
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 880 (2014) 203–224

www.elsevier.com/locate/nuclphysb

2D quantum gravity at one loop
with Liouville and Mabuchi actions

Adel Bilal a, Frank Ferrari b,∗, Semyon Klevtsov c

a Centre National de la Recherche Scientifique, Laboratoire de Physique Théorique de l’École Normale Supérieure,
24 rue Lhomond, F-75231 Paris Cedex 05, France

b Service de Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes,
Campus de la Plaine, CP 231, B-1050 Bruxelles, Belgium

c Mathematisches Institut and Institut für Theoretische Physik, Universität zu Köln, Weyertal 86-90,
50931 Köln, Germany

Received 20 November 2013; received in revised form 6 January 2014; accepted 7 January 2014

Available online 10 January 2014

Abstract

We study a new two-dimensional quantum gravity theory, based on a gravitational action containing both
the familiar Liouville term and the Mabuchi functional, which has been shown to be related to the coupling
of non-conformal matter to gravity. We compute the one-loop string susceptibility from a first-principle,
path integral approach in the Kähler parameterization of the metrics and discuss the particularities that arise
in the case of the pure Mabuchi theory. While we mainly use the most convenient spectral cutoff regulariza-
tion to perform our calculations, we also discuss the interesting subtleties associated with the multiplicative
anomaly in the familiar ζ -function scheme, which turns out to have a genuine physical effect for our calcu-
lations. In particular, we derive and use a general multiplicative anomaly formula for Laplace-type operators
on arbitrary compact Riemann surfaces.
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1. Introduction

Two-dimensional gravity on Riemann surfaces has been studied since long by various meth-
ods. Discrete approaches involve triangulations [1] and matrix models [2]. The latter also easily
incorporate the coupling to various types of conformal matter systems [3]. The continuum ap-
proach has been mainly focusing on conformal gauge and the coupling to conformal matter
using the Liouville action [4]. While this action is relatively well understood [5], the appro-
priate functional integral measure is complicated, very different from a standard Gaussian one.
Nevertheless, it was shown in [6] that, if one adopts the simplifying assumption of a free-field
measure, one can still and quite remarkably satisfy the fundamental constraint of background in-
dependence, at the expense of modifying some parameters in the Liouville action. This approach
then yields the celebrated formula for the area dependence of the fixed-area quantum gravity
partition function in the presence of conformal matter with central charge c [6]. If one defines
the coupling constant κ2 by

κ2 = 26 − c

3
, (1.1)

one finds that the partition function scales as

Z(A) ∼ eμ2AAγstr(κ
2)−3, (1.2)

where μ2 is a renormalization-dependent cosmological constant and γstr is the string susceptibil-
ity for a genus h compact Riemann surface, given by

γstr
(
κ2) = 2 + 2(h − 1)

√
κ2 − 1/3√

κ2 − 1/3 − √
κ2 − 25/3

. (1.3)

The semi-classical limit of the above formula corresponds to c → −∞ or equivalently to
κ2 → ∞. More precisely, expanding in inverse powers of κ2, a term in κ2(1−L) corresponds
to the L-loop contribution. Thus, up to one loop,

γstr = h − 1

2
κ2 + 19 − 7h

6
+ O

(
κ−2). (1.4)

Notwithstanding its non-rigorous derivation, the formula (1.3) has been verified in many in-
stances and has scored many successes. One of its major mysteries, however, is the famous c = 1
barrier: γstr becomes complex for central charges in the interval 1 < c < 25.

Very little is known about models of two-dimensional gravity that go beyond the Liouville
theory. However, it is very natural to seek for consistent generalizations, both from the physical
and mathematical points of view. The Liouville action is special because it universally describes
the coupling of any conformal field theory to gravity, but it says nothing about the much larger
class of models obtained by coupling gravity to a non-conformal quantum field theory. Recently,
it was shown in [7] that, in an expansion in the inverse of the mass of a scalar matter field, the
gravitational action picks a new term proportional to the so-called Mabuchi action. For exam-
ple, for a scalar field of mass m minimally coupled to gravity on a two-sphere of area A, the
gravitational action is given in the small m2A limit by

S = 25

24π
SL + m2A

16π
SM + O

(
m2A

)2
. (1.5)

The first term in this equation is the usual Liouville contribution for a c = 1 massless scalar field,
whereas the second term proportional to the Mabuchi action yields the leading contribution at
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non-zero mass. More general cases are discussed in [7]. The precise definitions of the Liouville
and Mabuchi actions are reviewed in Section 2.2.

This result is quite interesting, because the Mabuchi action has many remarkable properties
and has played a prominent role in the mathematical literature on Kähler geometry in recent
years, see e.g. [8]. The Mabuchi action satisfies the cocycle condition, which is a basic consis-
tency requirement for any gravitational effective action. It is bounded from below and convex,
which makes it a good candidate to be used in a path integral. Unlike the Liouville action, it is
also defined in any complex dimension and thus provides a window on higher-dimensional grav-
ity as well. Finally, let us note that it was realized in [9] that the path integral involving the
Mabuchi action appeared in disguise in [10], where it was proposed as an effective collective
field theory for the droplets in the quantum Hall regime.

The goal of the present note is to continue a study, initiated in [7,11], of the Mabuchi quantum
gravity from first principles, with and without the presence of an additional Liouville term. In this
context, it is very natural to parameterize the metrics of given area A by their Kähler potential φ,
instead of the more familiar conformal factor σ . The Mabuchi functional is most naturally ex-
pressed in terms of φ and the partition function at fixed area Zgrav(A) is simply given by a path
integral over φ. Of course, the Kähler point of view ought to be equivalent to the description in
terms of the conformal factor, since in two dimensions there is a one-to-one map between (A,φ)

and σ .
A startling aspect of the Kähler point of view is that a natural non-perturbative regularization

scheme exists [11], in which the space of Kähler metrics is approximated by a finite-dimensional
space of Bergman metrics, which in turn are parameterized by Hermitian N × N matrices. The
integer N plays the role of a cutoff which must be sent to infinity. This approach to the quantum
Mabuchi theory is pursued further in [12]. In the present work we shall be more modest and use a
simple perturbative approach. Our main goal is to generalize the formulae (1.3), (1.4) to include
the effect of the Mabuchi action at one loop. Let us quote here our result for the one loop string
susceptibility in the Liouville plus Mabuchi theory, β2 being the coupling constant in front of the
Mabuchi action (see Eq. (2.22)),

γstr = h − 1

2
κ2 − 2β2 + 19 − 7h

6
− 4β2

κ2
. (1.6)

A similar calculation was presented long ago by Zamolodchikov for the Liouville theory on the
sphere [13], much before the exact formula (1.3) was postulated. Unlike Zamolodchikov, who
used the conformal factor and the ζ -function regularization scheme, we shall use the Kähler for-
malism and a smooth spectral cutoff, along the lines developed in [14]. This provides the simplest
derivation of the one-loop partition functions and makes manifest the scheme-independence of
the results. Moreover, this approach can be generalized to higher loops [14]; the two loop cal-
culation will be presented elsewhere [15]. We also discuss the ζ -function regularization scheme,
which introduces some interesting subtleties in the Kähler parameterization, related to the so-
called multiplicative anomaly [16,17].

