [0, 4+00). We consider the long-range discrete energies
of Blake Zisserman type

u(z) — u(y)
z,YyEXLZN[0,L]
TEY
defined for u : A\, Z — R, where
¥, (z) = min{\, 2%, 1}.

We make the same assumptions on (py) as in Section 1.7.2.
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Theorem 2.11 If conditions (H1) and (H2) in Section 1.7.2 hold, then there
exist a subsequence (not relabelled), a Radon measure i on R?, a constant ¢; > 0
and an even subadditive and lower semicontinuous function ¢ : R — [0, +00]
such that the energies E,, T-converge to the energy I’ defined on L1(0, L) by

o P+ 3 o)+ [ ) e

r—y

)

F(u) = if u is piecewise W12 on [0, L]

400 otherwise,

(2.41)
where S(u) denotes the set of discontinuity points for u and [u](t) = u(t+)—u(t—)
is the jump of w at t. The measure pr and ¢y are given by (1.68) and (1.67),
respectively, and the function ¢ is given by the discrete phase-transition energy
density formula

=1 f inf 1 n(An(J — k)Y | ="
#(2) M oo |w1|Ii|z| %nmm{ ' Z pn(AnJ ) ( An (G — k) )
J,kEZ, j#k
—2/ A< E<2/mAn
. o . . 1
u:% — R, u(])_Ozfj<—m—/\n, u(])_wzfj>m/\n} (2.42)

for z € R.

Remark 2.12 (i) Since ¢ is subadditive, and it is also non decreasing on [0, +o0)
and even, we have that either it is finite everywhere or ¢(z) = 400 for all z # 0.
In the latter case jumps are prohibited and the domain of F' is indeed W12(0, L).

(i1) We will show below that the function ¢ may be not constant, in contrast
with the case when p,(2) = p(z/A,) for a fixed p.

Proof With fixed m,n € N the minimum value in (2.42) defines an even func-
tion of w which is non-decreasing on [0, +00); hence, by Helly’s Theorem there
exists a sequence (not relabeled) {A,} such that these minimum values converge
for all w and for all m. Hence, we can assume, upon passing to this subsequence
{An}, that the function ¢ is well defined. Upon passing to a further subsequence
we may also assume that the measures p,, in Remark 1.21 converge to pg. Then,
p and ¢ given by (1.68) and (1.67) are well defined as well. Hence, it suffices
to prove the representation for the I'-limit along this sequence, since the sub-
additivity and lower semicontinuity of ¢ are necessary conditions for the lower
semicontinuity of F.

We begin by proving the liminf inequality. Let u, — w in L1(0, L) be such
that sup, Fn(u,) < +00. By hypothesis (H1), if we set

St ={x € MZ: Julz + X)) —ul(x)]* > 1/\.},
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then #S5™ is equibounded, and, upon extracting a subsequence, we can suppose
that S* = {2} : j =1,...,N} with N independent of n 2} < 23 < ... <
zy and 27 — t; for all j. Set S = {t;} C [a,b]. If {zf; },... {2}, } ave the
sequences converging tot € .S then w, (x%; ) — u(t—) and un (2%, +An) — u(t+).
Furthermore, the sequence u,, converges locally weakly in W12((0, L) \ S).

For all p > 0 let S, = {t € R : dist (¢, S) < n}; set also A, = {(z,y) € R?:
|# — y| > n}. Note that the convergence

unle) —unly) | ule) — u(y)
r—y r—y

as n — oo is uniform on (0, L)*\ (S; U A,).
With fixed m € N, we have the inequality

En(tn) > 3 o =y, (Lot i)

r—Yy
z,YEARLZN[0,LINS ),
le—y|<4/m, oy

+ 3 pn@_y)%(w)

r—y
T YEARZO[0,LINS s/,
le—y|<4/m, vy

f Y ey, (el

r—y
z,YyEXLZN[0,L]
le—y|>4/m

= I (wn) + 12 (un) + I3 (uy). (2.43)

The terms I2(u,) and I3 (u,) can be dealt with as in Section 1.7.2. We now
deal with I} (u,). We first note that

Un () — un(y)
I (u) > n(o = ), (= Y0 44
HIESS > e = ) (2 )
teS(u) w,yernZnt—(2/m),t+(2/m)]
TEY

We use the notation introduced above for the sets S™ and S: let t; € S(u) with
corresponding sequences {z’; },...,{z}; } converging to ;. We can suppose, up
to a translation and reflection argument, that [u](¢;) > 0, that

max{un () : # € \Z, t; — (2/m) <z <zxhy } =0
and that
min{u, () : © € \Z, xhy, + Ay <2 <1+ (2/m)} = 2,

with z, — [u](¢;). We then have
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> oz — )0, (M)

r—Y
T,YEXLZN[t; —(2/m),t;+(2/m)]
Ty

> min{ S pal — gy, (LU

=Y
T,YEXLZN[t;—(2/m),t;4+(2/m)]
TEY

o(#hn,) = (), vy, + M) = (e, + M)}

> minf 3 o — gy, (L

r—Y
T,YEXLZN[t; —(2/m),t;+(2/m)]
TEY

v(z) =0if 2 < afy, vir) =z, if 2 > 2y, —|—/\n}

> minf S o — gy, (LY

T YEARZO[t5—(2/m),t5+(2/m)]
TEY

v(a:):Oiftj—zga:gtj—i, v(z) = 2 iftj+i§x§t»+z}
m m m
o , v(g) —vlk)y
= mm{' E P (An (7 k’))\I!n( Ml = k) ) :
JREZN[=2/(mAn),2/(mAn)]
J#k
v(j) =0if —

1 2
<5< = /) = ] <5< . R
j (§) = 2z if 3 <j< 3 } (2.45)

— J = ’/U
mh, mh, mh, mh,

Note that we have used the fact that ¥,, in non decreasing on (0, +00) so that our
functionals decrease by truncation (namely, when we substitute v by (vV0)Azy,).
By taking (2.42) into account and summing up for ¢; € S(u), we obtain

lim inf Iy () > > e([ul(t) +o(1) (2.46)
teS(u)

as m — +oo.
By summing up this inequality to those obtained in Section 1.7.2 and letting
m — +0o we eventually get

liminf By, (u,) > cl/
n (0,

+/(07L)2(M)2du(r,y)~

' [? dt+ 3 ()
I 2

r—y

We now prove the limsup inequality. It suffices to show it for piecewise-affine
functions, since this set is strongly dense in the space of piecewise W2 functions.
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We explicitly treat the case when (0, L) is replaced by (—1, 1) and
ot ift <0
u(t) = {ﬁt—i—z if1>0

only, as the general case easily follows by repeating the construction we propose
locally in the neighbourhood of each point in S(w). Tt is not restrictive to suppose
that z > 0, by a reflection argument, and that ¢(z) < +00, otherwise there is
nothing to prove.

