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ON DIRICHLET PROBLEM FOR BELTRAMI

EQUATIONS WITH TWO CHARACTERISTICS
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Abstract

We establish a series of criteria on the existence of regular solutions for the Dirichlet problem
to general degenerate Beltrami equations ∂f = µ∂f + ν∂f in arbitrary Jordan domains in C.
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1 Introduction

Let D be a domain in the complex plane C. Throughout this paper we use the
notations z = x + iy, B(z0, r) : = {z ∈ C : |z − z0| < r} for z0 ∈ C and r > 0,
B(r) : = B(0, r), B : = B(1), and C : = C ∪∞.

The purpose of this paper is to study the Dirichlet problem






fz = µ(z) · fz + ν(z) · fz, z ∈ D,
lim
z→ζ

Re f(z) = ϕ(ζ), ∀ ζ ∈ ∂D,(1.1)

in a Jordan domain D of the complex plane C with continuous boundary data
ϕ(ζ) 6≡ const. Here µ(z) and ν(z) stand for measurable coefficients satisfying the
inequality |µ(z)| + |ν(z)| < 1 a.e. in D. The degeneracy of the ellipticity for the
Beltrami equations

fz = µ(z) · fz + ν(z) · fz(1.2)

is controlled by the dilatation coefficient

Kµ,ν(z) : =
1 + |µ(z)|+ |ν(z)|
1− |µ(z)| − |ν(z)| ∈ L1

loc.(1.3)

We will look for a solution as a continuous, discrete and open mapping f : D → C

of the Sobolev class W 1,1
loc and such that the Jacobian Jf (z) 6= 0 a.e. in D. Such

a solution we will call a regular solution of the Dirichlet problem (1.1) in a
domain D.

Recall that a mapping f : D → C is called discrete if the preimage f−1(y)
consists of isolated points for every y ∈ C, and open if f maps every open set
U ⊆ D onto an open set in C.
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For the uniformly elliptic case, i.e. when Kµ,ν(z) ≤ K < ∞ a.e. in D the
Dirichlet problem was studied in [2] and [31]. The solvability of the Dirichlet
problem in the partial case, when ν(z) = 0 and the degeneracy of the ellipticity
for the Beltrami equations

fz = µ(z) · fz(1.4)

is controlled by the dilatation coefficient

Kµ(z) = Kµ,0(z) =
1 + |µ(z)|
1− |µ(z)| /∈ L∞,(1.5)

is given in [10], [14] and [20].
Recall that the problem on existence of homeomorphic solutions for the equa-

tion (1.4) was resolved for the uniformly elliptic case when ‖µ‖∞ < 1 long ago,
see e.g. [1], [2], [21]. The existence problem for the degenerate Beltrami equations
(1.4) when Kµ /∈ L∞ is currently an active area of research, see e.g. the mono-
graphs [14] and [22] and the surveys [13] and [29] and further references therein.
A series of criteria on the existence of regular solutions for the Beltrami equation
(1.2) were given in our recent papers [4]–[6]. There we called a homeomorphism
f ∈ W 1,1

loc (D) by a regular solution of (1.2) if f satisfies (1.2) a.e. in D and
Jf (z) = |fz|2 − |fz̄|2 6= 0 a.e. in D.

2 Preliminaries

To derive criteria for existence of regular solutions for the Dirichlet problem (1.1)
in a Jordan domain D ∈ C we make use of the approximate procedure based
on the existence theorems for the case Kµ,ν ∈ L∞ given in [2] and convergence
theorems for the Beltrami equations (1.2) when Kµ,ν ∈ L1

loc established in [5].
The Schwarz formula

f(z) = i Im f(0) +
1

2πi

∫

|ζ|=1

Re f(ζ) · ζ + z

ζ − z

dζ

ζ
,(2.1)

that allows to recover an analytic function f in the unit disk B by its real part
ϕ(ζ) = Re f(ζ) on the boundary of B up to a purely imaginary additive constant
c = iIm f(0), see, e.g., Section 8, Chapter III, Part 3 in [16], as well as the
Arzela–Askoli theorem combined with moduli techniques are also used.