This paper is organized as follows. In the next section, we formulate and study two-
dimensional quantum gravity in the Kähler formalism on an arbitrary Riemann surface of
genus h, defining the integration measure over the space of metrics and the gravitational ac-
tion which is an arbitrary combination of the Liouville and Mabuchi functionals. At one-loop,
the corresponding partition function is given by a ratio of determinants of operators involving the
Laplace operator. The regularization of these formal ratios of determinants is studied in Section 3,
using the smooth spectral cutoff scheme. We show that the divergences can be absorbed in the
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standard cosmological constant counterterm, yielding a finite and scheme-independent string sus-
ceptibility. We also discuss the case of the pure Mabuchi theory, which is argued to correspond to
a non-perturbative quantum gravity theory with a non-trivial UV fixed point. Finally, we conclude
in Section 4. Another familiar regularization method is the ζ -function scheme. In our case, this
method introduces non-trivial subtleties associated with the multiplicative anomaly phenomenon.
Unlike the known quantum field theoretic examples [17], where this anomaly is actually unphys-
ical and can be absorbed in the local counterterms [18], it does play a non-trivial physical role
in the present quantum gravity context. This is explained in details in Appendix A where, in par-
ticular, we derive a new general multiplicative anomaly formula for Laplace-type operators on
arbitrary compact Riemann surfaces. Of course, the correct analysis in the ζ -function scheme
reproduces the results obtained in the main text. We have also included a brief discussion of the
sharp cutoff method for the round sphere in Appendix B.

2. Liouville and Mabuchi quantum gravity

Our goal is to the study various partition functions of two-dimensional quantum gravity on
compact Riemann surfaces of genus h and in particular their dependence on the area A of the
surface. The basic ingredients are the correct definition of the measure on the space of metrics,
as well as the relevant gravitational actions which can be the Liouville or Mabuchi actions, or a
combination of both. While the Liouville action is usually written in terms of the conformal factor
variable σ , the Mabuchi action is most naturally defined in terms of the Kähler potential φ. There
is a one-to-one mapping between σ and (A,φ).

2.1. The measure on the space of metrics

We pick a compact Riemann surface with fixed complex structure moduli. Modulo the action
of diffeomorphisms, any metric g on the surface can be written in the form

g = e2σ g0, (2.1)

where g0 is a reference metric which can be chosen to be the constant scalar curvature metric of
some given area A0. If A is the area of the metric g, the Kähler potential is defined by

e2σ = A

A0

(
1 − 1

2
A0	0φ

)
. (2.2)

Given σ , the above relation actually defines A and φ uniquely, up to unphysical constant shifts
of φ. The relation (2.2) is equivalent to the relation

ω = A

A0
ω0 + iA∂∂̄φ (2.3)

between the volume (Kähler) forms of the metrics g and g0. For later convenience, we also intro-
duce the constant scalar curvature metric g∗ of area A, with corresponding Laplace operator 	∗
and Ricci scalar R∗,

g∗ = A

A0
g0, 	∗ = A0

A
	0, R∗ = A0

A
R0. (2.4)

Since we want to do quantum gravity, we will need to integrate over the space of metrics
modulo diffeomorphisms. The integration measure on this space can be derived from a choice of
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metric on the space of metrics. It is customary to assume that the correct metric must be ultralocal
and thus must take the form ‖δg‖2 = ∫

d2x
√

g δgabδgcd(gacgbd + cgabgcd) for some constant
c > −1/2 (other choices may actually be natural and mathematically consistent [11], see below).
Using (2.1), this yields

‖δg‖2 = 8(1 + 2c)‖δσ‖2, ‖δσ‖2 =
∫

d2x
√

g0 e2σ (δσ )2. (2.5)

The functional integration measure Dσ over σ is induced from this metric. Because of the non-
trivial factor e2σ , it is not the measure of a free field. Instead of σ , we can also use equivalently
the variables (A,φ). These variables are particularly convenient when one works at fixed area.
Using (2.2), the metric (2.5) yields

‖δσ‖2 = (δA)2

4A
+ ‖δσ‖2

A, (2.6)

with the ‖δσ‖2
A being the metric on the space of metrics for fixed area A,

‖δσ‖2
A = 1

16

∫
d2x

√
g(A	δφ)2. (2.7)

In view of our later treatment of the semiclassical approximation, it is convenient to rewrite this
metric as

‖δσ‖2
A = 1

16

∫
d2x

√
g0 e2σ

(
e−2σ A	0δφ

)2

= 1

16

∫
d2x

√
g∗

(
1 − 1

2
A	∗φ

)−1

(A	∗δφ)2. (2.8)

Formally, (2.6) thus induces a measure

Dσ = dA√
A
Dφ = dA√

A

[
Det′

(
1 − 1

2
A	∗φ

)−1]1/2

Det′(A	∗)D∗φ, (2.9)

where D∗φ is the standard free field integration measure in the background metric g∗ deduced
from the metric ‖δφ‖2∗ = ∫

d2x
√

g∗ δφ2 in the space of Kähler potentials. The notation Det′
means that we are not taking into account the zero mode of the Laplacian when computing
the determinant, consistently with the fact that the zero mode of φ is unphysical and thus must
not be included in the integration measure over the Kähler potentials. The measure D∗φ can
be expressed in the traditional way by expanding φ in eigenmodes of the Laplace operator.
If 0 = λ0 < λ1 � λ2 � · · · are the eigenvalues,

φ =
∑
r>0

crψr, 	∗ψr = λrψr,

∫
d2x

√
g∗ ψrψs = δrs, (2.10)

we have

D∗φ =
∏

dcr . (2.11)

r>0
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Of course, we could instead define an expansion of φ with respect to eigenfunctions normalized
with the metric g0 of area A0. Obviously, one then has

λr = A

A0
λ0

r , cr =
√

A

A0
c0
r , ψr =

√
A0

A
ψ0

r (2.12)

and the measure D0φ = ∏
r dc0

r is related to D∗φ by D∗φ = e
1
2

∑
r ln A

A0 D0φ. Of course, all these
relations are formal and must be regularized, as we shall discuss in the next section.

Remarks.
(i) Writing the metric g in the form (2.1) amounts to fixing the action of the diffeomorphisms.

This produces the well-known ghosts, whose effects can be absorbed in the coefficient κ2 of the
Liouville action defined in the next section (they contribute the 26 in (1.1)). A further subtlety
arises in the case of the sphere h = 0, because the gauge-fixing (2.1) is then incomplete. An addi-
tional gauge fixing of the residual SL(2,C)/SU(2) group of diffeomorphisms acting non-trivially
on σ and φ must be performed. The result of this procedure is simply to project out the spin-one
modes of φ in the decomposition (2.10) and to produce an overall factor of A3/2 in the partition
function coming from the Faddeev–Popov determinant.

