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INTRODUCTION

In this paper we investigate certain extensions of partially ordered
rings. This purely algebraic approach is inspired by the search for rings of
‘‘rational functions’’ on semialgebraic sets which should play the same role
as the ring of regular functions in the framework of algebraic geometry.
Therefore, in order to motivate the consideration of the algebraic con-
structions below we first briefly describe the geometric background.

Let R be a real closed field and let S � AnðRÞ be a closed semialgebraic
set. We let R½S� denote the ring of R-valued polynomial functions on S and
P½S� � R½S� the partial order of nonnegative functions on S. Then it is
known that the irreducible algebraic subsets of S correspond bijectively to
the P½S�-convex prime ideals of R½S�. Consequently, in order to study the
geometry of algebraic subsets of S it might seem natural to investigate the
locally ringed space ðXS;OSÞ, where XS � SpecR½S� denotes the procon-
structible subspace of the P½S�-convex prime ideals and OS the restriction of
the structure sheaf of the affine scheme ðSpecR½S�;OÞ to XS. From the
geometric point of view the space ðXS;OSÞ has some convenient properties.
For example, the points of S are in bijective correspondence with the
maximal ideals of the ring OSðXSÞ ffi R½S�1þP½S� of global sections on XS. But
there is also the serious problem that the ideal-theoretic structure of the ring
OSðXSÞ is only loosely related with the underlying space XS. To be precise,
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the space SpecOSðXSÞ is isomorphic to the subspace GenðXSÞ � SpecR½S�
of the generalizations of XS in SpecR½S�.

In the next step one therefore has to ask whether the ring R½S� admits
an extension j : R½S� �! A such that the induced map Spec ðjÞ between the
Zariski-spectra gives us an isomorphism

SpecðjÞ : SpecA �! XS

of spectral spaces. But in Sec. 2 we will show that in general such an
extension does not exist. So we are left with the question whether there is at
least an extension j : R½S� �! A such that the induced map Spec ðjÞ is a
bijection between SpecA and XS. If such an extension exists, one has further
to ask whether the affine Scheme ðSpecA;OÞ is convenient from the semi-
algebraic point of view.

At this point we meet the subject of this paper. A partially ordered ring
ð ~A; ~PÞ is called completely real if all prime ideals of ~A are ~P-convex. In this
paper we study completely real extensions

j : ðA;PÞ �! ð ~A; ~PÞ

of a given partially ordered ring ðA;PÞ. A first relationship with the problem
discussed above is given by the simple fact that for any completely real
extension j : ðR½S�;P½S�Þ �! ðA;PÞ we get a morphism

SpecðjÞ : SpecA �! XS:

One of the main results of this paper states that there are certain ‘‘minimal’’
completely real extensions of ðR½S�;P½S�Þ that have the following much
stronger properties:

(1) The induced map SpecðjÞ : SpecA �! XS is bijective.
(2) The induced map SperðjÞ yields a homeomorphism between

fa 2 SperA jP � ag and fa 2 SperR½S� jP½S� � ag:

(3) For every prime ideal } 2 SpecA the homomorphism
kðj�1ð}ÞÞ �! kð}Þ of residue fields is an isomorphism.

This characterization indicates that completely real extensions might be of
interest for semialgebraic geometry. On the other hand we have to mention
that there does not exist—up to isomorphism—a unique ‘‘minimal’’
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completely real extension of ðR½S�;P½S�Þ. To be precise, there exists for every
n 2 N a ‘‘distinguished’’ completely real extension

jn : ðR½S�;P½S�Þ �! ðAn;PnÞ

and for n � 2 these extensions satisfy (1)7(3). If dimðSÞ � 2 the rings
ðAn;PnÞ form a strictly decreasing sequence of completely real rings whose
intersection is not completely real.

The results of Sec. 3 show that this fact is due to basic properties of
certain monoreflective subcategories of the category of partially ordered
rings. In the first two sections preliminary results on completely real rings
and extensions are stated. In Sec. 4 and 5 the completely real extensions
mentioned above are constructed and their properties are investigated. In
the final section we return to the geometric situation. We show that the rings
we have obtained so far are in fact of interest for semialgebraic geometry.
A more detailed study of these rings in the framework of semialgebraic
geometry will be done in a forthcoming paper.

1. COMPLETELY REAL RINGS

Throughout this paper let A be a reduced commmutative ring with 1
and P � A a partial order, i.e.,

Pþ P � P; P � P � P; A2 � P and P \ �P ¼ ð0Þ:

Recall that a prime ideal } � A is P-convex if for all p; q 2 P we have:
pþ q 2 }) p; q 2 }. Given a partial order P � A we let

SpecðA;PÞ � SpecA

denote the subspace of the P-convex prime ideals of A.

Definition 1.1. Let P � A be a partial order. Then ðA;PÞ is called completely
real if SpecA ¼ SpecðA;PÞ.

For convenience we first state without proof some simple character-
izations of completely real rings that will be used throughout this paper.
Given a partial order P � A and } 2 SpecðA;PÞ we let P=} � A=} denote
the image of P with respect to the canonical epimorphism A �! A=}. Since
} is P-convex, P=} is a partial order of A=}. Next let S � A be a multi-
plicative subset. As usual we set
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PS ¼ p

s2

�
�
�p 2 P; s 2 S

n o
� AS:

Note that PS is a partial order of AS (see [4, Proposition 3.1.1]). From basic
properties of convex ideals and [4, Proposition 3.4.1] one infers

Lemma 1.2. Let P � A be a partial order. Then the following statements are
equivalent:

ð1Þ ðA;PÞ is completely real.
ð2Þ ðA=};P=}Þ is completely real for all } 2 SpecA.
ð3Þ ðAS;PSÞ is completely real for all multiplicative subsets S � A.