Let n > 0, let m € N with 0 < 1/m < 5 and let z — (1/m) < zn, < z be such
that

. . . u(j) — ul(k
p(z) > hgglmln{ > pr(An(j = k)W (H)
2.Y€Z,~2/(mA,) g k<2 () ntJ

. e 1 . o 1
u:Z >R, uj)=0if j < T u(j) = z2m if j > . }—77. (2.47)

Then there exist functions v}' : \,Z — R such that v (z) = 0 for « < —1/m,
vt (2) = 2 for & > T, 0 < o < 7y, and

n

. vt (x) — v (Y

lim > pn(x —y) ¥, (%) < o(2) +.
T,YEAZL Y

—(2/m)<e,y<(2/m)

We set

u(t+(2/m)) ift<—-2/m
up (1) = ¢ v (%) if —2/m <t <2/m
t—(2/m)) ift>2/m.

—

<
—_ =

Note that u™ — u™ in LY((—=1,1)\ [=1/m,1/m]) as n — oo, where
u(t+ (2/m)) ift<—2/m

0 if =2/m< —1/m

z ifl/m<t<2/m
u(t—(2/m)) ift > 2/m.

W (1) =

We can then easily estimate

lim sup By, (up?)

< limsup > pn(z —y) T, (M)

TYEARZ o FY
—2/m<z,y<2/m

1 m
-Himsup/ (T —Y) —\I!n(u"
(0,L)\ Ay, A

n n r—Y
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4 Jim sup T pn@,_y)wn(ﬁggﬁ;;ﬁgﬁﬁ)
n =Y
r,YEXLZN[0,L], z,y<—1/m, |r-y[<2/m
, up () — up (y)
1 oz — %(" n )
+ lim sup > pn(x = y) p—

r,y€XLZN[0,L], z,y>1/m, |z—y|<2/m

SM@+U+/

m _am 2
(1iﬁ_ﬁjﬂ)dﬂ+q/ WP di 4 o(1)
(0,L)? (0,L)

r—y

as m — +00. Note that we have used the fact that by (1.66) the limit measure p
does not charge 9(0, L)?. By choosing m = m(\,) with m(\,) — +oo as n — oo,

n

and setting u, = unm( we obtain the desired inequality. a

In the following examples for simplicity we drop the hypothesis that p, is
even.

Example 2.13 The function ¢ is not always constant. As an example, take
1 if 2= A,
pn(z) = \/Xn ifz = /\n[l/\/xn]
0 otherwise.

Then it can be easily seen that the minimum for the problem defining ¢ is
achieved on the function v = zX(9,400), Which gives

©(2) = min{1 4 22, 2}.

Note that in this case the I'-limit 1s
| a3 e,
(0,L) i

which is local, but not with ¢ constant.

Example 2.14 If we take

1 if z= A,
pM@={4¢& if 2 = A [1/VAn]

0 otherwise

then by using the (discretization of) v = 2x(0 400) as a test function we deduce
the estimate

©(2) < min{l 4+ 42% 5}.

Since the right hand side is not subadditive, which is a necessary condition
for lower semicontinuity, we deduce that the minimum in the definition of ¢ is
obtained by using more than one ‘discontinuity’.
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Remark 2.15 By the density of the sums of Dirac deltas in the space of Radon
measures on the real line, in the limit functional we may obtain any measure y
satisfying the invariance property

p(A) = p(A+ter +e2))

for all Borel set A and t € R.

Remark 2.16 In the formula defining ¢ we cannot substitute the limit of min-
imum problems on [—2/(mA,), 2/(mAy)] by a transition problem on the whole
discrete line. In fact, if we take

1 ifxz=2A,
pn(x):{l if & = AL[1/A]
0 otherwise,

then the two results are different.

Example 2.17 By again taking p, as in the previous remark, we check that in
this case = (1/vV2)H' L (ry Ur_y), where r; = {x —y = i}.

2.2 Lennard Jones potentials

We now consider a function J : R = R U {400} modeling inter-atomic interac-
tions, with the properties
(i) J(2) = +o0if 2 < 0;
ii) J is smooth on (0, +00);
i) lim, 0 J(2) = +o0.
iv) J is strictly convex on (0,7);
v) J is strictly concave on (T, 4+00);
(vi) lim, s 400 J(2) = 0.

(
(
(
(

Our assumptions are modeled on

k1 ko
J(z) = S (2.48)
for z > 0 All these conditions can be relaxed, and we refer to the general treat-
ment in the next chapter for weaker assumptions.

Note that hypotheses (ii)—(vi) imply that there exists a unique minimum

point, which we denote by M € (0,7'), and that min.J < 0.

The energy we will consider are, with fixed K > 1,

K n—j

Ea(u)=>_

j=11¢=0

/\nJ(UJ’i\;u) (2.49)

Note the scaling in the argument of J; in terms of the general form considered
in the previous chapter, we have ¢ (z) = J(jz).
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2.2.1 Coerciveness conditions

Note that F,(u) is finite only if u is strictly increasing; hence, we can use the
strong compactness properties of increasing functions. In particular, if (u,) is
a sequence of functions locally equi-bounded on (0, L) then there exists a sub-
sequence converging in Ll (0, L), and if all functions are equi-bounded (e.g., if
they satisfy some fixed boundary conditions) then there exists a subsequence
converging in L1(0, L) (actually, in LP (0, L) for all p < oo). Note moreover that,
by Helly’s Theorem, upon passing to a further subsequence we can obtain con-

vergence everywhere on (0, L).

2.2.2  Nearest-neighbour interactions

We begin by treating the case K = 1; i.e.,

U — Uj—1

Fo(u) = i/\nJ(T). (2.50)

It is easily seen that the I'-limit is finite on all increasing functions. However,
deferring the general treatment to the next chapter, we characterize the limit

only on P-WH1(0, L).

Theorem 2.18 The energies E,, ['-converge on P-W11(0, L) with respect to the
LY(0, L) convergence, to the functional F defined by

Flu) = o) Y(u')dt  if u(t+) > u(t—) on S(u) (251)

+o00 otherwise
on P-WH1(0, L), where

s [ J(=) ifz< M
W(z)=J (Z)_{minj ifz>M"

15 the convex envelope of J.

Note that the condition u(t+) > u(t—) on S(u) translates the fact that F'
must be finite only on increasing functions.