The following statement, that is a consequence of Theorems 5.1 and 6.1 and
the point 8.1 in [2], is basic for our further considerations. See also Theorem
VI.2.2 and the point VI.2.3 in [21], on the regularity of a W 1,1

loc solution to the
Beltrami equation (1.4) with the bounded dilatation coefficient Kµ.

2.2. Proposition. Let D, 0 ∈ D, be a Jordan domain in the complex
plane C and ϕ : ∂D → R be a nonconstant continuous function. If Kµ,ν ∈ L∞,
then the Dirichlet problem (1.1) has the unique regular solution f normalized by
Imf(0) = 0. This solution has the representation

f = A ◦ g ◦ R(2.3)
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where R : D → B, R(0) = 0, is a conformal mapping and g : B → B stands for a
homeomorphic regular solution of the quasilinear equation

gζ = µ∗(ζ) · gζ + ν∗(ζ) · A
′(g(ζ))

A′(g(ζ))
· gζ(2.4)

in B normalized by g(0) = 0, g(1) = 1. Here µ∗ = R′

R′
· µ ◦ R−1, ν∗ = ν ◦ R−1 and

A(w): =
1

2πi

∫

|ω|=1

ϕ(R−1(g−1(ω))) · ω + w

ω − w

dω

ω
(2.5)

is an analytic function in the unit disk B.

2.6. Remark. Let µ̃ : C → C coincide a.e in the domain D with

(g ◦ R)z
(g ◦ R)z

=
gζ ◦ R · R′

gζ ◦ R · R′
= µ+ ν · R

′

R′
· gζ
gζ

◦ R · A
′

A′
◦ g ◦ R(2.7)

and equal to 0 outside of D, see e.g. the formulas I.C(1) in [1]. Note that
Kµ̃ ≤ Kµ,ν a.e. in D and there is a regular solution G : C → C of the equation
Gz = µ̃Gz such that G(0) = 0, |G(R−1(1))| = 1, G(∞) = ∞ and G = H ◦ g ◦ R
in D. Here H : B → G(D) is a conformal mapping normalized by H(0) = 0,
H′(0) > 0. Thus,

f = A ◦ h,(2.8)

A(w) =
1

2πi

∫

|ω|=1

ϕ(h−1(ω)) · ω + w

ω − w

dω

ω
(2.9)

where
h = g ◦ R = H−1 ◦G(2.10)

stands for a homeomorphism h : D → B, h(0) = 0, which is a regular solution in
D of the quasilinear equation

hz = µ(z) · hz + ν(z) · A
′(h(z))

A′(h(z))
· hz(2.11)

Denote such f , g, A, G, H and h by fµ,ν,ϕ, gµ,ν,ϕ, Aµ,ν,ϕ Gµ,ν,ϕ, Hµ,ν,ϕ and
hµ,ν,ϕ, respectively.

Recall also that, given a family of paths Γ in C, a Borel function ρ : C → [0,∞]
is called admissible for Γ, abbr. ρ ∈ admΓ, if

∫

γ

ρ(z) |dz| ≥ 1(2.12)

for each γ ∈ Γ. The modulus of Γ is defined by

M(Γ) = inf
ρ∈admΓ

∫

C

ρ2(z) dxdy .(2.13)
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2.14. Remark. Note the following useful fact for a quasiconformal mapping
f : D → C, see e.g. V(6.6) in [21], that

M(f(Γ)) ≤
∫

C

K(z) · ρ2(z) dxdy(2.15)

for every path family Γ in D and for all ρ ∈ admΓ where

K(z) =
|fz|+ |fz|
|fz| − |fz|

(2.16)

is the (local) maximal dilatation of the mapping f at a point z ∈ D.

Given a domain D and two sets E and F in C, ∆(E, F,D) denotes the family
of all paths γ : [a, b] → C which join E and F in D, i.e., γ(a) ∈ E, γ(b) ∈ F and
γ(t) ∈ D for a < t < b. Recall that a ring domain, or shortly a ring in C is a
domain R whose complement C \R consists of two connected components.