(ii) The space of Kähler potentials φ over which we integrate with the measure (2.9) is really
the set of functions expanded as in (2.10) constrained by the inequality

A	∗φ < 2. (2.13)

This condition comes from the positivity of the metric, see e.g. the formula (2.2). In perturbation
theory around φ = 0, (2.13) is irrelevant and thus will not bother us in the present paper. How-
ever, it is crucial in cases where the perturbation theory breaks down or, more generally, in the
non-perturbative definition of the integral over Kähler potentials. In [11], it is explained how
the constraint (2.13) can be elegantly solved by using a matrix parameterization of the Kähler
potentials, reducing in this way the non-perturbative quantum gravity path integral to a matrix
model.

2.2. Liouville and Mabuchi actions

2.2.1. Liouville action
The Liouville action is given in terms of a fixed reference metric g0 and the metric g defined

in (2.1),

SL[g0, g] =
∫

d2x
√

g0(σ	0σ + R0σ). (2.14)

This action satisfies the so-called cocycle identity,

SL
[
g,g′′] = SL

[
g,g′] + SL

[
g′, g′′], (2.15)

which is a fundamental consistency condition any gravitational action must satisfy (see e.g. [7]).
The semiclassical partition function at fixed area will be dominated by the minimum of the

Liouville action at fixed area. The constraint of fixed area is most easily implemented by using
the parameterization (2.2) in terms of A and φ instead of σ . The variation of SL with respect to
φ then yields

δSL = −A
∫

d2x
√

g	R[g]δφ. (2.16)

4
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We thus find that the classical saddle point of the Liouville action is the metric of constant
curvature, which is a well-known result. If we choose our reference metric g0 to be of constant
curvature, with area A0, the saddle point value of σ is σ∗ = 1

2 ln A
A0

whereas φ∗ is constant.
Expanding around this saddle point up to quadratic order then leads to

SL[g0, g] = 4π(1 − h) ln
A

A0
+ 1

16

∫
d2x

√
g∗ φ(A	∗)2

[
	∗ + 8π(h − 1)

A

]
φ + O

(
φ3).
(2.17)

The terms O(φ3) are relevant beyond the one loop approximation. Let us note that the zero modes
of the operator governing the quadratic fluctuations are projected out; as stressed in Section 2.1,
the zero mode of φ is unphysical for all h and, for h = 0, the spin-one components, which are
associated with three additional zero modes in this case, are eliminated by the full gauge-fixing
of the group of diffeomorphisms.

Remark. The full A-dependence of the Liouville action comes from the tree-level term SL(σ∗) =
4π(1 − h) ln(A/A0) in (2.17). The factors of A in the quadratic fluctuations can be absorbed by
using A	∗ = A0	0 and

√
g∗ = A

A0

√
g0. It is easy to check that this property actually remains

true to all orders in the expansion. All the non-trivial area dependence of the quantum gravity
partition function is thus a sort of anomaly and must come from the path integral measure or,
more precisely, from the fact that a regularization procedure is required.

2.2.2. Mabuchi action
The Mabuchi action can be written in terms of the fixed reference metric g0 and the metric g

defined in (2.1) and parameterized as in (2.2),

SM[g0, g] =
∫

d2x
√

g0

[
2π(h − 1)φ	0φ +

(
8π(1 − h)

A0
− R0

)
φ + 4

A
σe2σ

]
. (2.18)

This action is a well-defined functional of the metric g because it is invariant under constant
shifts of φ, as can be easily checked by using the Gauss–Bonnet theorem. Moreover, it satisfies
the fundamental cocycle identity,

SM
[
g,g′′] = SM

[
g,g′] + SM

[
g′, g′′], (2.19)

showing that it is a priori a consistent gravitational action. This was explicitly demonstrated
in [7], where it was shown that it enters when a scalar field with a small non-zero mass is coupled
to gravity.

Varying the metric g at fixed area, or equivalently varying φ, one gets

δSM =
∫

d2x
√

g

(
8π(1 − h)

A
− R

)
δφ, (2.20)

which shows that the saddle point of SM is, as for the Liouville action, the metric of constant
curvature. Expanding around this saddle point up to quadratic order, we then find

SM[g0, g] = 2 ln
A

A0
+ 1

4

∫
d2x

√
g∗ φA	∗

(
	∗ + 8π(h − 1)

A

)
φ + O

(
φ3). (2.21)

The operator governing the quadratic fluctuations is quite similar to the Liouville case, see (2.17).
In particular, the zero modes are harmless because they have been projected out.
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Remark. As in the case of the Liouville action, the full A-dependence of the Mabuchi action
comes from the tree-level term 2 ln(A/A0) in (2.21); this is true to all orders in the φ-expansion.

2.3. One-loop quantum gravity partition functions

We want to compute the quantum gravity partition function with a total action which is a
combination of both the Liouville and the Mabuchi functionals, which we write as

S[g0, g] = κ2

8π
SL[g0, g] + β2SM[g0, g]. (2.22)

The total partition function is given by

Zgrav =
∫

dAe−μ2AZ
(
A;κ2, β2), (2.23)

where μ2 is an arbitrary cosmological constant and the partition function at fixed area is formally
given in terms of the path integral measure Dφ defined in (2.9) by

Z
(
A;κ2, β2) = 1√

A

∫
Dφ e− κ2

8πε
SL[g0,g]− β2

ε
SM[g0,g]. (2.24)

We have introduced a formal loop counting parameter ε in terms of which one can write a loop
expansion of the form

lnZ =
∑
L�0

εL−1WL. (2.25)

We shall limit ourselves to the one-loop approximation in the following. The tree-level contribu-
tion W0 can be read from the tree-level terms in (2.17) and (2.21),

W0 =
(

h − 1

2
κ2 − 2β2

)
ln

A

A0
. (2.26)

This yields a tree-level string susceptibility

γ tree-level
str = h − 1

2
κ2 − 2β2 (2.27)

generalizing the leading term in (1.4). At one-loop, the complicated determinant factor
[Det′(1 − 1

2A	∗φ)−1]1/2 in the measure (2.9) is irrelevant and we can thus perform directly
the Gaussian integration over φ, using the expansions (2.17) and (2.21), to get

W1 = −1

2
lnA + ln Det′(A	∗)

− 1

2
ln Det′

[
A	∗

(
	∗ + 8π(h − 1)

A

)(
κ2

32π
A	∗ + β2

)]
, for h � 1. (2.28)

On the sphere h = 0, this formula must be slightly modified by removing the three spin-one zero
modes from the determinant, which we indicate by the notation Det′′, and adding the associated
contribution of 3 lnA from the Faddeev–Popov determinant, which yields
2
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W1 = lnA + ln Det′′(A	∗)

− 1

2
ln Det′′

[
A	∗

(
	∗ − 8π

A

)(
κ2

32π
A	∗ + β2

)]
, for h = 0. (2.29)

Of course, these expressions are formal and must be regularized, as discussed in the next section.
So far, we have been using the measure (2.9) to define the quantum gravity partition functions.