Proof Note preliminarily that F will be finite only on increasing functions so
that we need to identify it only on functions u satisfying u(t+) > u(t—) on S(u).
Recall that the functional

T Y(u') dt
(a,b)

is lower semicontinuous on Wh1(a,b) with respect to the L!(a,b) convergence.
Let u € P-WH1(0, L) and write
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N
(0, L)\ S(u U (Ye—1,Yk), (2.52)

where 0 = yo < --- < yy = L. Let u, — win L*(0, L) and E, (u,) < +oo for all
n. Then we have

F(U) - Z /(yk—lyyk) ¢(U/) dt

N
< thmf/ W(ul) dt
" (yk 1,yk)
< lim inf Y(ul,) dit
" Jor

< lim inf/ J(ul,) dt = liminf E,, (uy,).
(0,L) n

n

Conversely, let w € P-WH(0, L) with u(t+) > u(t—) on S(u), and let u, = u.
Then it is easily seen that

lim B, (uy) = / J(u') dt,
n (0,L)

so that
T-limsup By (u) < / J(u')dt.
(0,L)

n

Now, using the notation (2.52), let (uf)] converge to u weakly in WH1 (y,_1, yk)
(and hence also uniformly) and satisfy

li J((u¥)) dt = Y(u') dt.
im L) /( )

J (yk—lyyk
Note that for j sufficiently large the function u; defined by
uj = Uk on (Yk—1,Yx)

satisfies w;(t+) > u;j(t—) on S(u;) = S(u) and u; — w in L'(0, L), so that, by
the lower semicontinuity of the I'-limsup we have

I-limsup By (u) < liminfT-lim sup E, (u;)
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N

- Z/( ) di = F ),

k=1
and the proof is concluded. a

2.2.3  Hwgher-order behaviour of nearest-neighbour interactions

Note that minimum problems involving the limit functional F' present a com-
pletely different behaviour depending on whether the (trivial) convexification
of J is taken into account or not. Consider for example the simple minimum
problem

m= min{F(u) cu(0) =0, u(l) = h}, (2.53)

with A > 0. Then we have:

(compression) if h < ML then the minimum m = L J(h/L) is achieved only
by the linear function u(x) = hx/L. Note that the minimizer has no jump;

(tension) if b > ML then the minimum m = L minJ is achieved by all
functions u € P-Wh1(0, L) such that v’ > M a.e. Note in particular that we can
exhibit minimizers with an arbitrary number of jumps.

In this second case, hence, very little information on the behaviour of the
minimizers of

Mp = min{En(u) cu(0) = 0, u(L) = h} (2.54)
can be drawn from the study of the corresponding problem (2.53) for the T-limit.
To improve this description, we note now that minimizers of m,, also minimize

1) = min En(u) —AHL ming 0y = 0, w(L) = n} (2.55)

n

The choice of the scaling A, is suggested by the fact that, choosing %, = 7,
where w € P-WH1(0, L) is any function with v/ = M a.e. we have E,(u,) <
L minJ + ¢A,. We are then lead to studying the I'-limit of the scaled functions

_ Ep(u) — L minJ

. (2.56)

Theorem 2.19 The functionals Er(Ll) [-converge with respect to the L1(0, L)
convergence to the functional FU) given by

—minJ #(S(u)) if ue P-WH(0, L), u(t+) > u(t—) on S(u)

and v’ = M a.e.

+o00 otherwise

(2.57)
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Proof Again, note preliminarily that F will be finite only on increasing func-
tions so that we need to identify it only on functions w satisfying u(t+) > u(t—)
on S(u).

The liminfinequality will be obtained by comparison. Let sup,, By (u,) < 400
and u, — win L*(0, L). Let

Note that v, = v = u— M=z, and that

(o) = Fun) = 3ot (D10 1))

where )

Note that ¢, — 400 if z # 0, and that
min .J

lim 4, (2) = — :

z2—+00 An

With fixed k € N let EX be defined by

~ u n ) = n ?_ 2 1 . 1
Ef(w):;/\nmin{k(v () /\: (= 1)) ,E(mmJ—E)}.
By the results of the previous chapter E,If [-converge to FE defined by

PR () = k/(w |w'|? dt + (min J — %)#(S(w)) if we P-Wh2(0, L)
+o0 otherwise.
Now, note that for n large enough we have
En > EY,
so that
lim inf £, (u,) = lim inf £, (v,)
> liH}LinfEf(vn) > FE(v).

It will then be sufficient to consider the case v € P-W1L2(0, L); that is, u €
P-WhH2(0, L). In this case we get
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1
lim inf B, (u,) > k/ |u' — M|* dt 4 (min J — T#(S(w).
" (0,L)

By the arbitrariness of k we get the desired inequality.
The limsup inequality is easily obtained. Indeed, if v € P-WbH*(0,L) is
increasing and v’ = M a.e. we can take u,, = u, in which case F,,(u,) = L min J—

min JA, 4+ o(Ay). a

2.2.4  Convergence of minimum problems

From the results of the previous section we can easily derive a description of the
limiting behaviour of minimizers of minimum problems (2.54).

Proposition 2.20 Let h > ML; then from every sequence of minimizers of
problems (2.54) we can extract a subsequence converging in L*(0, L) to an in-
creasing function u € P-W1H°°(0, L) such that ' = M a.e. in (0,L) and, after
setting u(0—) = 0 and u(L+) = h, u has only one jump in [0, L]. Moreover we
have the estimate

mp, = L minJ — A, minJ + o(A,)

as n — 4oo.

Proof By the coerciveness conditions on F,, we can suppose that, upon ex-
tracting a subsequence, the minimizers of m,, converge in L*(0, L). We interpret

(1)

those minimizers also as minimizers of m;,; *. Hence, upon relaxing the boundary
conditions, the limit function u solves the problem

m® = —minJ min{#(S(u)) 1 u € P-Wl’oo(O, L),
v =M ae, u(0—)=0,u(L+) = h}.
where S(u) is interpreted as a subset of [0, L]. The solution of this problem is

clearly a function satisfying the thesis of the theorem, and m(!) = —min J. From
the convergence of minima

n_L i .
mn— Lmind oy )

An n
we complete the proof. a

2.2.5 Long-range interactions

By taking into account the methods of Sections 1.4.2 and 1.4.3 and the proof of
Theorem 2.18 we have the following result.

Theorem 2.21 Let K > 2 and let E,, be defined by

.

K n—

Ep(w) =Y /\nj(%) (2.58)

j=11

I
=)
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The energies By, T'-converge on P-W11(0, L) with respect to the L*(0, L) conver-
gence, to the functional F' defined by

Flu) = o) Y(u')dt  if u(t+) > u(t—) on S(u) (2.59)

400 otherwise
on P-WL1(0, L), where ¢ : R — R U {400} is the conver function given by

K N-—

P(z) = lij{fnmin{;] Z J(u(i 4+ j) — u(i))

j=1 =0

w:{0,..., N} o> R, u(i) =z fori < K oriZN—K}. (2.60)

.

Furthermore, if K =2 then the function ¥ is also defined as 1 = J**, where

J(z)=J(2z) + %min{J(zl) + J(z2) 1 21+ 22 = 22} (2.61)

Proof The proof follows by using the arguments of Theorems 2.18, 1.6 and 1.11,
with ¥4 (2) = J(jz), after noting that ¢ defined above is convex and bounded
at +oo. O

Remark 2.22 The function ¢ satisfies the same assumptions as J upon replac-
ing (vi) with lim,_, 4 ¢(2) = C < 0, but it can be seen that J in general does
not satisfy (iv); i.e., is not of convex/concave form.
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GENERAL CONVERGENCE RESULTS

In order to state and prove general results for the convergence of discrete schemes
we will have to describe the I'-limits of discrete energies in spaces of functions
of bounded variation. We briefly recall some of their properties, referring to [5]
for a complete introduction.