Given a partial order P � A and a; b 2 A we set

a �P b :, a� b 2 P:

If no confusion can arise we will often just write �.

Lemma 1.3. Let P � A be a partial order. Then the following statements are
equivalent:

ð1Þ ðA;PÞ is completely real.
ð2Þ Given a; b 2 A with 0 � a � b, there exists k 2 N with ak 2 ðbÞ.
ð3Þ Given a; b 2 A with 0 � a � b, there exists k 2 N with

ak 2 b � ffiffiffiffiffiffiffiðbÞp
.

Let ðA;PÞ be completely real, 0 � a � b 2 A and c 2 A with ak ¼ cb.
Then in general c is not uniquely determined. Therefore the next fact shows
that in order to construct a completely real hull of a partially orderd ring it
is more convenient to work with condition ð3Þ.

Lemma 1.4. Let ðA;PÞ be completely real. Given 0 � a � b 2 A and k 2 N
with ak 2 b � ffiffiffiffiffiffiffiðbÞp

, there exists a unique c 2 ffiffiffiffiffiffiffiðbÞp
with ak ¼ c � b.

Proof. Let c1; c2 2
ffiffiffiffiffiffiffiðbÞp

with ak ¼ c1b ¼ c2b and let } 2 SpecA. If b 2 },
then c1 � c2 2 }, since c1; c2 2

ffiffiffiffiffiffiffiðbÞp
. If b =2}, then c1 � c2 2 }, as

bðc1 � c2Þ ¼ 0. By assumption A is reduced. Hence c1 ¼ c2. u

Next we give some examples of completely real rings. Most of them
will be used later on.

Examples 1.5. For simplicity we make the following convention. Given a
real closed field R, a set M and any ring A � AbbðM;RÞ, we say that A is
completely real if ðA;AþÞ is completely real where
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Aþ ¼ ff 2 A j 8x 2M : fðxÞ � 0g:

(1) Every real valuation ringV is completely real with respect to
P

V2.
(2) Let K be a (formally) real field and let HðKÞ � K be its real

holomorphy ring. Then any subring H � K which contains HðKÞ
is completely real with respect to

P
H2. For details concerning

the real holomorphy ring of a field see e.g., [1] or [10].
(3) Let X be a topological space. We denote by CRðXÞ the ring of R-

valued continuous functions on X. Then CRðXÞ is completely real
(cf. [5,5.5]).

(4) Let S � Rn be a semialgebraic subset. We let CðSÞ denote the ring
of continuous semialgebraic functions on S. It is well-known that
CðSÞ is completely real.

(5) Let U � Rn be an open semialgebraic set. Let CkðUÞ � CðUÞ
denote the ring of Ck-semialgebraic functions on U. Given f; g 2
CkðUÞ with 0 � f � g one readily verifies that the function j
defined by

jðuÞ :¼
f2
kþ1 ðuÞ
gðuÞ u 2 U; gðuÞ 6¼ 0

0 u 2 U; gðuÞ ¼ 0

(

is in CkðUÞ. Hence CkðUÞ is completely real.
(6) Let X � SperA be proconstructible. As usual we denote by CðXÞ

the ring of continuous semialgebraic functions on X and by
PðXÞ � CðXÞ the partial order of nonnegative functions (see [12]).
Then it is well-known that ðCðXÞ;PðXÞÞ is completely real.

(7) Let P � A be a partial order and let

X ¼ fa 2 SperA jP � ag:

Since A is reduced the canonical homomorphism j : A �! CðXÞ is injective
with jðPÞ � PðXÞ. In particular, ðCðXÞ;PðXÞÞ is a completely real extension
of ðA;PÞ. u

Let L� be the extension of the language of rings by a binary relation
‘‘�’’. Then we may regard partially ordered rings in a canonical way as L�-
structures. In this context it is natural to ask whether the class of completely
real rings is an elementary class of L�-structures. In the next step we will
show that this fails.

Proposition 1.6. The class of completely real rings is not elementary.
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Proof. It is sufficient to show that the class of completely real rings is not
closed under ultraproducts. Let R be a real closed field and let k 2 N. We
consider

Rk ¼ CkðR2Þ and Rþk ¼ f f 2 Rk j 8x 2 R2 : fðxÞ � 0g:

Now let X;Y 2 Rk be the coordinate functions on A2. Then 0 � X2

� X2 þ Y2 2 Rk, but

ð�Þ X2k =2 ðX2 þ Y2Þ � Rk:

Let U be any ultrafilter on N which contains the cofinite subsets of N. In
view of (1.5) (5) it is sufficient to show that the ring

ðA;PÞ :¼
Y

k2N
ðRk;R

þ
k Þ

 !

=U

is not completely real. Let x; y be the images of the tuples ðXÞ; ðYÞ 2 QRk

with respect to the canonical projection

p :
Y

k2N
ðRk;R

þ
k Þ �! ðA;PÞ:

Then 0 �P x2 �P x2 þ y2. Let n 2 N. From ð�Þ we infer

fk 2 N j k � ng � fk 2 N jX2n=2ðX2 þ Y2Þ � Rkg 2 U:

Hence

x2n=2ðx2 þ y2Þ � A

for all n 2 N. Therefore ðA;PÞ is not completely real. u

The proof of the last result shows that in order to get an elementary
class K of completely real rings one has to fix some n 2 N such that for all
ðA;PÞ 2 K and all a; b 2 A one has

0 � a � b 2 A) an 2 b
ffiffiffiffiffiffiffi
ðbÞ

p
:

At the beginning of the next section we will see that exactly the same pro-
blem occurs when constructing completely real extensions of partially
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ordered rings. Moreover, it will turn out that indeed one has to deal with the
completely real rings just mentioned.