Recall that, for points z, ζ ∈ C, the spherical (chordal) distance s(z, ζ)
between z and ζ is given by

s(z, ζ) =
|z − ζ |

(1 + |z|2) 1

2 (1 + |ζ |2) 1

2

if z 6= ∞ 6= ζ ,(2.17)

s(z,∞) =
1

(1 + |z|2) 1

2

if z 6= ∞ .

By δ(A) we denote the spherical diameter of a set A ⊂ C, i.e. sup
z,ζ∈A

s(z, ζ).

The following statement is a direct consequence of the known estimate of the
capacity of a ring formulated in terms of moduli, see e.g. Lemma 2.16 in [5].

2.18. Lemma. Let f : D → C be a homeomorphism with δ(C \ f(D)) ≥
∆ > 0 and let z0 be a point in D, ζ ∈ B(z0, r0), r0 < dist (z0, ∂D). Then

s(f(ζ), f(z0)) ≤ 32

∆
· exp

(

− 2π

M(∆(fC, fC0, fA))

)

(2.19)

where C0 = {z ∈ C : |z − z0| = r0}, C = {z ∈ C : |z − z0| = |ζ − z0|} and
A = {z ∈ C : |ζ − z0| < |z − z0| < r0}.

3 BMO, VMO and FMO functions

Recall that a real-valued function u in a domain D in C is said to be of bounded
mean oscillation in D, abbr. u ∈ BMO(D), if u ∈ L1

loc(D) and

‖u‖∗ := sup
B

1

|B|
∫

B

|u(z)− uB| dxdy <∞ ,(3.1)
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where the supremum is taken over all discs B in D and

uB =
1

|B|
∫

B

u(z) dxdy .

We write u ∈ BMOloc(D) if u ∈ BMO(U) for every relatively compact subdomain
U of D (we also write BMO or BMOloc if it is clear from the context what D is).

The class BMO was introduced by John and Nirenberg (1961) in the paper [18]
and soon became an important concept in harmonic analysis, partial differential
equations and related areas, see e.g. [15] and [24].

A function u in BMO is said to have vanishing mean oscillation, abbr.
u ∈ VMO, if the supremum in (3.1) taken over all balls B in D with |B| < ε
converges to 0 as ε → 0. VMO has been introduced by Sarason in [28]. There
exists a number of papers devoted to the study of partial differential equations
with coefficients of the class VMO.

3.2. Remark. Note that W 1,2 (D) ⊂ VMO (D) , see e.g. [7].

Following [17], we say that a function u : D → R has finite mean oscillation
at a point z0 ∈ D if

lim
ε→0

−
∫

B(z0,ε)
|u(z)− ũε(z0)| dxdy < ∞(3.3)

where

ũε(z0) = −
∫

B(z0,ε)
u(z) dxdy

is the mean value of the function u(z) over the disk B(z0, ε) with small ε > 0. We
also say that a function u : D → R is of finite mean oscillation in D, abbr.
u ∈ FMO(D) or simply u ∈ FMO, if (3.3) holds at every point z0 ∈ D.

3.4. Remark. Clearly BMO ⊂ FMO. There exist examples showing that
FMO is not BMOloc, see e.g. [14]. By definition FMO ⊂ L1

loc but FMO is not a
subset of Lp

loc for any p > 1 in comparison with BMOloc ⊂ Lp
loc for all p ∈ [1,∞).

3.5. Proposition. If, for some collection of numbers uε ∈ R, ε ∈ (0, ε0],

lim
ε→0

−
∫

B(z0,ε)
|u(z)− uε| dxdy <∞ ,(3.6)

then u is of finite mean oscillation at z0.

3.7. Corollary. If, for a point z0 ∈ D,

lim
ε→0

−
∫

B(z0,ε)
|u(z)| dxdy < ∞ ,(3.8)

then u has finite mean oscillation at z0.
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3.9. Remark. Note that the function u(z) = log 1
|z|

belongs to BMO in the

unit disk B, see e.g. [24], p. 5, and hence also to FMO. However, ũε(0) → ∞ as
ε → 0, showing that the condition (3.8) is only sufficient but not necessary for a
function u to be of finite mean oscillation at z0.