3.1 Functions of bounded variation

We recall that the space BV (a,b) of functions of bounded variation on (a,b)
is defined as the space of functions u € L*(a,b) whose distributional derivative
Du is a signed Borel measure. For each such u there exists f € L'(a,b), a
(at most countable) set S(u) C (a,b), a sequence of real numbers (a¢)ies(u)
with )~ |a;| < 400 and a non-atomic measure D.u singular with respect to the
Lebesgue measure such that the equality of measures Du = f £, +Zt€5(u) apd +
D.u holds. It can be easily seen that for such functions the left hand-side and
right hand-side approzimate limits u™ (t), ut(t) exist at every point, and that
Suy={teR: u (t) Zur(t)} and ay = ut(¢) —u=(t) =: [u](t). We will write
u = f, which is an approximate gradient of u. D.u is called the Cantor part of
Du. A sequence u; converges weakly to u in BV (a,b) if u; — u in L'(a,b) and
sup; |Dujl(a,b) < +oo.

The space SBV (a,b) of special functions of bounded variation is defined as
the space of functions u € BV (a, b) such that D.u = 0; i.e., whose distributional
derivative Du can be written as Du = « L1 + Ztes(u)(u‘l'(t) — u~(¢))d:. This
notation describes a particular case of a SBV -functions space as introduced by
De Giorgi and Ambrosio [15]. We will mainly deal with functionals whose natural
domain is that of piecewise-W'P functions, which is a particular sub-class of
SBYV (a,b) corresponding to the conditions @ € L (a,b) and #(S(u)) < 400, but
we nevertheless use the more general SBV notation for future reference and for
further generalization to higher dimensions (see [4]). For an introduction to BV
and SBV functions we refer to the book by Ambrosio, Fusco and Pallara [5],
while approximation methods for free-discontinuity problems are discussed by
Braides [7].

A class of energies on SBV (a,b) are those of the form

Flayde+ Y7 g(ut (1) —u™ (1)),
S(u)

(a,b)

with f, g : R — [0, +o¢]. Lower semicontinuity conditions on & imply that f is
lower semicontinuous and convex and ¢ 1s lower semicontinuous and subadditive;
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e, g(z+y) < g(x)+g(y). The latter can be interpreted as a condition penalizing
fracture fragmentation, whereas convexity penalizes oscillations. If ¢ 1s not lower
semicontinuous and convex (respectively, subadditive) then we may consider its
lower semicontinuous and conver (respectively, subadditive) envelope; i.e., the
greatest lower semicontinuous and convex (respectively, subadditive) function
not greater than ¢, that we denote by ¢** (respectively, sub™ ¢). For a discussion
on the role of these conditions for the lower semicontinuity of £ we refer to [7]
Section 2.2 or [8]. Energies in BV must satisfy further compatibility conditions
between f and g (see e.g. Theorem 3.1 below and the subsequent remark)

The following theorem is an easy corollary of [2] Theorem 6.3 and will be
widely used in the next section.

Theorem 3.1 For all n € N let f,,, g, : R — [0, +00] be lower semicontinuous
functions. Let o > 0 exists such that
(1) fn is conver and

allz] = 1) < ful2) for every z € R,
(2) gn is subadditive and
allz] = 1) < gn(2) for every z € R.
and suppose that f,g : R — [0, +00] exist such that T-lim, f, = f on R and

I-lim, g, = g on R\ {0}. For notation’s convenience we set g(0) = 0. Let
Hy : BV (a,b) = [0, 4+00] be defined as

Ho () = /an(u)der%gn([U]) if u€ SBV (a,b)

+o00 otherwise.

Then H,, T-converge with respect to the weak topology of BV (a,b) to the func-
tional H : BV (a,b) — [0,400) defined by

H(u) = / F(i) de + o Deut (a,b) + 0~ Deu™(a,b) + > 7([u])
u S(u)

(recall that D.u® denote the positive/negative part of the Cantor measure Deu),
where

F(2) = inf{f(21)+9°(22) : 2 = 21422}, G(2) := inf{f®(21)+g(22) : 2 = 21422},

() = lim 1(t2) ¢°(z) = lim tg(?), and oF = lim @

t—too ¢ t— 400 t+oo {

forall z € R.
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Remark 3.2 Note that if we take g, = ¢ and f,, = f we recover the well-known
compatibility hypothesis £ = ¢° for weakly lower semicontinuous functionals
on BV (a,b).

If £(0) = 0 then it can be easily seen that f = (fAg°)** and § = sub™ (f*Ag).

3.2 Nearest-neighbour interactions

For future reference, we state and prove the convergence results allowing for a
more general dependence on the underlying lattice than in the previous chapters,
at the expense of a slightly more complex notation.

We begin by identifying the functions defined on a lattice with a subset of
measurable functions. Consider an open interval (a,b) of R and two sequences
(An), (an) of positive real numbers with a,, € [a,a+ A,) and A, = 0. Forn € N
let @ <zl < ... < zN» < b be the partition of (a,b) induced by the intersection
of (a,b) with the set a, + A, Z. We define A, (a,b) the set of the restrictions to
(a,b) of functions constant on each [a+ kA,,a+ (k+ 1)A,), k € Z. A function
u € An(a,b) will be identified by N,, + 1 real numbers c2, ... ¢ such that

rn

ifz €zl 2ty i=1,..., N, -1
if z € (a,2}) (3.1)

c
u(z) =< ¢
e if w € [2le ) b).

0
N

For n € N let ¢, : R — [0,400] be a given Borel function and define
By LY(a,b) — [0, +00] as

7

fi;lAn¢m (EEﬁfigzidfgl) r € An(a,b)

+o0 otherwise in L!(a,b).

The following sections contain the description of the asymptotic behaviour of ),
as n — +00.

3.2.1 Potentials with local superlinear growth

We first treat the case when the potentials v satisfy locally a growth condition
of order p > 1. This is the case of non-convex potentials introduced by Blake
and Zisserman and of the scaled Lennard Jones potentials which justify Griffith
theory of fracture as a first-order effect.

Theorem 3.3 For alln € N let T € R exist with
imTF = £o0,  lmATF =0, (3.3)
and such that, if we define F,,, G, : R — [0, +0o0] as
Un(z) T, <z<TF

F.(z) = (3.4)
+oo  z€eR\I[T;,T7}]
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z
Anthn | — 2 € R\ [T AT
Gn(z) = v (An) \ ] (3.5)
400 otherwise
the following conditions are satisfied: there exists p > 1 such that
Fo(2) > |zP VzeR (3.6)
Gn(z) > ¢>0 Vz#0 (3.7)
and, moreover, there exist G : R — [0, +00], such that
I-imF* = F on R, (3.8)
I-limsub™ G, = G on R. (3.9)

Then, (En)y T-converges to E with respect to the convergence in measure on
Lt(a,b), where

/abF(u)dt + >

E(U) = teS(u

+o0 otherwise in L'(a,b).