2. COMPLETELY REAL EXTENSIONS

In this short section we state some basic properties of completely real
extensions and introduce the notions which will be needed later on. More-
over, so far we have considered arbitrary partial orders of reduced com-
mutative rings. For the sake of simplicity we now confine ourselves to a
certain subclass which is important for applications to semialgebraic
geometry.

Let ðA;PÞ be partially ordered. Then

Sper ðA;PÞ :¼ fa 2 SperA jP � ag

is called the real spectrum of ðA;PÞ. It is a spectral space as it is closed in
SperA. Given an order-preserving homomorphism j : ðA;PÞ �! ð ~A; ~PÞ,
then j induces a morphism

Sper ðjÞ : Sper ð ~A; ~PÞ �! Sper ðA;PÞ

of spectral spaces. One readily verifies that the real spectrum is a functor
from the category of partially ordered rings into the category of spectral
spaces. Given a partial order P � A we call

SatðPÞ ¼
\

a2Sper ðA;PÞ
a

the saturated hull of P and we say that P is saturated if P ¼ SatðPÞ. The
objects of the category PO=N are the pairs ðA;PÞ with A a reduced
commutative ring with 1 and P � A a saturated partial order. The
morphisms in PO=N are the order-preserving ring homomorphisms.
Finally let CRR � PO=N denote the full subcategory of the completely
real rings in PO=N.

Let ðA;PÞ 2 PO=N and let j : ðA;PÞ �! ð ~A; ~PÞ 2 CRR be a com-
pletely real extension, i.e., j is a monomorphism. By (1.5)(7) we know that
such an extension always exists. Now one might wonder whether ð ~A; ~PÞ
contains a minimal completely real overring of ðA;PÞ. But in general this
fails.
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Example 2.1. Let CðR2Þ be the ring of continuous semialgebraic functions
on R2 and A ¼ R½X;Y� � CðR2Þ. Then ðCðR2Þ; CðR2ÞþÞ is a completely real
extension of ðA;AþÞ. For k 2 N let CkðR2Þ denote the ring of Ck-semi-
algebraic functions. By (1.5)(5) the rings CkðR2Þ are completely real. But

\

k2N
CkðR2Þ ¼ N ðR2Þ;

where NðR2Þ denotes the ring of Nash functions on R2 which is not com-
pletely real. u

The last example as well as the proof of (1.6) suggest to introduce the
following notion.

Definition 2.2. Let n 2 N. A partially ordered ring ðA;PÞ is called com-
pletely real of exponent n if for all 0 � a � b there is c 2 ffiffiffiffiffiffiffiðbÞp

with an ¼ c � b.
Remark 2.3. For a similar condition in the context of f-rings see.[7] u

Given n 2 N we let CRRn � CRR denote the full subcategory of the
completely real rings of exponent n in CRR. We will need the fact that the
partially ordered rings ðA;PÞ 2 CRRn satisfy the following sharpening of
(1.4) which becomes false if the partial order P is not saturated.

Lemma 2.4. Let ðA;PÞ 2 CRRn and 0 � a � b. Then the unique element c 2ffiffiffiffiffiffiffiðbÞp
with an ¼ c � b satisfies 0 � c � bn�1 and cn 2 ðbn�1Þ.

Proof. We first show bn�1 � c 2 P. From b� a 2 P we deduce

bn � an ¼ ðb� aÞðbn�1 þ bn�1aþ � � � þ an�1Þ 2 P:

Let a 2 Sper ðA;PÞ. If b =2 suppðaÞ, then obviously bn�1 � c 2 a. If
b 2 suppðaÞ, then c 2 ffiffiffiffiffiffiffiðbÞp

implies again bn�1 � c 2 a. Hence bn�1 � c 2 P,
as P is saturated. Similarily one deduces from an ¼ cb 2 P and c 2 ffiffiffiffiffiffiffiðbÞp

that c 2 P. Thus 0 � c � bn�1. Since ðA;PÞ 2 CRRn we finally get
cn 2 ðbn�1Þ. u

It is now easy to show:

Corollary 2.5. The class of completely real rings of exponent n is elementary.

Proof. It is well-known that the class ObðPO=NÞ of the objects of the
category PO=N is elementary. Let S be any set of L�-sentences with
ObðPO=NÞ ¼ModðSÞ. Let

2092 BERR



Fn :¼ 8a8b9c9d½0 � a � b) ðan ¼ cb ^ cn ¼ dbn�1Þ�

and Sn :¼ S [ fFng. Then (2.4) shows that ModðSnÞ is the class of the
completely real rings of exponent n. u

As a second application of (2.4) we show that in contrast to (2.1)
completely real extensions of exponent n have the following property:

Lemma 2.6. Let ðA;PÞ 2 PO=N and let j : ðA;PÞ �! ð ~A; ~PÞ 2 CRRn be a
monomorphism. Then ð ~A; ~PÞ contains a minimal completely real extension of
exponent n of ðA;PÞ.
Proof. Given any subring B � ~A we set Bþ ¼ B \ ~P and we letM denote
the set of pairs ðB;BþÞ such that B is an intermediate ring jðAÞ � B � ~A
with ðB;BþÞ 2 CRRn. Finally let

ðAn;A
þ
n Þ :¼

\

ðB;BþÞ2M
ðB;BþÞ:

Let a; b 2 An with 0 � a � b. Given any ðB;BþÞ 2 M there exists by (1.4) a
unique cB 2

ffiffiffiffiffiffiffiffiffiffi
b � Bp

with an ¼ cB � b. Moreover, the uniqueness of c ~A implies
cB ¼ c ~A. Hence c :¼ c ~A 2 An. Moreover, by (2.4) we know 0 � c � bn�1. Let

d 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bn�1 ~A

p
with cn ¼ dbn�1. Then d 2 An, as we have just seen. Hence c 2ffiffiffiffiffiffiffiffi

bAn

p
which shows ðAn;A

þ
n Þ 2 CRRn. u

The next consequence of (2.4) will turn out to be useful in the context
of geometry.