This measure comes from the unique ultralocal metric on the space of metrics, as explained
in Section 2.1. In the context of quantum gravity, we believe that it is natural to consider the
possibility that other measures could be relevant. Indeed, unlike in the case of local quantum
field theories, the requirement of the ultralocality of the measure does not seem to have firm
conceptual foundations. Instead of locality, the fundamental requirement in quantum gravity is
rather background independence and any measure that satisfies this constraint is a priori a good
candidate to be used in the path integral. For example, a very natural background-independent
measure on the space of Kähler potentials is derived from the so-called Mabuchi metric

‖δφ‖2
M =

∫
d2x

√
g(δφ)2. (2.30)

The associated integration measure DMφ is formally related to the standard measure Dφ appear-
ing in (2.9) by

Dφ =DMφ Det′(A	). (2.31)

Using this measure DMφ, one can then define a “Mabuchi” quantum gravity path integral by

ZM
(
A;κ2, β2) =

∫
DMφ e− κ2

8π
SL[g0,g]−β2SM[g0,g]. (2.32)

3. Regularization

In the previous section, we expressed the partition functions in terms of various determinants
of Laplace-type operators or of products of such operators. These determinants are formal ex-
pressions that must be regularized to obtain well-defined quantities.

A standard regularization and renormalization technique for determinants is the ζ -function
method. For a given operator O with eigenvalues on, this consists in defining the spectral
ζ -function as ζO(s) = ∑

n o−s
n by analytic continuation from those values of s where the sum

converges absolutely, and defining the renormalized determinant by ln Det(ζ ) O = −ζ ′
O(0). How-

ever, this convenient and powerful method has several drawbacks. First, it does not allow a
physical discussion of the divergences, as they are suppressed abstractly by the procedure of
analytical continuation. Second, this method is essentially limited to one-loop computations.
Third, one has to deal with the so-called multiplicative anomaly [16,17]: the ζ -renormalized
determinant of a product of operators does not always equal the product of the ζ -renormalized
determinants of the operators. This ambiguity is usually harmless because it is associated with
the familiar fact that the determinants are defined modulo the addition of arbitrary local coun-
terterms. In this respect, the multiplicative “anomaly” is irrelevant [18]. However, and quite
remarkably, in the present quantum gravity context, this anomaly can have genuine physical ef-
fects. In particular, it is crucial to take into account the multiplicative anomaly when performing
the change of variables from the conformal factor σ to the area A and Kähler potential φ in the
path integral if one uses the ζ -function regularization scheme. Overlooking this subtlety would
yield the wrong answer for the area dependence of the partition function! All this is explained
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in details in Appendix A, which contains in particular the derivation of a general formula for the
multiplicative anomaly in the ζ function scheme.

Another regularization scheme, which makes the discussion simpler and more physical, is
the general spectral cutoff approach recently developed in [14]. As explained in details in [14],
this scheme can be viewed as a generalization of the ζ -function approach while avoiding all the
drawbacks just mentioned. We shall thus use this approach in the following.

At one-loop, the spectral cutoff scheme is extremely simple to describe because the generic
one-loop quantity one has to compute takes the form of an infinite sum∑

r

G(λr), (3.1)

where G is a function of the eigenvalues λr of an appropriate operator which for us is always the
positive Laplacian 	. The spectral cutoff regularization uses a general cutoff function f , which
is conveniently expressed as a Laplace transform

f (x) =
∞∫

0

dα ϕ(α)e−αx (3.2)

and which must satisfy the condition

f (0) = 1. (3.3)

The formal sum (3.1) is then defined as

∑
r

f,Λ,M
G(λr) =

∑
r

f

(
λr + M2

Λ2

)
G(λr) =

∞∫
0

dα ϕ(α)

[∑
r

G(λr)

]
t= α

Λ2 , M

, (3.4)

where[∑
r

G(λr)

]
t,M

=
∑

r

e−t (λr+M2) G(λr), (3.5)

Λ is the cutoff scale which is eventually sent to infinity and M2 is an arbitrary fixed finite con-
stant. Since t = α/Λ2, the large Λ expansion of the regularized expression (3.4) is obtained from
the small t expansion of (3.5), see [14] for details.

Of course, even though all the regularized quantities depend on the cutoff function f and
the arbitrary parameter M , the physical quantities, which are defined up to the addition of local
counterterms, must be independent of both f and M . For the partition function (2.23) or (2.24),
this means that all the f and M dependence can be absorbed in the cosmological constant μ2,
possibly up to an area-independent global normalization constant.

3.1. Regularized determinants

Assume one wants to evaluate a general determinant of the form

ln Det
(
F1(	) · · ·Fp(	)

)
, (3.6)

where the operators Fi(	) can be expressed in terms of the Laplacian. Obviously, in the prescrip-
tion (3.4), the regularized version of (3.6) is the sum of the regularized versions of the individual
logarithm of determinants, simply because
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∑
r

f

(
λr + M2

Λ2

)
ln

(
F1(λr ) · · ·Fp(λr)

) =
p∑

i=1

∑
r

f

(
λr + M2

Λ2

)
lnFi(λr). (3.7)

This shows that we do not have a multiplicative anomaly in our case. Let us emphasize that this
simple result is true because we use the same cutoff function f and parameter M to regularize
all the sums and thus all the determinants. The multiplicative anomaly can only occur when one
uses regularization schemes, like the ζ -function scheme, for which this property is not true.

This being understood, we see that, to evaluate our one-loop quantum gravity partition func-
tion (2.28), we simply need to compute the following two sums,

S0 =
∑
r>0

e−t (λr+M2), (3.8)

S1(a/A) =
∑
r>0

e−t (λr+M2) ln

(
λr + a

A

)
, (3.9)

which are such that[
ln Det′

(
z(	 + a/A)

)]
t,M

= (ln z)S0 + S1(a/A). (3.10)

Following the techniques used in [14], these sums are evaluated as follows1

S1

(
a

A

)
= e−tM2+t a

A

∑
r>0

e−t (λr+ a
A

) ln

(
λr + a

A

)

= e−tM2+t a
A

2πi

b+i∞∫
b−i∞

ds
�(s)

ts

∑
r>0

ln(λr + a
A

)

(λr + a
A

)s

= −e−tM2+t a
A

2πi

b+i∞∫
b−i∞

ds
�(s)

ts
ζ ′
	

(
s,

a

A

)
, (3.11)

where we must choose b > 1 and

ζ	(s, a/A) =
∑
r>0

1

(λr + a
A

)s
(3.12)

is the spectral ζ -function of the operator 	 + a/A, excluding the zero mode. The integrand
in (3.11) has poles for all negative integer values of s, as well as at s = 0 and s = 1. As explained
in [14], the small t asymptotic expansion of the integral can be evaluated by closing the contour
with an infinite semi-rectangle on the left and picking up the contributions of all these poles.
The poles at s < 0 lead to contributions that are O(t), i.e. O(1/Λ) and will vanish in the large
Λ-limit. Thus the only relevant contributions come from the poles at s = 0 and s = 1. As is well
known, the poles and residues of ζ	(s, a