Below we use the notation A(ε, ε0) = {z ∈ C : ε < |z| < ε0} .

3.10. Lemma. Let u : D → R be a nonnegative function with finite mean
oscillation at 0 ∈ D and let u be integrable in B(0, e−1) ⊂ D. Then

∫

A(ε,e−1)

u(z) dxdy
(

|z| log 1
|z|

)2 ≤ C · log log 1

ε
∀ ε ∈ (0, e−e)(3.11)

For the proof of this lemma, see [17].

4 The main lemma

The following lemma is the main tool for deriving criteria on the existence of
regular solutions for the Dirichlet problem to the Beltrami equations with two
characteristics in a Jordan domain in C.

4.1. Lemma. Let D be a Jordan domain in C with 0 ∈ D and let µ
and ν : D → C be measurable functions with Kµ,ν ∈ L1(D). Suppose that for
every z0 ∈ D there exist ε0 = ε(z0) > 0 and a family of measurable functions
ψz0,ε : (0,∞) → (0,∞), ε ∈ (0, ε0), such that

0 < Iz0(ε) : =

ε0
∫

ε

ψz0,ε(t) dt < ∞ ,(4.2)

and such that
∫

ε<|z−z0|<ε0

Kµ,ν(z) · ψ2
z0,ε

(|z − z0|) dxdy = o(I2z0(ε))(4.3)

as ε → 0. Then the the Dirichlet problem (1.1) has a regular solution f with
Imf(0) = 0 for each nonconstant continuous function ϕ : ∂D → R.

Here we assume that µ and ν are extended by zero outside of the domain D.

Proof. Setting

µn(z) =

{

µ(z) , if Kµ,ν(z) ≤ n,
0 , otherwise in C,

(4.4)

and

νn(z) =

{

ν(z) , if Kµ,ν(z) ≤ n,
0 , otherwise in C,

(4.5)
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we have that Kµn,νn(z) ≤ n in C. Denote by fn, An, Gn, Hn and hn, the functions
fµn,νn,ϕ, Aµn,νn,ϕ Gµn,νn,ϕ, Hµn,νn,ϕ and hµn,νn,ϕ,, respectively, from Proposition 2.2
and Remark 2.6.

Let Γε be a family of all paths joining the circles Cε = {z ∈ C : |z − z0| = ε}
and C0 = {z ∈ C : |z − z0| = ε0} in the ring Aε = {z ∈ C : ε < |z − z0| < ε0}.
Let also ψ∗ be a Borel function such that ψ∗(t) = ψ(t) for a.e. t ∈ (0,∞). Such a
function ψ∗ exists by the Lusin theorem, see e.g. [27], p. 69. Then the function

ρε(z) =

{

ψ∗(|z − z0|)/Iz0(ε), if z ∈ Aε,
0, if z ∈ C\Aε,

is admissible for Γε. Hence by Remark 2.14 applied to Gn

M(GnΓε) ≤
∫

ε<|z−z0|<ε0

Kµ,ν(z) · ρε2(|z − z0|) dxdy ,

and, by the condition (4.3), M(GnΓε) → 0 as ε → 0 uniformly with respect to
the parameter n = 1, 2, . . ..

Thus, in view of the normalization Gn(0) = 0, |Gn(R−1(1))| = 1, Gn(∞) = ∞,
the sequence Gn is equicontinuous in C with respect to the spherical distance
by Lemma 2.18 with ∆ = 1/

√
2. Consequently, by the Arzela–Ascoli theorem,

see e.g. [8], p. 267, and [9], p. 382, it has a subsequence Gnl
which converges

uniformly in C with respect to the spherical metric to a continuous mapping G
in C with the normalization G(0) = 0, |G(R−1(1))| = 1, G(∞) = ∞. Note that
G : C → C is a homeomorphism of the class W 1,1

loc (C) by Corollary 3.8 in [5].