Corollary 2.7. Let ðA;PÞ 2 CRRn and let 0 � a � b. Given 1 < q 2 Q there
are k; l 2 N and c 2 ffiffiffiffiffiffiffiðbÞp

with

ak ¼ cbl and q ¼ k

l
:

Proof. The claim is obvious for n ¼ 1. So assume n � 2. We first show by
induction on t that for all t 2 N there exists dt 2 A satisfying

an
tþtnt�1 ¼ dt � btnt�1 and 0 � dt � bn

t

:

Since 0 � a � b there is c1 2 A with

an ¼ c1 � b and 0 � c1 � bn�1:
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Let d1 :¼ ac1. Then anþ1 ¼ d1b. Moreover, 0 � a � b and 0 � c1 � bn�1

imply 0 � d1 ¼ ac1 � bc1 � bn. Next assume that we already have found dt
for some t 2 N. Since 0 � dt � bn

t

there is ctþ1 2 A with

dn
t ¼ ctþ1bn

t

and 0 � ctþ1 � bn
tþ1�nt :

Let dtþ1 :¼ ctþ1an
t

. Then 0 � dtþ1 � bn
tþ1

and

an
tþ1þðtþ1Þnt ¼ ðantþtnt�1Þnant ¼ dn

t a
ntbtn

t ¼ dtþ1bðtþ1Þn
t

which shows that the elements dt exist. Now the claim follows from

lim
t!1

nt þ tnt�1

tnt�1
¼ 1: u

Let j : ðA;PÞ �! ð ~A; ~PÞ be a completely real extension. Then j
induces a morphism

SpecðjÞ : Spec ~A �! SpecðA;PÞ:

As mentioned in the introduction we are interested in those extensions
which preserve the geometric structure of SpecðA;PÞ. Therefore one might
wonder whether there always exists a completely real extension j :
ðA;PÞ �! ð ~A; ~PÞ such that Spec ðjÞ is an isomorphism of spectral spaces.
In the next step we show that this fails.

Example 2.8. Let A ¼ R½X;Y�, P � A the saturated hull of
P

A2, i.e., P is
the set of positive semidefinite polynomials on R2. Let j : ðA;PÞ �! ð ~A; ~PÞ
be a completely real extension. We claim that the induced morphism

Spec ðjÞ : Spec ~A �! SpecðA;PÞ

is not an isomorphism. To this end it is sufficient to show that whenever
SpecðjÞ is bijective then SpecðjÞ is not an isomorphisme. Since ð ~A; ~PÞ is
completely real there exist n 2 N and c 2 ~A with

jðXÞ2n ¼ c � ðjðXÞ2 þ jðYÞ2Þ:

In A we have the prime ideals

}1 :¼ ðX2 þ Y2 � X2nþ1Þ � }2 :¼ ðX;YÞ:
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Let ~}i :¼ SpecðjÞ�1ð}iÞ and f ¼ 1� c � jðXÞ. Then f =2 ~}2 since jðXÞ 2 ~}2.
On the other hand

ðjðXÞ2 þ jðYÞ2Þ � f ¼ jðX2 þ Y2 � X2nþ1Þ 2 ~}1:

From X2 þ Y2 =2}1 we conclude jðXÞ2 þ jðYÞ2 =2 ~}1. Thus f 2 ~}1 and
f =2 ~}2. Hence }1 � }2 but ~}1 6� ~}2 which shows that SpecðjÞ is not an
isomorphism. u

Remark 2.9. Let ðA;PÞ be as in (2.8). Then we actually have the following
stronger fact: given any ring homomorphism j : A �! ~A, then the induced
map j� between the Zariski-spectra is not an isomorphism between Spec ~A
and SpecðA;PÞ. Namely, assume that we have found j : A �! ~A such that
j induces a bijection

j� : Spec ~A �! SpecðA;PÞ:

Since ðX;YÞ � A is the unique P-convex prime ideal which contains X2 þ Y2

it follows that

jðXÞ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjðXÞ2 þ jðYÞ2Þ

q
� ~A:

Now the same argument as in (2.8) proves that j� is not an isomorphism.
u

Thus, given any partially ordered ring ðA;PÞ we can at most expect
that there is a completely real extension j : ðA;PÞ �! ð ~A; ~PÞ such that the
induced map

SpecðjÞ : Spec ~A �! SpecðA;PÞ

is bijective. In order to get some control on the topology on Spec ~A one is
forced to consider the real spectra as well. So we end up with the fact, that
from the geometric point of view at most those completely real extensions
j : ðA;PÞ �! ð ~A; ~PÞ are of interest which satisfy:

SpecðjÞ : Spec ~A�! SpecðA;PÞ is bijective
SperðjÞ : Sperð ~A; ~PÞ�! SperðA;PÞ is an isomorphism of spectral spaces.