G(lu)(t))  w € SBV(a,b)
)

Remark 3.4 Note that hypotheses (3.8) and (3.9) are not restrictive upon pass-
ing to a subsequence by a compactness argument. This remark also holds for
Theorems 3.7 and 3.9. Moreover, if I is finite everywhere then I'-convergence in
(3.8) can be replaced by pointwise convergence.

Proof For simplicity of notation we deal with the case Tf = —T =: Ty, the
general case following by simple modifications. Without loss of generality we may
assume

sgp Zléllg Fo(z) < +o0; (3.10)

otherwise we trivially have F' = +o0o and consequently £ = +oo.

With fixed u € L'(a,b) and a sequence (u,) C Ap(a,b) such that u, — u
in measure and sup,, B (uy) < +o0o. Up to a subsequence, we can suppose in
addition that w, converges to u pointwise a.e. We now construct for each n € N
a function v, € SBV(a,b) and a free-discontinuity energy such that v, still
converges to u and we can use that energy to give a lower estimate for F, (uy,).
Set
tn (23) — un (27,)

An

I, ::{ie{l,...,Nn—l}:

> Tn} (3.11)

and



58 General convergence results

un(z}) if z € (a,2})
(Gt . o
vle) =4 o 4 - ) (4 — 4t ) v €[l 2ty ig 1,  (3.12)
un (1) z elsewhere in (a, b).

We have that, for £ > 0 fixed,

{z : |vn'(x)'— up(2)| > €} ' '
Cleele, o), i ¢ I, lun(2th) —un(z))] > e} U(a,zy).  (3.13)

n

Since, for i ¢ I, we have |up, (z5tY) —u, (22)]| < AT, then {z v, (%) —un ()] >
¢} consists at most of the interval (a, =) if n is large enough. Hence, the sequence
(vn ) converges to u in measure and pointwise a.e. Moreover, by (3.7)

c#l, < Ep(un) < M, (3.14)

with M = sup,, B, (uy). By the equiboundedness of #1,, we can suppose that
S(vn) = {zit1}icq, tends to a finite set. For the local nature of the arguments
in the following reasoning, we can also assume that S consists of only one point
zg € (a,b).

Now, consider the sequence (wy,), defined by

v (a) —1—/ on (1) dt iz <z
(a,2)

vn(a)—l—/( )i}n(t)dt—l— Z [vn](t) if x> xo.

teS(vy)

(3.15)

wn () =

Note that wy(a) = vy (a), Wy = On, S(wy) = {xe} and [wy](z0) = Ztes(vn)[vn](t)'
Such a sequence still converges to u a.e. Indeed, since g is the limit point of the
sets S(vy, ), for any > 0 fixed we can find ng(n) € N such that for any n > ng(#)
and for any i € I,, |zg — x| < 5. Hence, by construction, for any n > ng(n)
and for any @ € (a,b)\ [to—n, 2o+ 1], wn (2) = vy (2), that is, the two sequences
(vy) and (wy) have the same pointwise limit. Since wy, = 0, on (a,b), by (3.6) we
have that ([t ||Lr(a,py < M. Then, using Poincaré’s inequality on each interval,
it can be easily seen that (wy,), is equibounded in W1 ((a,b) \ {xo}). Since it
also converges to u pointwise a.e., by using a compactness argument, we get that
u € WhP((a,b) \ {zo}) and, up to subsequences,

Wy, = 4 weakly in LP(a, b).

Moreover, since for any two points a < 1 < g < £z < b we have

T2

wn(22) = (1) + / i dt + ] (0)

Ty
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T2

u(x2) = ulwy) —1—/ adt + [u](zo),

T
taking points x1,zs in which w, converges to u and passing to the limit as
n — 400, we have

[wp] (o) = [u](z0). (3.16)

We can now rewrite our functionals in terms of v,,:

=3 Matalin) + > Gal[al(z5H1))

igl, i€ln
b
:/ Falin)dt+ Y Gul[al(1)).
a t€S(vn)

From (3.14) we also have

/bFn (0n) dt +sub™ Gy, ( Z [vn](t))

teS(vy)

/%M%ﬁHwGGKm)

as n — +oo. Passing to the liminf as n — +00, using (3.16) we have
b
lim inf F,, (u,) > lim inf/ F7* (wy) dt + lim infsub™ Gy, ([w,](20))

b
Z/F@ﬁ+ﬂM%D
as desired.

We now turn our attention to the construction of recovery sequences for the
I-limsup. We may assume in what follows that inf,er Fi,(2) = Fn(0).

Step 1 We first prove the limsup inequality for « affine on (a,b). Set £ = u;
we can assume, upon a slight translation argument, that F(£) = lim, F}*(£).
Then, for each n in N we can find &},62 € R, ¢, € [0, 1] such that

Van
[tnn + (1= 1) = €1 < 5=

tn o (€n) + (1 —ta) Fa(&2) < F7(€) 4 o(1) (3.17)
6l < e = e(§).

Note that in the last inequality the choice of the constant ¢ can be chosen
independent of n thanks to (3.6) and (3.10). It can be easily seen that it is not
restrictive to make the following assumptions on &},:



60 General convergence results

G>& Fal&) S Fa€), (G +1EDvn < 1. (3.18)
We define a piecewise-affine function v, € L!(a,b) with the following properties:
vn (2) = u(x) on (a,z}],
Un | [, i{l_l) = v; e {& &1,

and v’ is defined recursively by

vl :gl
it v if —Vz/\"gvn(an)—l— ST vl Ay i A, —u(2iF) <V
Un = j=1

£l 4+ €2 — vl otherwise.
(3.19)
Since 0 < v, —u < /A, by definition, (v, ), converges to u uniformly, and hence
in measure and, moreover,

=#{i€{0,...,Ny}: v, =&} > t,N,. (3.20)
Indeed, from (3.17), (3.18) and (3.19) we deduce

IN

N (tn (6 = ) + (L= 1) (&2 = ©))

so that
(Bn = taNa) (&, = &) 2 0.
Now, consider the sequence (u,) C A,(a,b) defined by
un (2, ) un (2 ) fori=1,...,N,,
un(a) = vy(a) and wu,(b) = v, (b).

Since (3.13) still holds with u,, v, as above, it can be easily checked that (up),
converges to u in measure. Hence, recalling (3.17), (3.18) and (3.20),

En(un) = M Fp(€1)BE + (No — Bo) A Fn(€2)
< ta A NaFo(60) 4+ (1= tn) Na A Fr(€2)
< Nos (B (€) + 0(1) < (b= a) () + o(1).