Hence by the Rado theorem, see e.g. Theorem II.5.2 in [12], Hnl
→ H as

l → ∞ uniformly in B where H : B → G(D) is the conformal mapping of B

onto G(D) with the normalization H(0) = 0 and H′(0) > 0. Moreover, since
the locally uniform convergence Gnl

→ G and Hnl
→ H of the sequences Gnl

and Hnl
is equivalent to their continuous convergence, i.e., Gnl

(zl) → G(z∗) if
zl → z∗ and Hnl

(ζl) → H(ζ∗) if ζl → ζ∗, see [Du], p. 268, and since G and H are
injective, it follows that G−1

nl
→ G−1 and H−1

nl
→ H−1 continuously, and hence

locally uniformly.

Then we have that Anl
→ A locally uniformly in B where

A(w) =
1

2πi

∫

|ω|=1

ϕ(h−1(ω)) · ω + w

ω − w

dω

ω
(4.6)

where h : D → B, h(0) = 0, is a homeomorphism h = H−1 ◦G. Note that Anl
and

A are not constant and hence A′
nl
and A′ have only isolated zeros. The collection

of all such zeros is countable. Thus, by Theorem 3.1 and Corollary 3.8 in [5]
hnl

→ h locally uniformly in D and h is a homeomorphic W 1,1
loc solution in D of

the quasilinear equation

hz = µ(z) · hz + ν(z) · A
′(h(z))

A′(h(z))
· hz(4.7)
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Hence fnl
→ f where f = A ◦ h is a continuous discrete open W 1,1

loc solution in D
of (1.2).

Next, note that ReAnl
→ ReA uniformly in B by the maximum principle for

harmonic functions and ReA = ϕ ◦ h−1 on ∂B and, consequently, Re fnl
→ Re f

uniformly in B and Re f = ϕ on ∂D, i.e., f is a continuous discrete open W 1,1
loc

solution of the Dirichlet problem (1.1) in B to the equation (1.2). It remains to
show that Jf (z) 6= 0 a.e. in B.

By a change of variables which is permitted because hnl
and h̃nl

= h−1
nl

belong

to the class W 1,2
loc , see e.g. Lemmas III.2.1 and III.3.2 and Theorems III.3.1 and

III.6.1 in [21], we obtain that for large enough l

∫

B

|∂h̃nl
|2 dudv ≤

∫

h̃nl
(B)

dxdy

1− kl(z)2
≤
∫

B∗

Kµ,ν(z) dxdy < ∞(4.8)

where kl(z) = |µnl
(z)|+ |νnl

(z)| and B∗ and B are relatively compact domains in

D and h̃(D), respectively, such that h̃(B̄) ⊂ B∗. The relation (4.8) implies that

the sequence h̃nl
is bounded in W1,2(B), and hence h−1 ∈ W1,2

loc, see e.g. Lemma
III.3.5 in [25] or Theorem 4.6.1 in [11]. The latter condition brings in turn that h
has (N−1)−property, see e.g. Theorem III.6.1 in [21], and hence Jh(z) 6= 0 a.e.,
see Theorem 1 in [23]. Thus, f = A ◦ h is a regular solution of the Dirichlet
problem (1.1) to the equation (1.2).

4.9. Corollary. Let D be a Jordan domain in C with 0 ∈ D and let µ,
ν : B → C be measurable functions with Kµ,ν ∈ L1(B). Suppose that for every
z0 ∈ B and some ε0 > 0

∫

ε<|z−z0|<ε0

Kµ,ν(z) · ψ2(|z − z0|) dxdy ≤ O





ε0
∫

ε

ψ(t) dt



(4.10)

as ε→ 0, where ψ : (0,∞) → (0,∞) is a measurable function such that

ε0
∫

0

ψ(t) dt = ∞ , 0 <

ε0
∫

ε

ψ(t) dt < ∞ ∀ ε ∈ (0, ε0) .(4.11)

Then the the Dirichlet problem (1.1) has a regular solution f with Imf(0) = 0
for each nonconstant continuous function ϕ : ∂D → R.

5 Existence theorems

Everywhere further we assume that the functions µ and ν : D → C are extended
by zero outside of the domain D.