A
), as well as the relevant finite values can be deduced

from the small τ asymptotic expansion of the integrated heat-kernel K(τ) (see e.g. [14], being
careful that in the present case the zero mode is subtracted). One has

1 One first uses the identity e−x = ∫ b+i∞
b−i∞ ds x−s�(s) valid for any b > 0, as can be seen by closing the contour on

a semi-infinite rectangle on the left in the complex plane and picking up all poles of �(s). The interchange of the sum
and the integral is then justified if one chooses b > 1 so that Re s > 1 and the sum converges absolutely since the large r

asymptotics of the λr is governed by the Weyl law λr ∼ 4πr/A.
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ζ	

(
0,

a

A

)
= −h + 2

3
− a

4π
, (3.13)

ζ	

(
s,

a

A

)
∼

s→1

A

4π

1

s − 1
. (3.14)

Using also �(s)
ts

∼ 1
s

as s → 0 and �(s)
ts

∼ 1
t
− γ+ln t

t
(s − 1) as s → 1, we obtain for the sum S1

S1

(
a

A

)
= A

4π

(
−1

t
+ M2

)
(γ + ln t) − a

4π
(γ + ln t) − ζ ′

	(0, a/A) + O(t). (3.15)

The sum S0 is evaluated similarly and we find

S0 = A

4π

(
1

t
− M2

)
− h + 2

3
+ O(t). (3.16)

For our purposes, we shall need the area dependence of these expressions when the deter-
minants are evaluated on the saddle point metric g∗ of area A. Using (2.4) we observe that the
definition (3.12) together with (2.12) imply the scalings

ζ	∗

(
s,

a

A

)
=

(
A

A0

)s

ζ	0

(
s,

a

A0

)
, (3.17)

ζ ′
	∗

(
0,

a

A

)
= −

(
h + 2

3
+ a

4π

)
ln

A

A0
+ ζ ′

	0

(
0,

a

A0

)
, (3.18)

so that finally

S1

(
a

A

)
= A

4π

(
−1

t
+ M2

)
(γ + ln t) +

(
h + 2

3
+ a

4π

)
ln

A

A0

− a

4π
(γ + ln t) − ζ ′

	0

(
0,

a

A0

)
+ O(t). (3.19)

Then, from (3.10), we get[
ln Det′

(
z(	∗ + a/A)

)]
t,M

= A

4π

(
1

t
− M2

)(
ln

z

t
− γ

)
+

(
h + 2

3
+ a

4π

)
ln

A

zA0
+ a

4π

(
ln

z

t
− γ

)
− ζ ′

	0

(
0,

a

A0

)
+ O(t). (3.20)

Note that upon plugging this result into a formula like (3.4), the t -dependent terms on the right-
hand side correspond to the divergent terms ∼Λ2 lnΛ2, ∼Λ2 and ∼ lnΛ2.

3.2. The renormalized quantum gravity partition functions

Using (3.20), we immediately obtain the regularized version of the one-loop quantum gravity
partition function (2.28)

[W1]t,M = A

[
1

8πt

(
γ + ln t − ln

κ2

32π

)
− M2

8π
(γ + ln t)

]
−

[
1 + 7h − 4 + 4β2

2

]
ln

A + C
[
A0, κ

2, β2, t,M
]
, (3.21)
2 6 κ A0



A. Bilal et al. / Nuclear Physics B 880 (2014) 203–224 215
where C is an A-independent irrelevant coefficient. The first term in (3.21), which is divergent
and cutoff-dependent, is proportional to A and can thus be absorbed into the cosmological con-
stant. The one-loop string susceptibility is read off from the coefficient of the lnA term,

γ
one-loop
str = 19 − 7h

6
− 4β2

κ2
. (3.22)

As required, it is finite and cutoff-independent. Of course, it agrees with and generalizes (1.4).
It remains to see how this is modified for genus 0. For h = 0, we must start with (2.29). The

associated ζ functions are then defined excluding the spin-one modes. This yields an additional
− 3

2 lnA contribution to the partition function which cancels the + 3
2 lnA term discussed in Sec-

tion 2.3 that came from the Faddeev–Popov determinant. Overall, the formula (3.22) is also valid
at h = 0.

Remark. Let us make some brief remarks about the higher loop contributions to the partition
function. They come from vacuum diagrams involving one or more vertices. The latter are,
of course, determined by the terms of order φn, n � 3, in the expansions (2.17) and (2.21) of
the Liouville and Mabuchi actions. Note that a term of order φn in the Liouville action also
involves a factor (A	∗)n	∗ or (A	∗)n, and a term of order φn in the Mabuchi action is accom-
panied by a factor (A	∗)n−1	∗. One should also keep in mind that the propagator that follows

from (2.22) is the inverse of A	∗(A	∗ + 4β2

κ2 )(	∗ + 8π(h−1)
A

). In addition, one also has to take
into account the contributions from the non-trivial determinant in (2.9). Standard power-counting
then shows that all these interaction vertices are renormalizable: the superficial degree of diver-
gence of any vacuum loop diagram one can make from these vertices and the propagator is at
most two. We will report on the two-loop contribution in [15].

3.3. On the pure Mabuchi quantum gravity

It is also interesting to study a two-dimensional quantum gravity involving only the Mabuchi
action. It was shown in [7] that this case can occur when coupling a two-dimensional QFT to
gravity. However, the semi-classical analysis of the pure Mabuchi partition function is non-trivial.
At tree-level, the result (2.26) for κ = 0 is of course valid, but at one-loop we cannot use (3.21).

The problem is manifest in (2.22), where the operator κ2

32π
A	∗ + β2 appears, which shows that

setting the Liouville coefficient κ2 to zero completely changes the UV behavior. It is actually very
simple to check that, contrary to the combined Liouville plus Mabuchi theory, the pure Mabuchi
model is not perturbatively renormalizable, any L-loop vacuum diagram having a superficial
degree of divergence 2L. Of course the same conclusion is reached for a model with non-zero
but fixed κ , in the limit β → ∞.

It is nevertheless quite instructive to work out explicitly what happens at one-loop. Choosing
h � 1 and starting with (2.28) at κ2 = 0,

W1 = −1

2
lnA + ln Det′(A	∗) − 1

2
ln Det′

[
β2A	∗

(
	∗ + 8π(h − 1)

A

)]
, (3.23)

we get, using (3.20),

[W1]t,M = −7h − 1
ln

A − A
(

1 − M2
)

ln
β2

+ CMab
[
A0, β

2, t,M
]
, (3.24)
6 A0 8π t 4πA
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with some A-independent coefficient CMab. This formula shows that a new Λ2A lnA divergence
appears, which cannot be absorbed in a standard local counterterm. The same problem occurs for
the pure Mubuchi path integral (2.32) defined with the Mabuchi metric (2.30).