Taking the limsup as n — +o0o we get

limsup By (un) < F(€)(b—a) = E(u).

n

The same construction as above works also in the case of a piecewise-affine
function: let [a,b] = U[a;,b;] with @1 = a, b; = a;41 and u constant on each
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(a;,b;), then it suffices to repeat the procedure above on each (a;,b;) to provide
functions v/ in A, (a;,b;) such that

v‘ZL —u In measure
| (aj’ bj)
J (@it _ i (g b;
limnsup | Z Antn (v”(xn z\n vn(a:n)) S/av F(u) de.
{i: @}, €(a;,b;)} J

With j fixed define 3 := max{z!, € (a;,b;)}. Then, the recovery sequence
up, is defined in (a;, b;) as

un (x) = v (x) — Z(vﬁ“(yﬁ +An) = vn(vh).

Since u(z) + —Vz/\" < vl(z) < u(x) 4+ /A, by construction, and |u(y’ + \,) —

u(yt)| < eAn, we have that u, — u in measure and

ZACED DD DR (vé(riﬁ )A; v%(x;)) + P (0)An.

J Air wie(asb)}

By a density argument we can extend the result to functions in WP (a, b).

Step 2 Let u be of the form 2x (s, ») With G(2) < 400 and let 2, be a recovery
sequence for G(z) = T-lim, sub™ G, (u). The sequence sub™ Gy (z,) is bounded,
hence, by (3.7), upon possibly considering a suitable subsequence, there exists
an integer N not depending on n such that

N N
sub” Gp(z,) = supinf{z Gn(zl) : ZZZ —Zn| < 6} .
€ i=1 i=1
Hence, for all n we can find N points {z},..., 2} such that
N . N .
limz z), =z and limz Gn(z,) = G(z). (3.21)
i=1 i=1

Let i, € {1,..., N, } be the index such that zo € [zir zi»T!) and, for n large,
define w, as in (3.1) with

0 if i< in

. S (2) ifi,<i<in+ N
Cp = jg(i—in)( ) (3.22)

N .
S (#) if i >, + N.



62 General convergence results

Clearly (wy ), — u in measure and

ZAnwn (—) ZG (b a)Fa(0)

the estimate follows from (3.21) by passing to the limit as n — +oc.
Step 3 Let u € SBV (a,b) be such that F(u) < 400, then

m

xr
u=v+w with v(z) = / udt+ ¢ and w(z) = ZZjX[xj,b)~
a ]:1
For j = 1,...m let w) be defined as in Step 2 with jumps in U, {xH_Z" J} ~, and
let v, be a recovery sequence for v such that it 1s constant on each [a:n Iy b +
m .
AnNj). The sequence u, = v, + > wl, converges in measure to u and
j=1

limnsupE ' (Un) _hmsup( (vn) —|—ZE w! ) E(w) + E(w) = E(u),
it

as desired. O

Corollary 3.5 Let ¢, : R — [0,+00] satisfy the hypotheses of Theorem 3.3.
Assume that, in addition, for all n € N, F,, = F* on [T,;,T;f] and G,, =
sub™ G, on R\ [A\T7, A\ TF]. Then, for any u € L*(a,b), E,(u) T-converges to
E(u) with respect to the strong topology of L'(a,b).

Proof It suffices to produce a recovery sequence converging strongly in L!(a, b).
Note that in Step 1, by the convexity of F,, we can choose &} = €2 = &, in (3.17).
Then v, = u and u,, turns out to be the piecewise-constant interpolation of u
at points {z¢}. It is easy to check that u, — u strongly in L'(a, b). It remains
to show that also for functions of the form zx(s, ) it is possible to exhibit a
sequence that converges strongly in L!(a,b). To this end it suffices to note that
in Step 2, since G, = sub™ G, locally on R\ {0}, we can find a sequence (z,)
such that (3.21) is replaced by lim, z, = 7z and lim, Gy (2,) = G(z). Hence,
the sequence w,, defined by (3.22) converges to u strongly in L!(a,b) and it is a
recovery sequence. a

Remark 3.6 Note that the hypotheses of the previous corollary are satisfied
if 1, is convex and lower semicontinuous on [T, 7F] and concave and lower
semicontinuous on (—oo, 7, ] and [T}, +00)

3.2.2  Potentials with linear growth

In this section we will consider energy potentials ), such that

Un(z) > a(lz]=1)  Vz€eR (3.23)



Nearest-neighbour interactions 63

for some a > 0. For this kind of energies we can still prove a convergence result to
a free-discontinuity energy, whose volume and surface densities are obtained by
a suitable interaction of the limit functions F'; GG of the two ‘regularized’ scalings
of 1,,. Note that in the following statement the sequences T:F are arbitrary.

Theorem 3.7 Let ¢, : R — [0, +00] satisfy (3.23). For alln € N let T¥ € R
satisfy properties (3.3) and let F,, G, : R — [0,400] be defined as in (3.4).
Assume that F,G : R — [0, 400] exist such that

I-imF* = F on R, (3.24)

I-limsub™ G, = G on R\ {0}. (3.25)

For notation’s convenience we set G(0) = 0. Then, (Ey), T'-converges to E with
respect to the convergence in L(a,b) and the convergence in measure, where

b
F(1) dz + G([u]) + c1 Duf (a,b) + e_y Du_ (a,b) if u € BV (a,b)

400 otherwise,
F(z) = inf{F(21) + G%(22) : 21 + 22 = 2},

é(z) =inf{F®(z1) + G(22) : 21 + 22 = 2},
¢y = Foo(l) and c_1 = Foo(—l).

Remark 3.8 Thanks to (3.23) the theorem can be restated also with respect
to the weak convergence in BV (a,b). Indeed, sequences converging in measure
along which the functionals F, are equibounded are weakly compact in BV.

Proof Again we deal with the case T} = —T =: T,, the general case be-
ing achieved by slight modifications. Let w,,u € L*(a,b) be such that u, — u
in measure and F,(u,) < e. Analogously to the proof of Theorem 3.3, we will
estimate F,(u,) by a free-discontinuity energy computed on a sequence v,, con-
verging to u weakly in BV (a, b). Let I, and v, be defined as in (3.11) and (3.12),
respectively. Note that v, — u in measure and that v, has equibounded total
variation on (a, b). Indeed, by hypothesis (3.23) we have

N,—1

i . . 1
Duv,|(a,b) = WD) — o, (28] € = En(un .
|Dva(a,b) = > Jun(eit) un(23)] < =B (un) + ¢

i=1

From this inequality we easily get that « € BV (a,b), in particular the T'-liminf
is finite only on BV (a, ).
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Up to passing to a subsequence we may assume that v, converges to u weakly
in BV (a, b); moreover, by construction we have

b
By (up) 2/ Fr=(ip)dt + Y sub™Gn([vn]).