In Sec. 5 we will see that such extensions indeed exist.
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3. REAL HULL FUNCTORS AND MONOREFLECTORS

In this section we will be concerned with certain functors
F : PO=N �! CRR. Given any functor F : PO=N �! PO=N and ðA;PÞ 2
PO=N we set

ðFðAÞ;FðPÞÞ :¼ FððA;PÞÞ

and we let E : CRR �! PO=N denote the inclusion functor. Now let us call
a covariant functor F : PO=N �! CRR a real hull functor if F satisfies the
following properties.

(1) There exists a functorial morphism Z : IdPO=N �! EF which is a
pointwise monomorphism. Hence, for all ðA;PÞ 2 PO=N there
exists a monomorphism

ZA : ðA;PÞ �! ðFðAÞ;FðPÞÞ

such that given any morphism j : ðA;PÞ �! ð ~A; ~PÞ, then the
following diagram commutes:

(2) The functorial morphism Z : IdPO=N �! EF induces a functorial
isomorphism F �! F 	 F .

The next result shows that real hull functors are related with the
subcategories CRRn � PO=N introduced in Sec. 2.

Proposition 3.1. Let F : PO=N �! CRR be a real hull functor. Then there
exists n 2 N such that ImðFÞ � CRRn.

Proof. Given ðB;PPÞ 2 PO=N let us denote by

ZB : ðB;PBÞ �! ðFðBÞ;FðPBÞÞ
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the morphism induced by the natural transformation IdPO=N �! EF . Now
assume by way of contradiction that for every n 2 N there exists ðBn;PBn

Þ 2
PO=N such that ðFðBnÞ;FðPBn

ÞÞ =2CRRn. Let ðAn;PnÞ :¼ ðFðBnÞ;FðPBn
ÞÞ.

Then there exist 0 � an � bn 2 An such that

ann =2 bn �
ffiffiffiffiffiffiffiffiffi
ðbnÞ

p
� An: ð1Þ

Let

ðA;PÞ ¼
Y

n2N
ðAn;PnÞ 2 PO=N

and let a ¼ ðanÞ; b ¼ ðbnÞ 2 A. Then we get in ðA;PÞ the relation 0 � a � b.
Since ðFðAÞ;FðPÞÞ is completely real and since ZA is injective, there exists
k 2 N such that

0 � ZAðaÞk 2 ðZAðbÞÞ � FðAÞ: ð2Þ

Let n � kþ 1 and let

pn : ðA;PÞ �! ðAn;PnÞ

be the canonical projection. We have the following commutative diagram:

Since ZAn
is an isomorphism, we have the homomorphism j ¼ Z�1An

	 ðpnÞ�.
By ð2Þ there exists c 2 FðAÞ with

ZAðaÞk ¼ c � ZAðbÞ:

Hence we get from the diagram above

akn ¼ pnðakÞ ¼ jðZAðaÞkÞ ¼ jðc � ZAðbÞÞ ¼ jðcÞ � bn:
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Consequently,

akþ1n 2 bn �
ffiffiffiffiffiffiffiffiffi
ðbnÞ

p
� An

which contradicts (1) as n � kþ 1. u

In order to investigate real hull functors which are in a certain sense
‘‘minimal’’ we need a further notion. Let C be a category and let D be a
subcategory of C. Then D is called a reflective subcategory of C if there
exists a left adjoint R : C �! D of the inclusion functor ED : D �! C. In
this situation R is called a reflector. Therefore a reflection satisfies the
following universal property. Let C 2 C and D 2 D. Let us denote by ZC
the morphism

ZC : C �! RðCÞ

which is induced by the functorial morphism IdC �! ER. Given any
morphism j : C �! D, there exists a unique morphism c : RðCÞ �! D
making the diagram

commutative (see [8,6]). If in addition for all C 2 C the morphism ZC :
C �! RðCÞ is a monomorphism, then R is called a monoreflector and D a
monoreflective subcategory of C.

Lemma 3.2. Let C be a full subcategory of CRR which is closed under iso-
morphisms and let R : PO=N �! C be a monoreflector. Then R is a real hull
functor.

Proof. We have to check the properties ð1Þ and ð2Þ of real hull functors.
Since R is left adjoint for the inclusion functor E : C �! PO=N, there is a
functorial morphism Z : IdPO=N �! ER. Now (1) follows from the
assumption that R is a monoreflector and ð2Þ from the assumption that C is
a full subcategory. u

Let us draw a first consequence from this fact.
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Corollary 3.3. Let D � CRR be a full subcategory which is closed under
isomorphisms and assume that D is a monoreflective subcategory of PO=N.
Then there exists n 2 N with D � CRRn.

Proof. Let R : PO=N �! D be a monoreflector. By (3.2), R is a real hull
functor. Now apply (3.1). u

Note that we have the infinite strictly increasing sequence

CRR1 �
=� CRR2 �

=� � � � �=� CRRn �
=� � � � �=� CRR

of subcategories of CRR. Consequently (3.3) implies

Corollary 3.4. The subcategory CRR � PO=N is not monoreflective.

The last results lead to the question whether the subcategories
CRRn � PO=N are monoreflective. Later on we will see that there is a
positive answer.

4. THE COMPLETELY REAL HULL OF EXPONENT 1

It is the goal of this section to show that CRR1 is a monoreflective
subcategory of PO=N. We first state some preliminary results.

Lemma 4.1. Let ðA;PÞ be completely real of exponent 1. Then dim A ¼ 0.