It is interesting to note that these problems can be avoided, at one-loop, if one uses a rescaled
Mabuchi metric of the form

‖δφ‖2
M′ = A

∫
d2x

√
g(δφ)2. (3.25)

With this metric, the one-loop contribution reads, up to area-independent terms,

W1 = −1

2
ln Det′

[
	∗

(
	∗ + 8π(h − 1)

A

)]
. (3.26)

Upon regularizing as before, this yields

[W1]t,M = −4h − 1

3
ln

A

A0
+ A

4π

(
1

t
− M2

)
(γ + ln t) + ĈMab[A0, t,M], (3.27)

with some constant ĈMab. This result is consistent, in the sense that it does not have divergences
proportional to A lnA. It yields

γ
one-loop
str = 10 − 4h

3
(3.28)

for the one-loop string susceptibility of the pure Mabuchi theory defined with the metric (3.25).
Of course, at higher loop orders, we run into the problem of the non-renormalizability of

the model. This non-renormalizability comes from interaction vertices of the form (	φ)n in the
Mabuchi action which diverge in the UV. In other words, the model becomes strongly coupled
in the UV and cannot be described by perturbing a Gaussian fixed point. However, this does
not imply that the model is not well-defined at the non-perturbative level. The UV behavior
can, in principle, be governed by a non-trivial UV fixed point which provides a non-perturbative
definition. Actually, we believe that this possibility is very plausible in the case of the Mabuchi
theory. Indeed, the growth of the interactions (	φ)n is tamed in the full, non-perturbative, model,
thanks to the fundamental inequality (2.13). This constraint is naively irrelevant in perturba-
tion theory, but the non-renormalizability implies that it will actually always play a crucial role,
modifying drastically the UV behavior of the theory. A promising approach to handle the non-
perturbative Mabuchi model is then to use the formalism developed in [11], which is based on a
parameterization of the metrics which implement automatically the constraint (2.13). First steps
in this direction will be presented in [12].

4. Conclusion

We have studied various two-dimensional quantum gravity partition functions in the path
integral approach with various integration measures, the gravitational action being a combination
of the Liouville and Mabuchi functionals. At one loop, the partition functions are given by ratios
of determinants of Laplace-type operators on general Riemann surfaces. These determinants are
most easily computed using a smooth spectral cutoff regularization. We have obtained in this way
the regulator-independent string susceptibility γstr at one-loop, generalizing the famous result of
the Liouville theory. The extension of this calculation to the two-loop order will be reported in a
forthcoming publication [15], using the multiloop spectral cutoff formalism developed in [14].
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We believe that the generalization of the standard Liouville model by the Mabuchi term
yields an extremely natural and interesting theory, both from the physical and the mathemati-
cal points of view. It opens interesting new directions of research in the old and venerable field
of two-dimensional quantum gravity and random surfaces. In particular, it would be extremely
interesting to see if a general reasoning, based on the background independence of the theory,
would allow to find the exact string susceptibility with the Mabuchi term, generalizing the cele-
brated KPZ result (1.3). The Mabuchi model also opens a window on higher-dimensional gravity
theory [12], since the Mabuchi action, unlike the Liouville action, admits natural generalization
in any complex dimensions, a context in which it has been much studied in the mathematical
literature.
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Appendix A. Multiplicative anomaly and ζ -function

A.1. Generalities

Let L1, . . . ,Ln be self-adjoint operators acting on a Hilbert space H . The multiplicative
anomaly a(L1, . . . ,Ln) is defined by the equation

ea(L1,...,Ln) = Det
∏n

i=1 Li∏n
i=1 DetLi

. (A.1)

In finite dimension, the determinant of a product of linear operators is the product of the determi-
nants and thus the multiplicative anomaly automatically vanishes. In infinite dimension, however,
the definition of the determinants requires a suitable renormalization procedure that can violate
this simple property of finite-dimensional determinants. The multiplicative anomaly (A.1) can
then be non-trivial [16]. It has been studied in a number of special cases involving the prod-
uct of two Laplace-type operators, using the ζ -function regularization method and the Wodzicki
residue formula [17]. For example, we shall derive below, in the ζ -function scheme where

Det(ζ ) L = exp
(−ζ ′

L(0)
)
, (A.2)

a new generalized multiplicative anomaly formula of the form

Det(ζ )

[ ∏n
i=1 Li∏m
j=1 L̃j

]
= ea(ζ )(L1,...,Ln;L̃1,...,L̃m)

∏n
i=1 Det(ζ ) Li∏m
j=1 Det(ζ ) L̃j

, m 	= n, (A.3)

for shifted Laplace operators

Li = 	i + ai/Ai, L̃j = 	̃j + ãj /Ãj , (A.4)

where
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	i = A

Ai

	, 	̃j = A

Ãj

	 (A.5)

are the Laplacians for metrics gi = (Ai/A)g and g̃j = (Ãj /A)g of areas Ai and Ãj respectively
and where ai and ãj are real dimensionless constants. We shall show that

a(ζ )(L1, . . . ,Ln; L̃1, . . . , L̃m) = 1

4π(n − m)

[
n∑

i=1

(
n∑

k=1

ak −
m∑

k=1

ãk − (n − m)ai

)
lnAi

−
m∑

j=1

(
n∑

k=1

ak −
m∑

k=1

ãk − (n − m)ãj

)
ln Ãj

]
. (A.6)

To our knowledge, in all the examples that have been studied so far, the multiplicative anomaly
does not have any physical effect [18]. It is actually not an anomaly in the usual field theoretic
meaning of the term, because it can be absorbed in local counterterms. Typically, the multi-
plicative anomaly is indeed proportional to the volume of space–time and its inclusion simply
amounts to redefining the cosmological constant. However, we are going to explain below that
in the context of the present paper, we come across a problem where overlooking the multiplica-
tive anomaly would simply yield the wrong physical answer. This is related to the fact that the
masses appearing in the shifted Laplace operators we have to deal with, as in (A.4), are actually
inversely proportional to the areas.

A.2. Application to change of variables in the path integral

An interesting consequence of the multiplicative anomaly is as follows. Let us consider the
path integral

I =
∫

Dϕ e− 1
2 ϕ·M·ϕ (A.7)

over a scalar field ϕ, for some positive-definite symmetric operator M , and let us make the linear
change of variables

ϕ = L · φ (A.8)

for some other positive-definite symmetric operator L. The path integral (A.7) can then be equiv-
alently expressed as

I =
∫

Dφ Je− 1
2 φ·LML·φ, (A.9)

for some Jacobian factor J associated with the change of variable (A.8). Using the well-known
result for Gaussian path integrals, the equality between (A.7) and (A.9) is achieved by choosing

J =
√

Det(LML)

DetM
= e

1
2 a(L,M,L) DetL, (A.10)

where the multiplicative anomaly a(L,M,L) is defined as in (A.1). This shows that the mul-
tiplicative anomaly modifies the classical formula for the transformation of the path integral
measure under a linear change of variables of the form (A.8).