5.1. Theorem. Let D be a Jordan domain in C with 0 ∈ D and let µ and
ν : D → C be measurable functions such that Kµ,ν(z) ≤ Q(z) ∈ FMO. Then
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the the Dirichlet problem (1.1) has a regular solution f with Imf(0) = 0 for each
nonconstant continuous function ϕ : ∂D → R.

Proof. Lemma 4.1 yields this conclusion by choosing

ψz0,ε(t) =
1

t log 1
t

,(5.2)

see also Lemma 3.10.

5.3. Corollary. In particular, if

lim
ε→0

−
∫

B(z0,ε)

1 + |ν(z)|
1− |ν(z)| dxdy < ∞ ∀ z0 ∈ D ,(5.4)

Then the the Dirichlet problem






fz = ν(z) · fz, z ∈ D,
lim
z→ζ

Re f(z) = ϕ(ζ), ∀ ζ ∈ ∂D,(5.5)

in a Jordan domain D, 0 ∈ D, has a regular solution f with Imf(0) = 0 for each
nonconstant continuous function ϕ : ∂D → R.

Similarly, choosing in Lemma 4.1 the function ψ(t) = 1/t, we come to the
following statement.

5.6. Theorem. Let D be a Jordan domain in C with 0 ∈ D and let µ and
ν : D → C be measurable functions such that Kµ,ν ∈ L1

loc(D). Suppose that

∫

ε<|z−z0|<ε0

Kµ,ν(z)
dm(z)

|z − z0|2
= o

(

[

log
1

ε

]2
)

∀ z0 ∈ D(5.7)

as ε→ 0 for some ε0 = δ(z0). Then the the Dirichlet problem (1.1) has a regular
solution f with Imf(0) = 0 for each nonconstant continuous function ϕ : ∂D → R.

5.8. Remark. Choosing in Lemma 4.1 the function ψ(t) = 1/(t log 1/t)
instead of ψ(t) = 1/t, we are able to replace (5.7) by

∫

ε<|z−z0|<ε0

Kµ,ν(z) dm(z)
(

|z − z0| log 1
|z−z0|

)2 = o

(

[

log log
1

ε

]2
)

(5.9)

In general, we are able to give here the whole scale of the corresponding conditions
in log using functions ψ(t) of the form 1/(t log 1/t · log log 1/t · . . . · log . . . log 1/t).

5.10. Theorem. Let D be a Jordan domain in C with 0 ∈ D and let µ,
ν : D → B be measurable functions, Kµ,ν ∈ L1(D) and kz0(r) be the mean value
of Kµ,ν(z) over the circle |z − z0| = r. Suppose that

δ(z0)
∫

0

dr

rkz0(r)
= ∞ ∀ z0 ∈ D .(5.11)
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Then the the Dirichlet problem (1.1) has a regular solution f with Imf(0) = 0
for each nonconstant continuous function ϕ : ∂D → R.

Proof. Theorem 5.10 follows from Lemma 4.1 by special choosing the functional
parameter

ψz0,ε(t) ≡ ψz0(t) : =

{

1/[tkz0(t)] , t ∈ (0, ε0) ,
0 , otherwise

(5.12)

where ε0 = δ(z0).

5.13. Corollary. In particular, the conclusion of Theorem 5.10 holds if

kz0(r) = O
(

log
1

r

)

as r → 0 ∀ z0 ∈ D .(5.14)

In fact, it is clear that the condition (5.11) implies the whole scale of conditions
in terms of log with using in the right hand side in (5.14) functions of the form
log 1/r · log log 1/r · . . . · log . . . log 1/r.

In the theory of mappings called quasiconformal in the mean, conditions of the
type

∫

D

Φ(Q(z)) dxdy < ∞(5.15)

are standard for various characteristics of these mappings. In this connection, in
the paper [26], see also the monograph [14], it was established the equivalence of
various integral conditions on the function Φ. We give here the conditions for Φ
under which (5.15) implies (5.11).