Proof. Let } 2 SpecA and let a 2 A n }. Since 0 < a2 < 2a2 and since
ðA;PÞ 2 CRR1, there exists b 2 ffiffiffiffiffiffiffiðaÞp

with a2 ¼ 2ba2. Hence we find c 2 A
and n 2 N such that bn ¼ ca. From this we get a2nð1� 2ncaÞ ¼ 0. By
assumption a =2}. Hence 1� 2nca 2 } which shows that aþ } is a unit in
A=}. u

Proposition 4.2. Let ðA;PÞ 2 PO=N. Then the following statements are
equivalent:

(1) ðA;PÞ is completely real of exponent 1.
(2) SpecA ¼ SpecðA;PÞ and A is von Neumann regular.

Proof. The implication ð1Þ ) ð2Þ follows from the last result. For the
converse direction let 0 � a � b 2 A. By assumption there is x 2 A with
b2x ¼ b and x2b ¼ x. It is sufficient to show a ¼ axb. Let } 2 SpecA. If
b 2 }, then a 2 }, as } is P-convex. Hence að1� xbÞ 2 }. If b =2}, then
bðbx� 1Þ ¼ 0 implies bx� 1 2 } and consequently aðbx� 1Þ 2 }. Hence
a ¼ axb, as A is reduced. u
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The last result shows that a ‘‘completely real hull’’ of a partially
ordered ring ðA;PÞ can be regarded as a ‘‘von Neumann regular hull’’ of A
with respect to the proconstructible subspace SpecðA;PÞ. The construction
of a corresponding hull with respect to the whole space SpecA can be found
in.[9] In addition the methods developed there can be easily generalized to
the situation we are concerned with. But for convenience we will use a
slightly different approach.

Given ðA;PÞ 2 PO=N, let

FðA;PÞ ¼
Y

}2SpecðA;PÞ
kð}Þ:

Given a 2 FðA;PÞ and } 2 SpecðA;PÞ, we let að}Þ denote the image of a
with respect to the projection p} : FðA;PÞ �! kð}Þ. In [4, Proposition 2.3.6] it is
shown that

ffiffiffiffiffiffiffi
ð0Þ

p
¼

\

}2SpecðA;PÞ
}:

Thus, since A is reduced, the canonical homomorphism

A �! FðA;PÞ : a 7!
Y

}2SpecðA;PÞ
að}Þ

is injective. Hence we may consider A as a subring of FðA;PÞ. Given
x 2 FðA;PÞ, we set

ZðxÞ ¼ f} 2 SpecðA;PÞ j xð}Þ ¼ 0g

and define xð�1Þ 2 FðA;PÞ as follows:

xð�1Þð}Þ ¼ xð}Þ�1 if }=2ZðxÞ
0 if } 2 ZðxÞ

(

We call xð�1Þ the formal inverse of x. Finally we set

A1 :¼ A½að�1Þ j a 2 A�

and denote by P1 � A1 the saturated hull of the partial order generated by P.
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The following facts are simple consequences of the construction of
ðA1;P1Þ.

Lemma 4.3. Let ðA;PÞ 2 PO=N, }1 2 SpecA1, } :¼ }1 \ A and a; b 2 A
with 0 � a � b. Then the following statements hold:

(1) bð�1Þ 2 ðbÞ.
(2) a ¼ abð�1Þb
(3) } 2 SpecðA;PÞ.
(4) A1=}1 ¼ kð}Þ.
(5) P1 and P induce the same partial order on kð}Þ.
(6) The inclusion ZA : A �! A1 is an epimorphism in the category of

rings.

Lemma 4.4. Let ðA;PÞ 2 PO=N. Then the inclusion ZA : A ,!A1 induces the
following homomorphisms with respect to the constructible topology:

SpecðZAÞ : SpecA1 �! SpecðA;PÞ;
SperðZAÞ : SperðA1;P1Þ �! SperðA;PÞ:

Proof. Let p :¼ SpecðZAÞ. By (4.1b) (3) we know ImðpÞ � SpecðA;PÞ.
Since A1 � FðA;PÞ it is clear that p is surjective. Since ZA : A ,!A1 is an
epimorphism in the category of rings, p is injective and therefore a homo-
morphism with respect to the constructible topology. From (4.3)(4) and (5)
we now see that

SperðZAÞ : SperðA1;P1Þ �! SperðA;PÞ

is bijective as well. u

Corollary 4.5. Let ðA;PÞ 2 PO=N. Then ðA1;P1Þ is completely real of
exponent 1.

Proof. By (4.3) (4), dimA1 ¼ 0. Hence A1 is von Neumann regular and
(4.4) together with (4.3) (5) shows that ðA1;P1Þ is completely real. Now
apply (4.2). u

In the next steps we will show that ZA : ðA;PÞ �! ðA1;P1Þ is the
monoreflection we are looking for.

Lemma 4.6. Let ðA;PÞ be completely real of exponent 1. Then A ¼ A1.
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Proof. FðA;PÞ ¼ FðA1;P1Þ, by (4.3) and (4.4). Let x 2 A. It remains to
show xð�1Þ 2 A. By (4.2), A is von Neumann regular. Hence there is y 2 A
with x2y ¼ x and y2x ¼ y which means y ¼ xð�1Þ. u

Let j : ðA;PÞ �! ð ~A; ~PÞ be a morphism in PO=N. Let

} 2 Specð ~A; ~PÞ and }0 ¼ SpecðjÞð}Þ:

Then j induces a canonical homomorphism c} : kð}0Þ �! kð}Þ. Let us
denote by p}0

: A1 �! kð}0Þ the restriction of the canonical projection
FðA;PÞ �! kð}0Þ. Then we get a homomorphism

j} :¼ c} 	 p}0
: A1 �! kð}Þ:

Putting these maps together we obtain a homomorphism

j� ¼
Y

}2Specð ~A; ~PÞ
j} : A1 �! Fð ~A; ~PÞ:

From the construction of the rings A1; ~A1 we see Imðj�Þ � ~A1. Thus we
have found a ring homomorphism

j� : A1 �! ~A1:

Moreover, since j is order-preserving, the definition of the partial orders
P1; ~P1 shows that j� is order-preserving as well. Finally note that the fol-
lowing diagram commutes:

Now consider

R1 : PO=N �! CRR1 : ðA;PÞ �! ðA1P1Þ:
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Together with (4.6) the facts just mentioned show that R1 is a real hull
functor.