Let us now illustrate this result, in the case of the pure Liouville theory for h � 1 for simplicity,
for the change of variables from the conformal factor σ of the metric defined by (2.1) to the
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Kähler variables (A,φ) defined by (2.2). In the ζ -function scheme, if one uses the variable σ ,
the one-loop contribution to lnZ is simply found to be

W1 = −1

2
lnA − 1

2
ln Det′(ζ )

(
	∗ + 8π(h − 1)

A

)
, (A.11)

whereas, if one uses the variable φ, one finds

W1 = −1

2
lnA + ln Det′(ζ )(A	∗) − 1

2
ln Det′(ζ )

[
(A	∗)2

(
	∗ + 8π(h − 1)

A

)]
+ 1

2
a(ζ )

(
A	∗,A	∗,	∗ + 8π(h − 1)/A

)
. (A.12)

This formula is similar to (2.28), but it now takes into account the multiplicative anomaly, which
is non-trivial in the ζ -function scheme but was absent in the regularization scheme used in
the main text. Using the properties of the ζ -regularized determinants that follow from (A.17)
and (3.18), one immediately finds that the A-dependent piece in W1 as given by (A.11) is

W1 = 1 − 7h

6
lnA (A.13)

while the A-dependent piece in W1 as given by (A.12) is

W1 = −1 + h

2
lnA + 1

2
a
(
A	∗,A	∗,	∗ + 8π(h − 1)/A

)
. (A.14)

On the other hand, we can compute the multiplicative anomaly from (A.6), or alternatively from
applying (A.17) twice, with the result

a
(
A	∗,A	∗,	∗ + 8π(h − 1)/A

) = −4(h − 1)

3
lnA. (A.15)

We see that, by taking into account this anomaly, (A.14) and (A.13) agree with each other, and
with (3.21) obtained by using the spectral cutoff in the main text.

A compact way to present the above result is simply to include the correct Jacobian fac-
tor (A.10) in the change of variables from σ to (A,φ). The relation Dσ = dA√

A
Det′(A	)DMφ

used in the main text in the spectral cutoff scheme (see (2.9) and (2.31)) must be replaced by

(Dσ)(ζ ) = A
1−4h

6 dADet′(ζ )(A	)(DMφ)(ζ ) (A.16)

in the one-loop ζ function scheme. The non-trivial factor of A in this formula already appeared
in [11] in the case of the sphere, h = 0.

A.3. Proof of the multiplicative anomaly formula

Let us start by proving the

Proposition. The infinite-dimensional determinants being defined using the ζ function regular-
ization procedure, we have, for n 	= m,

Det′ζ
[
z

∏n
i=1(	 + ai/A)∏m
i=1(	 + bi/A)

]
= z

− h+2
3 − 1

4π(n−m)
(
∑n

i=1 ai−∑m
i=1 bi )

∏n
i=1 Det′ζ (	 + ai/A)∏m
i=1 Det′ζ (	 + bi/A)

.

(A.17)
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In particular, for n = 1 and m = 0, one simply has

Det′ζ
(
z(	 + a/A)

) = z− h+2
3 − a

4π Det′ζ (	 + a/A), (A.18)

while for z = 1 there is no multiplicative anomaly:

Det′ζ
[∏n

i=1(	 + ai/A)∏m
i=1(	 + bi/A)

]
=

∏n
i=1 Det′ζ (	 + ai/A)∏m
i=1 Det′ζ (	 + bi/A)

. (A.19)

We will first prove (A.18) and (A.19), and then show that they imply (A.17). Obviously, (A.18)
follows immediately from (3.18) upon setting A0 = A/z. To prove (A.19) we will need to study
the ζ -function ζ(s,O(ai, bi)) ≡ ζO(ai ,bi )(s) associated with the operator

O(ai, bi) ≡
∏n

i=1(	 + ai/A)∏m
i=1(	 + bi/A)

(A.20)

and express it in terms of the ζ -functions ζ(s;	 + a/A) associated with the operators of the
form 	 + a/A. This can be done by using the following identity, valid for n 	= m,∏m

i=1(λ + bi/A)s∏n
i=1(λ + ai/A)s

= �((n − m)s)

�(s)n�(−s)m

∫
[0,1]n+m

dx1 · · ·dxn+m δ

(
n+m∑
i=1

xi − 1

)

× xs−1
1 · · ·xs−1

n x−s−1
n+1 · · ·x−s−1

n+m

(λ + ∑n
i=1 aixi/A + ∑m

i=1 bixn+i/A)(n−m)s
, (A.21)

from which follows the relation

ζ
(
s;O(ai, bi)

) = �((n − m)s)

�(s)n�(−s)m

∫
[0,1]n+m

dx1 · · ·dxn+m δ

(
n+m∑
i=1

xi − 1

)

× xs−1
1 · · ·xs−1

n x−s−1
n+1 · · ·x−s−1

n+m ζ

×
(

(n − m)s;	 +
∑n

i=1 aixi+∑m
i=1 bixn+i

A

)
. (A.22)

It is straightforward to take the s → 0 limit on both sides of (A.22), using in particular (3.13)
with â = ∑n

i=1 aixi +∑m
i=1 bixn+i and performing the resulting integrals. We obtain in this way

ζ
(
0;O(ai, bi)

) = −h + 2

3
− 1

4π(n − m)

(
n∑

i=1

ai −
m∑

i=1

bi

)
. (A.23)

In order to also obtain the terms of order s in (A.22), we expand both sides of this equation
up to terms O(s2). Using ζ(s;O(ai, bi)) = ζ(0;O(ai, bi)) + sζ ′(0;O(ai, bi)) + O(s2) and
ζ((n − m)s;	 + â

A
) = ζ(0;	 + â

A
) + (n − m)s ζ ′(0;	 + â

A
) + O(s2) in (A.22) yields

ζ ′(0;O(ai, bi)
) = lim

s→0
(−1)msn+m−1

∫
[0,1]n+m

dx1 · · ·dxn+m δ

(
n+m∑
i=1

xi − 1

)

× xs−1
1 · · ·xs−1

n x−s−1
n+1 · · ·x−s−1

n+m ζ ′
(

0;	 +
∑n

i=1 aixi+∑m
i=1 bixn+i

A

)
.

(A.24)
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In the limit s → 0, we pick only the leading pole in the integral (A.24). This pole comes from
the integration regions in which all the variables xi except one are very near zero. For example,
the contribution from the region in which

(x2, . . . , xn+m) ∈ [0, ε]n+m−1,

with a very small ε and thus x1 � 1 due to the constraint
∑

i xi = 1, is given by∫
[0,ε]n+m−1

dx2 · · ·dxn+m xs−1
2 · · ·xs−1

n x−s−1
n+1 · · ·x−s−1

n+m ζ ′(0, a1) ∼
s→0

ζ ′(0,	 + a1/A)

sn−1(−s)m
.