Further we use the following notion of the inverse function for monotone func-
tions. Namely, for every non-decreasing function Φ : [0,∞] → [0,∞], the inverse
function Φ−1 : [0,∞] → [0,∞] can be well defined by setting

Φ−1(τ) = inf
Φ(t)≥τ

t .(5.16)

As usual, here inf is equal to ∞ if the set of t ∈ [0,∞] such that Φ(t) ≥ τ is
empty. Note that the function Φ−1 is non-decreasing, too.

5.17. Remark. It is evident immediately by the definition that

Φ−1(Φ(t)) ≤ t ∀ t ∈ [0,∞](5.18)

with the equality in (5.18) except intervals of constancy of the function Φ.

Further, in (5.21) and (5.22), we complete the definition of integrals by ∞ if
Φ(t) = ∞, correspondingly, H(t) = ∞, for all t ≥ T ∈ [0,∞). The integral in
(5.22) is understood as the Lebesgue–Stieltjes integral and the integrals (5.21)
and (5.23)–(5.26) as the ordinary Lebesgue integrals.
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5.19. Proposition. Let Φ : [0,∞] → [0,∞] be a non-decreasing function
and set

H(t) = log Φ(t) .(5.20)

Then the equality
∞
∫

∆

H ′(t)
dt

t
= ∞(5.21)

implies the equality
∞
∫

∆

dH(t)

t
= ∞(5.22)

and (5.22) is equivalent to
∞
∫

∆

H(t)
dt

t2
= ∞(5.23)

for some ∆ > 0, and (5.23) is equivalent to every of the equalities:

δ
∫

0

H
(

1

t

)

dt = ∞(5.24)

for some δ > 0,
∞
∫

∆∗

dη

H−1(η)
= ∞(5.25)

for some ∆∗ > H(+0),
∞
∫

δ∗

dτ

τΦ−1(τ)
= ∞(5.26)

for some δ∗ > Φ(+0).

Moreover, (5.21) is equivalent to (5.22) and hence (5.21)–(5.26) are equivalent
each to other if Φ is in addition absolutely continuous. In particular, all the
conditions (5.21)–(5.26) are equivalent if Φ is convex and non–decreasing.

Finally, we give the connection of the above conditions with the condition of
the type (5.11).

Recall that a function ψ : [0,∞] → [0,∞] is called convex if ψ(λt1+(1−λ)t2) ≤
λψ(t1) + (1− λ)ψ(t2) for all t1 and t2 ∈ [0,∞] and λ ∈ [0, 1].

5.27. Proposition. Let Q : B → [0,∞] be a measurable function such
that

∫

B

Φ(Q(z)) dxdy < ∞(5.28)
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where Φ : [0,∞] → [0,∞] is a non-decreasing convex function such that

∞
∫

δ

dτ

τΦ−1(τ)
= ∞(5.29)

for some δ > Φ(0). Then
1
∫

0

dr

rq(r)
= ∞(5.30)

where q(r) is the average of the function Q(z) over the circle |z| = r.

Finally, combining Propositions 5.19 and 5.27 we obtain the following conclu-
sion.

5.31. Corollary. If Φ : [0,∞] → [0,∞] is a non-decreasing convex function
and Q satisfies the condition (5.28), then every of the conditions (5.21)–(5.26)
implies (5.30).

Immediately on the basis of Theorem 5.10 and Corollary 5.31, we obtain the
next significant result.

5.32. Theorem. Let D be a Jordan domain in C with 0 ∈ D and let µ and
ν : D → C be measurable functions such that

∫

D

Φ(Kµ,ν(z)) dxdy < ∞(5.33)

where Φ : [0,∞] → [0,∞] is a non-decreasing convex function satisfying at least
one of the conditions (5.21)–(5.26). Then the the Dirichlet problem (1.1) has
a regular solution f with Imf(0) = 0 for each nonconstant continuous function
ϕ : ∂D → R.

On the same basis, we obtain the following consequence.

5.34. Corollary. In particular, the conclusion of Theorem 5.32 holds if
∫

D∩Uz0

eα(z0)Kµ,ν(z) dxdy <∞ ∀ z0 ∈ D(5.35)

for some α(z0) > 0 and a neighborhood Uz0 of the point z0.