For the sake of notational simplicity we will still write A1 instead of
RðA;PÞ or ðRðAÞ;RðPÞÞ. We are now prepared to show that R1 is a
monoreflection.

Theorem 4.7. The functor R1 : PO=N �! CRR1 is a monoreflector.

Proof. We have to show that for any morphism j : ðA;PÞ �! ð ~A; ~PÞ 2
CRR1 there exists a unique morphism c : ðA1P1Þ �! ð ~A; ~PÞ such that the
following diagram commutes:

Since R1 is a real hull functor, (4.6) implies the existence of c. By (4.3) ZA is
an epimorphism in the category of rings. Hence c is unique. u

We conclude this section with an alternative description of the ring A1

which is of interest from the geometric point of view.
We call x 2 FðA;PÞ piecewise rational if there are elements

a1; b1; . . . ; an; bn in A and a finite covering

SpecðA;PÞ ¼ C1 [ � � � [ Cn

by constructible sets Ci � SpecðA;PÞ with Ci � DðbiÞ such that for all i 2
f1; . . . ; ng and all } 2 Ci we have

xð}Þ ¼ aið}Þ
bið}Þ :

Then the piecewise rational elements of FðA;PÞ form a subring containing
A. Note that the elements of A1 are piecewise rational. We even have

Proposition 4.8. Let ðA;PÞ 2 PO=N. Then A1 � FðA;PÞ is the subring of
the piecewise rational elements.

Proof. Obviously it is sufficient to show that for every constructible subset
C � SpecðA;PÞ the element 1C 2 FðA;PÞ defined by
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1Cð}Þ ¼
1 if } 2 C

0 if }=2C

(

belongs to A1. First let

C ¼ VðaÞ ¼ f} 2 SpecðA;PÞ j a 2 }g; a 2 A:

Since A1 is von Neumann regular, there is an idempotent e 2 A1 such that
the ideal ðaÞ � A1 is generated by e. Hence 1C ¼ 1� e 2 A1. Now let C �
SpecðA;PÞ be an arbitrary constructible subset. Then C is an element of the
Boolean lattice generated by the sets VðaÞ, a 2 A. Hence 1C 2 A1. u

5. COMPLETELY REAL HULLS OF EXPONENT n

Let n 2 N be a fixed natural number with n > 1. In this section we will
show that CRRn is a monoreflective subcategory of PO=N. To this end we
first associate with ðA;PÞ a certain partially ordered subring ðAn;PnÞ
� ðA1;P1Þ.

Let ðA;PÞ 2 PO=N. Given any intermediate ring

A � B � A1

we set

FracðBÞ ¼ fða; bÞ 2 B
 B j 0 � a � bg;

where ‘‘�’’ denotes the partial order relation induced by P1 We define the
ring An inductively. Let ðA1;P1Þ :¼ ðA;PÞ. If ðAk;PkÞ has already been
defined let

Akþ1 :¼ Ak½an � bð�1Þ j ða; bÞ 2 FracðAkÞ� � A1:

Furthermore we set Pkþ1 ¼ Akþ1 \ P1. Now let

ðAn;PnÞ :¼
[

k2N
ðAk;PkÞ

Finally we let ZnA : An �! A1 denote the inclusion.
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Lemma 5.1. Given ðA;PÞ 2 PO=N, then ðAn;PnÞ is a completely real ring of
exponent n.

Proof. Let 0 � a � b 2 An. Then there is some k 2 N with a; b 2 Ak. From
the construction of ðAn;PnÞ we get c :¼ an � bð�1Þ 2 Akþ1 � An. Note that
an ¼ c � b. Hence it remains to show c 2 ffiffiffiffiffiffiffiffi

bAn

p
. By (4.5) ðA1;P1Þ is com-

pletely real of exponent 1. In particular, ðA1;P1Þ 2 CRRn. Hence we know
by (2.4) that in ðA1;P1Þ we have 0 � c � bn�1. Consequently

d :¼ cn � ðbð�1ÞÞn�1 2 Akþ2 � An

which shows cn ¼ d � bn�1 2 bAn. u

Therefore we have an assignment

Rn : PO=N �! CRRn : ðA;PÞ �! ðAn;PnÞ:

As before we will still write ðAn;PnÞ rather than RnðA;PÞ or ðRnðAÞ;
RnðPÞÞ.

Proposition 5.2. Rn : PO=N �! CRRn is a monoreflector.