S(va)

Hence, it suffices to apply Theorem 3.1 to the functionals on the left hand side
to get the I'-liminf inequality.

To obtain the converse inequality it suffices to provide a sequence v, con-
verging to u in L'(a, b) such that

b
limsup By, (vs) < E1(u) ;:/ Fa)dt+ > G([u)
! ‘ §(u)

when u € SBV (a,b). The general estimate will be then obtained by relaxation
(i.e. by taking f, = F and g, = Gin Theorem 3.1). By a standard approximation
argument it is sufficient to prove this inequality in the simpler cases of u linear
and of u with a single jump. Let u(t) = £¢; we may assume that F(&) < 4oo.
Moreover, we may assume in what follows that inf,cr F,,(#) = F,(0). Then we
can find &} €2 such that the analog of (3.17) holds. In this case, |£}], |€2] are
not necessarily equibounded; nevertheless we have by definition |¢}], [£2] < T;,
since F'(€) < +oo. Thus we can construct the functions v, as in the proof of the
[-limsup-inequality of Theorem 3.3, up to a slight modification. Indeed, if we
replace /A, with A\, T, in (3.17) and (3.19), all those inequalities still hold. In
particular we have that |u(z) — v, (2)| < AT, in (a,b). Thus v, is a recovery
sequence converging to u in L (a, b).

As for the case of u = 2x(p,,p) With G(2) < 400, let 2, = Zf‘i’i zi be such
that G(z) = lim, Zf‘i’i Grn(zL). Note that since lim, Zf‘i’i zi = z, by taking
(3.23) into account, we may assume that Zf‘i’i(z;)‘l' < ¢|z] and the same for
the negative terms. We may assume also that |zi| > A\, 7, for any i. Hence, by
arguing separately on the positive and negative part of (2!), we easily get that

¢lz|

M, < .
YIS

(3.26)

Finally we can construct a sequence of functions w, defined as in (3.22) where
we replace N with M,,. By taking (3.26) into account we easily get

| ||
o s wn (@) # (@)} < d My <

Then w, = u in L*(a,b) and, by construction,

limsup By, (w,) = G(z) = E1(u).

n
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The desired upper estimate follows then by standard arguments. a

3.2.3 Potentials of Lennard Jones type

We now treat the case of potentials with non-symmetric growth conditions, which
still ensure weak- BV compactness of sequences with equibounded energies. These
conditions are satisfied for example by Lennard Jones potentials.

Theorem 3.9 Let ¢, : R — [0, +00] salisfy
Un(z) > (]z]F = 1) for all z < 0. (3.27)
for some p > 1. For alln € N let T,, € R satisfy

HmT, = +oo,  limA,7, = 0, (3.28)

and let F,,, G, : R — [0, 4+00] be defined by

Fo(z) = (3.29)
+oo  z>TF
z
An n 3 ] > Anjjn
Gn(z) = v (An) v (3.30)
+o00 otherwise.

Assume that there exist F, G : R — [0, +o0] such that
I-imF* = F on R, (3.31)

I-limsub™ G, = G on R\ {0}. (3.32)

For notation’s convenience we set G(0) = 0. Then, (Ey), T'-converges to E with

respect to the convergence in L (a,b) and the convergence in measure, where

b
/ F(i)de+ > G([u]) + oDuf (a,b) if u € BVioe(a, b) Deu™ =0,
¢ S(u)
E(u) = and [u] > 0 on S(u),
+o0 otherwise in L'(a,b).

where I and G are defined as in Theorem 3.7 and ¢ := Foo(l).

Proof Let u, — u in measure and be such that F,(u,) < ¢, and assume that
u, — u also pointwise. Set

Ln={ie{l,.... Ny} un(2i) —wun(2h) > N Tn Y,
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and let v, be the sequence of functions defined as in (3.12) with this choice of
I,,. Note that v, — u in measure. By taking hypothesis (3.27) into account we
have the following estimate on the negative part of the (classical) derivative of

b i+1y _ iVN—\p E

/a |(vn)—|P dt S Z /\n((u”(xn )/\n u”(xn)) ) S ”(u”) +e.
iZ1,

Hence, with fixed § > 0 and with fixed #,, 25 points in (a,a + 6), (b — 6,0),

respectively, in which v, converges pointwise to u, we get

Un

[Titas X < e - wel+ [ )@

+9 5(va)N(at6,b—6)

It follows that vy, is bounded in BVjoc(a, b). Since v, — u in measure we get that
vp, converges in BWgc(a,b) to v and hence u € BV (a,b). With fixed 5 > 0,
consider

Fl(z) = (Fn)7(2) +nlzl,  Gl(z) = sub™Ga(z) + nlz|.

For every § € (0, (b—a)/2) we have

b—4
Fn(ttn) +7e(8) > / Fl)di+ Y G,

atd 5(v2)N(at6,b—6)

where ¢(§) = sup,, |Dv,|(a+ 8,5 —6). We can apply Theorem 3.1 and obtain for
every 1 and d

lim inf By, (upn) + ne(9)

b—4
2/ F(a)dt +F " (1)|Deut|(a+6,b—8) + S Gl
atd 5(u)n(at6,b—6)

By letting n — 0 and subsequently § — 0 we obtain the desired inequality.
The construction of a recovery sequence for the I'-limsup follows the same
procedure as in the proof of Theorem 3.7. a

3.2.4  FEzamples

Example 3.10 (i) The typical example of a sequence of functions which satisfy
the hypotheses of Theorem 3.3 (and indeed of Corollary 3.5) is given (fixed (A,)
converging to 0 and C' > 0) by

dn(z) =

with p =2, T,, = /C/\,,

((/\”22) A C)’

=
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2
Fn(z):{z |Z|§\/.C//\n Gn(z):{c 2| > \/C//\n
+00  otherwise, +oo  |z| £ /C/ A,
so that .
E(u) = / Ja? dt + C(S(w)

on SBV (a,b). Discrete energies of this form have been proposed by Blake and
Zisserman.
(ii) Theorem 3.3 allows also to treat asymmetric cases. As an example, let

LAz AC) ifz>0
() =

P if 2 <0.

In this case the T-limit (with respect to both the convergence in measure and
L! convergence) is given by

b
12 . ~
E(u) = /a |a|]* dt + C#(S(u)) if u € SBV (a,b) and ut > u~ on S(u)

+o00 otherwise.
Note that )
C if2>0
G(z) = { 0 if2=0
+oo ifz2<0

forbids negative jumps.

(iii) (Lennard Jones type potentials) Let ¢ : R — [0, 4+00] be a lower semi-
continuous function and satisfy ¢(z) = 0 if and only if z = 0, ¢¥(z) > «(|z]F = 1)
for z < 0 and lim;, 100 ¥(2) = C. Let ¢, = ¢ for all n. Then we can apply
Theorem 3.9 and obtain F' = ¢** and

_J0 ifz>0

GO =\ 4o ifz<0.