5.36. Remark. By the Stoilow theorem, see e.g. [30], every regular solution
f to the Dirichlet problem







fz = µ(z) · fz, z ∈ D,
lim
z→ζ

Re f(z) = ϕ(ζ), ∀ ζ ∈ ∂D,(5.37)

has the representation f = h ◦ g where g : D → B stands for a homeomorphic
W 1,1

loc solution to the Beltrami equation gz = µ(z) · gz, and h : B → C is analytic.
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By Theorem 5.50 from [26] the conditions (5.21)–(5.26) are not only sufficient
but also necessary to have a homeomorphic W 1,1

loc solution for all such Beltrami
equations with the integral constraint

∫

D

Φ(Kµ(z)) dxdy < ∞.(5.38)

Note also that in the above theorem we may assume that the functions Φz0(t)
and Φ(t) are not convex and non–decreasing on the whole segment [0,∞] but only
on a segment [T,∞] for some T ∈ (1,∞). Indeed, every function Φ : [0,∞] →
[0,∞] which is convex and non-decreasing on a segment [T,∞], T ∈ (0,∞), can
be replaced by a non-decreasing convex function ΦT : [0,∞] → [0,∞] in the
following way. We set ΦT (t) ≡ 0 for all t ∈ [0, T ], Φ(t) = ϕ(t), t ∈ [T, T∗], and
ΦT ≡ Φ(t), t ∈ [T∗,∞], where τ = ϕ(t) is the line passing through the point
(0, T ) and tangent to the graph of the function τ = Φ(t) at a point (T∗,Φ(T∗)),
T∗ ≥ T . For such a function we have by the construction that ΦT (t) ≤ Φ(t) for
all t ∈ [1,∞] and ΦT (t) = Φ(t) for all t ≥ T∗.

The equation of the form

fz = λ(z) Re fz(5.39)

with |λ(z)| < 1 a.e. is called a reduced Beltrami equation, considered e.g. in
[3] and [32], though the term is not introduced there. The equation (5.39) can be
written as the equation (1.2) with

µ(z) = ν(z) =
λ(z)

2
(5.40)

and then

Kµ,ν(z) = Kλ(z) : =
1 + |λ(z)|
1− |λ(z)| .(5.41)

Thus, we obtain from Theorem 5.32 the following consequence for the reduced
Beltrami equations (5.39).

5.42. Theorem. Let D be a Jordan domain in C with 0 ∈ D and let
λ : D → C be a measurable function such that

∫

D

Φ(Kλ(z)) dxdy < ∞(5.43)

where Φ : [0,∞] → [0,∞] is a non-decreasing convex function satisfying at least
one of the conditions (5.21)–(5.26). Then the the Dirichlet problem







fz = λ(z) Re fz, z ∈ D,
lim
z→ζ

Re f(z) = ϕ(ζ), ∀ ζ ∈ ∂D,(5.44)

in a Jordan domain D, 0 ∈ D, has a regular solution f with Imf(0) = 0 for each
nonconstant continuous function ϕ : ∂D → R.
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Finally, on the basis of Corollary 5.34, we obtain the following consequence.

5.45. Corollary. In particular, the conclusion of Theorem 5.42 holds if
∫

D∩Uz0

eα(z0)Kλ(z) dxdy <∞ ∀ z0 ∈ D(5.46)

for some α(z0) > 0 and a neighborhood Uz0 of the point z0.

5.47. Remark. Remarks 5.36 are valid for reduced Beltrami equations.
Moreover, the above results remain true for the case in (1.2) when

ν(z) = µ(z) eiθ(z)(5.48)

with an arbitrary measurable function θ(z) : D → R and, in particular, for the
equations of the form

fz = λ(z) Im fz(5.49)

with a measurable coefficient λ : D → C, |λ(z)| < 1 a.e., see e.g. [3].

Our approach makes possible, under the certain modification, to obtain criteria
on the existence of pseudoregular and multi-valued solutions in finitely connected
domains that will be published elsewhere.
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