(A.25)

Regions in which xi � 1 for 2 � i � n + m contribute in a similar way. Summing up all these
contributions, (A.24) then yields

ζ ′(0;O(ai, bi)
) =

n∑
i=1

ζ ′(0,	 + ai/A) −
m∑

i=1

ζ ′(0,	 + bi/A), (A.26)

which is equivalent to the Eq. (A.19) that we wanted to prove.
To see that (A.18) and (A.19) imply (A.17), we first write

Det′ζ
[
z

∏n
i=1(	 + ai/A)∏m
i=1(	 + bi/A)

]
= Det′ζ

[∏n
i=1(	̂ + ai/Â)∏m
i=1(	̂ + bi/Â)

]
, (A.27)

where 	̂ and Â are the Laplacian and area associated with the rescaled metric

ĝ = z− 1
n−m g ⇒ Â = z− 1

n−m A, 	̂ = z
1

n−m 	. (A.28)

We then use (A.19), written for 	̂ and Â and finally (A.18) in the form

Det′ζ (	̂ + ai/Â) = Det′ζ
(
z

1
n−m (	 + ai/A)

) = z
− h+2

3(n−m)
− ai

4π(n−m) Det′ζ (	 + ai/A), (A.29)

and similarly for Det′ζ (	̂ + bi/Â), to get (A.17).
The general anomaly formula (A.6) then follows straightforwardly from (A.17) by using suit-

able rescalings, similar to Eq. (A.27), to put the determinants in the form of (A.17).

Appendix B. Sharp spectral cutoff on the sphere

Instead of the general smooth spectral cutoff used in the main text, one might want to try
a sharp (hard) spectral cutoff instead. As extensively discussed in [14], hard cutoff methods
are plagued with many difficulties which make them inconsistent in general cases. However,
we found it instructive to try the method on the very special case of the round sphere, for which
one can make sense of it. One motivation for this computation stems from the matrix approach
of [11] which is akin to a sharp cutoff method.

We thus consider the standard unit radius round sphere. The eigenvalues of the Laplacian are
l(l +1), l � 0, and the eigenfunctions are the spherical harmonics Ym

l , −l � m� l. For the round
sphere of area A, the eigenvalues are

λl,m = 4π
l(l + 1). (B.1)
A
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The sharp cutoff consists in excluding all eigenvalues with l > N for some large N . The regular-
ized sums S0 and S1 now are replaced by

T0 =
N∑

l=1

l∑
m=−l

1, T1

(
a

A

)
=

N∑
l=1

l∑
m=−l

ln

(
λl,m + a

A

)
, (B.2)

where the zero-mode l = 0 has again been excluded. With this sharp cutoff, the basic determi-
nant (3.20) becomes[

ln Det′
(
z(	∗ + a/A)

)]
N

= (ln z)T0 + T1

(
a

A

)
. (B.3)

Obviously,

T0 = (N + 1)2 − 1 (B.4)

just counts the number of eigenvalues included in the sum, while

T1

(
a

A

)
=

N∑
l=1

(2l + 1) ln

(
l(l + 1) + a

4π

)
+ ln

4π

A
T0. (B.5)

This sum can be evaluated using the Euler–MacLaurin formula2 which yields

T1

(
a

A

)
= N(N + 2) ln

4π

A
+

[
N(N + 2) + 2

3
+ a

4π

]
ln

(
N(N + 1) + a

4π

)
− N(N + 1) + c[a] + O

(
1

N

)
, (B.6)

where c[a] is some constant that does not depend on N or A.
The next step is to identify N in some way with the physical cutoff scale Λ. With the smooth

cutoff, the spectrum is effectively cut off if λr is (much) larger than Λ2. Here the largest eigen-
value is 4π

A
N(N + 1), and we are let to identify N(N + 1) with AΛ2/(4π). However, as N is

changed, the eigenvalues jump by ∼8πN/A, which means that our identification is unambigu-
ous only up to terms of order N or of order

√
AΛ. This kind of subtlety is precisely the reason

why the sharp cutoff method does not work in general. Here, let us simply try to identify

(N + 1)2 = A

4π

(
Λ2 − M2), (B.7)

with some arbitrary cutoff-independent constant M2. Note that the form (B.7) for the scaling is
not unique,3 we could have also considered e.g. N(N + 1) = A

4π
(Λ2 − M2) which differs by a

term O(N) = O(
√

AΛ). Eq. (B.7) will be justified a posteriori by the fact that it yields a good
large Λ asymptotic expansion. Indeed, with (B.7) we have

ln

(
N(N + 1) + a

4π

)
= ln

AΛ2

4π
−

√
4π

AΛ2
− 2π

AΛ2
+ a

AΛ2
− M2

Λ2
+ O

(
1

Λ3

)

2 It reads
∑N

l0
f (l) = ∫ N

l0
dx f (x) + 1

2 (f (N) + f (l0)) + 1
12 (f ′(N) − f ′(l0)) − 1

180 (f ′′′(N) − f ′′′(l0)) + · · · with

f (l) = (2l + 1) ln(l(l + 1) + a
A

).
3 In particular, one could have written b instead of AM2, but in the end this would only shift some constants between

the counterterms ∼A and the irrelevant overall normalization constant of the determinant, resp. partition function.
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so that

T1

(
a

A

)
= A

4π

((
Λ2 − M2) lnΛ2 − Λ2) +

(
a

4π
− 1

3

)
lnΛ2

+
(

a

4π
+ 2

3

)
ln

A

4π
+ c̃[a] + O

(
1

Λ

)
, (B.8)

with c̃[a] = c[a] + a
4π

− 1
2 . All terms ∼√

AΛ, which could not be absorbed in counterterms,
have canceled. Putting things together, we get for the determinant (B.3)[

ln Det′
(
z(	∗ + a/A)

)]
N

= A

4π

[(
Λ2 − M2) ln

(
zΛ2) − Λ2] +

(
a

4π
− 1

3

)
ln

(
zΛ2)

+
(

a

4π
+ 2

3

)
ln

A

4πz
+ c̃[a] + O

(
1

Λ

)
, (B.9)

which is to be compared with (3.20) for h = 0, after substituting t = α/Λ2. Both expressions have
the same structure. While the precise coefficients of the diverging terms are somewhat different,
the finite coefficients of lnA turn out to be exactly the same.

One could then easily continue and compute the quantum gravity partition function in this
sharp cutoff scheme on the sphere, i.e. W1. Again, it is obvious that there is no multiplicative
anomaly in this scheme. The fact that the modes l = 1 must also be projected out on the sphere
and the extra area dependence from the Faddeev–Popov determinant are handled in the same way
as in the main text. It is then clear that one does obtain the same γstr, i.e. Eq. (3.22).
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