Note that F(z) =0if z > 0.
(iv) (scaled Lennard Jones type potentials) Let ¢ be as in the previous ex-
ample, and choose

in(2) = 1 002)

Then we can apply Theorem 3.3 with
F(z) = { 0 ifz=0

400 otherwise,

and G as in Example (ii) above. In this case the limit energy F is finite only
on piecewise-constant functions with a finite number of positive jumps. On such

functions E(u) = C#(S(u)).
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We now give an example which illustrates the effect of the operation of the
subadditive envelope.

Example 3.11 If we take
1
2 2
n(z) = 27 A (An + (J2[VAn = 1)?)

with ), converging to 0, then we obtain F'(z) = z? and

2
G(z) = sub_(1+z2) = min{k—l— % k= 1,2,...}.

3.2.5 A remark on second-neighbour interactions

Consider functionals of the form

i+1 7

Eafu) = 3 Mt (%ﬂ‘“(l’")) 302 (%—nu(m) (3.33)

If both sequences of functions (¢ ), satisfy conditions of Corollary 3.5 and some
additional growth conditions from above, then it can be seen that the conclusions

of Theorem 3.3 hold with
P(z) = lim(9h(2) + 262 (2) ),

and
z

z
G2) = tima (v (57) + 202 (557 )
(o) = tima (h () +462 (55
This means that E, can be decomposed as the sum of three ‘nearest-neighbour
type’ functionals, with underlying lattices A\,Z, 2A,Z and A, (2Z + 1), respec-
tively, whose I'-convergence can be studied separately. We now show that a sim-

ilar conclusion does not hold if we remove the convexity/concavity hypothesis
on Y.

Example 3.12 Let (A,) be a sequence of positive numbers converging to 0, and

let M > 2 be fixed. Let E, be given by (3.33) with

) 22 if 2] < 1/vVEA,
Uh(z) = e (k/\nz) if 2] > 1/VEX,

Neither G is subadditive and we have



Long-range interactions 69

— ~1 _ 2 lf|Z|<8 — 2 _ f|
sub G(Z)_{l it 2] > 8 sub”G*(z) = 2 if|

We can view FE,, as the sum of a first-neighbour interaction functional and two
second-neighbour interaction functionals, to whom we can apply separately The-
orem 3.3, obtaining the limit functionals

b
Fl(u) = / a2 de + 3 sub™ G ([u])
a S(u)
for the first, and

E?(u):/ uf* dt + > sub” G*([u])

S(u)

for each of the second ones. We will show that the I'-limit of E,, is strictly greater
than E'(u) 4+ 2E%(u) at some v € SBV (a, b).

Let u be given simply by u = x(s,,5) With to € (a,b). In this case El(u) +
2E%(u) = 4. Suppose that there exist u, € A,(a,b) converging to u and such
that limsup, Fy,(u,) < 4. In this case it can be easily seen that for n large
enough there must exist ¢, such that

un (217) = un (27 > 4w () — g () < 4,
Jun (71 —un (@7 <1 (27— (2 < L

This implies that
un(a:“‘) — un(a:i"_z) >3, un(xi"'l'z) — un(l‘“‘) < =3,
so that limsup,, By, (u,) > 2M, which gives a contradiction.

3.3 Long-range interactions

We conclude this chapter with a general statement whose proof can be obtained
by carefully using the arguments of Section 1.4.3 and of the previous sections in
this chapter. We use the notation of Chapter 1.

Let K € N be fixed. For alln € N and j € {1,...,K} let ¥ : R —
(=00, +00] be given Borel functions bounded below. Define E, : L'(0,L) —
[0, +00] as

n—j

a J (et = u(al)
Ey(u) = ZZAW”< JAn ) v €40, 1) (3.34)

- j=11=0
+o0 otherwise in L'(0, L).
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We will describe the asymptotic behaviour of £, as n — 400 when the energy
densities are potentials of Lennard Jones type. More precisely, we will make the
following assumptions.

(H1) (growth conditions) There exists a convex function ¥ : R — [0, +0o¢]
and p > 1 such that

lim 2)

Z2——00 |Z|

= 400

and there exist constants c}, c? > 0 such that

(W) — 1) < ¥ (2) < & max{¥(z), |z}

for all z € R.

Remark 3.13 Hypothesis (H1) is designed to cover the case of Lennard Jones
potentials (and potential of the same shape. Another case included in hypotheses
(H1) is when all functions satisfy a uniform growth condition of order p > 1; i.e.,

(I2l" =1) <9 (2) <ell=l + 1)
for all 7 and n.

Before stating our main result, we have to introduce the counterpart of the
energy densities Fj, and G, in the previous section for the case K > 1. The idea
is roughly speaking to consider clusters of N subsequent points (N large) and
define an average discrete energy for each of those clusters, so that the energy
E, may be approximately regarded as a 'nearest neighbour interaction energy’
acting between such clusters; to which the above description applies.

We fix a sequence (N,) of natural numbers with the property

Nn

lim N,, = +oco0, lim— = 0. (3.35)

n n n

We define
K Np—j . . .
. 1 cru(i 4 j) — u(d)
= - jueTJg) —uyN
1/)n(z)_m1n{Nn jg_l 2 1/)n( 7 ) cu:{0,...,N,} = R,

u(x):zxifx:0,...,K,Nn—1(,...,Nn}. (3.36)

By using the energies v¢,, we will regard a system of N, neighbouring points as
a single interaction between the two extremal ones, up to a little error which is
negligible as N, — 400. We can now state our convergence result, whose thesis
is exactly the same as that of Theorem 3.9 upon replacing A, by ¢, := Ny A,.
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Theorem 3.14 Let ¥ satisfy (H1) and let (E,) be given by (3.34). Let v, be
given by (3.36) and let ¢, = NyA,. For all n € N let T,, € R be defined as in
(3.28), and let F,, G, : R — [0, +00] be defined by

Fo(z) = { (3.37)
+0o0 z > T,
z
EnPn - ] > 6nTn
Gn(z) = v <6n) v (3.38)
+o00 otherwise.
Assume that there exist F, G : R — [0, +o0] such that
I-imF* = F on R, (3.39)
I-limsub™ G, = G on R\ {0}. (3.40)

Note that this assumption is always satisfied, upon extracting a subsequence.
Then, (Ey), [-converges to E with respect to the convergence in Ll (0, L) and
the convergence in measure, where

L
/ F(i)de+ > G([u]) + oDuf (0,L) if u € BViee(0,L) Deu™ =0,
’ S(u)
E(u) = and [u] > 0 on S(u),
+o0 otherwise in L*(0, L).
where I and G are defined by (for notational convenience we set G(0) = 0)

F(z) == inf{F () + Go(zz) c21 4+ 29 = 2},

é(z) =inf{F®(z1) + G(22) : 21 + 22 = 2},
and o = Foo(l).
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