Proof. Let ðA;PÞ 2 PO=N. We claim that

Z : ðA;PÞ �! ðAn;PnÞ

is a monoreflection of ðA;PÞ in CRRn. Thus, given ð ~A; ~PÞ 2 CRRn and j :
ðA;PÞ �! ð ~A; ~PÞ we have to show that there exists a unique morphism c :
ðAn;PnÞ �! ð ~A; ~PÞ such that the following diagram commutes:

To this end it is sufficient to prove that for all k 2 N there exists a unique
morphism ck :ðAk;PkÞ�!ð ~A; ~PÞ such that the following diagram
commutes:
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By (4.7) there exists a unique morphism f : ðA1;P1Þ �! ð ~A1; ~P1Þ such that
the diagram

commutes. Let ck be the restriction of f to Ak � A1. We prove by induction
on k that ck is the morphism we are looking for. Since ðA1;P1Þ ¼ ðA;PÞ we
may assume that this has been proven for some k� 1 � 1. So let
ða; bÞ 2 FracðAk�1Þ. Then 0 � ckðaÞ � ckðbÞ as ck is order-preserving. By
(1.4) we know that there are unique elements

c 2
ffiffiffiffiffiffiffiffi
bA1

p
and ~c 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ckðbÞ ~A1

q

with an ¼ c � b and ckðaÞn ¼ ~c � ckðbÞ. Hence necessarily

ð�Þ ckðcÞ ¼ ~c:

By assumption ð ~A; ~PÞ is completely real of exponent n. Hence ~c 2 ~A by (1.4).
Moreover, we know c ¼ an � bð�1Þ. Hence the definition of Ak shows
ckðAkÞ � ~A and finally ð�Þ implies the uniqueness of ck. u

So far we have seen that we have the infinite strictly increasing
sequence

CRR1 �
=� CRR2 �

=� � � � �=� CRRn �
=� � � � �=� PO=N

of the monoreflective subcategories CRRn � PO=N. Thus, given ðA;PÞ 2
PO=N we obtain the infinite sequence
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ðA;PÞ � � � � � ðAn;PnÞ � � � � � ðA2;P2Þ � ðA1;P1Þ

of completely real extensions of ðA;PÞ. In general, the intersection of the
partially ordered rings ðAn;PnÞ is not completely real. In particular, so far
we have not found a unique ‘‘minimal’’ completely real extension of ðA;PÞ.
In the next step we show that in the context of monoreflective subcategories
such an extension does not exist.

Let D � CRR be a full subcategory. Assume that D is a monore-
flective subcategory of PO=N with associated monoreflector
R : PO=N �! D. By (3.3) there exists n0 2 N with D � CRRn0 . Hence D �
CRRn for all n � n0. Let ðA;PÞ 2 PO=N and let jA : ðA;PÞ �! RðA;PÞ be
its monoreflection in D. Let n � n0. Since Rn is a monoreflector as well,
there exists a unique morphism jn : ðAn;PnÞ �! RðA;PÞ such that the
following diagram commutes:

Hence we have the following sharpening of (3.3):

Corollary 5.3. Let D � CRR be a full subcategory. Assume that R :
PO=N �! D is a monoreflector. Then there is some no 2 N such that for all
n � n0 there is a unique A-embedding jn : ðAn;PnÞ �! RðA;PÞ.

This result shows that the rings ðAn;PnÞ are indeed distinguished
completely real extensions of ðA;PÞ.

In the next step we consider the space SpecAn.

Corollary 5.4. Let ðA;PÞ 2 PO=N and let n � 2. Then the inclusion ZnA :
A �! An induces a bijection

SpecAn �! SpecðA;PÞ:

Proof. Since R1 and Rn are monoreflectors, R1 	 Rn : PO=N �! CRR1 is
a monoreflector as well. Hence R1ðAn;PnÞ ffi ðA1;P1Þ. Now the claim fol-
lows from (4.4). u

Let ðA;PÞ 2 PO=N. Given } 2 SpecðA;PÞ we let ~} � An denote the
prime ideal lying above }. By the construction of the ring An we know
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An=~} � kð}Þ :¼ quotðA=}Þ:

We shall give a slightly more precise description. Let Pð}Þ � kð}Þ denote the
partial order induced by P. Given a total order Q � kð}Þ we let CðQÞ �
kð}Þ denote the convex hull of A=} in ðkð}Þ;QÞ. Now let

ð�Þ HðA; }Þ :¼
\

Q2Sperðkð}Þ;Pð}ÞÞ
CðQÞ:

Then HðA; }Þ is a relative real holomorphy ring of kð}Þ (see [1,3]). Using the
compactness of Sperðkð}Þ;Pð}ÞÞ one readily verifies

HðA; }Þ ¼ fx 2 kð}Þ j 9 a 2 A=} : a� x 2 Pð}Þg:

Moreover, from ð�Þ and the construction of the ring An one easily sees.

Corollary 5.5. Let ðA;PÞ 2 PO=N and n � 2. Given } 2 SpecðA;PÞ then
An=~} � HðA; }Þ.

In the final step we consider the real spectra Sper ðAn;PnÞ and
Sper ðA;PÞ. The next result is crucial for applications of the completely real
extensions constructed so far in the framework of geometry.

Theorem 5.6. Given ðA;PÞ 2 PO=N and n � 2, the inclusion ZnA : A �! An

induces an isomorphism

SperðZnAÞ : SperðAn;PnÞ �! SperðA;PÞ

of spectral spaces.

Proof. Let pn :¼ Spec ðZnAÞ. We first show that pn is bijective. Let us
consider the commutative diagram

with the obvious homomorphisms. From this we obtain the following
commutative diagram:

2108 BERR



Since R1ðAnxÞ ffi A1, pA and p1 are bijective by (4.4). From this we see that
pn is bijective as well. Let CðA;PÞ denote the ring of continuous semi-
algebraic functions on SpecðA;PÞ. Since ðCðA;PÞ; CðA;PÞ2Þ is completely
real of exponent 2 there exists a unique morphism

en : ðAn;PnÞ �! ðCðA;PÞ; CðA;PÞ2Þ

such that the following diagram commutes

where i denotes the inclusion. From this we get a commutative diagram of
spectral spaces.

By [12, Sec. I.3] we know that i� is an isomorphism of spectral spaces and we
already have seen that pn is bijective. Hence the commutativity of the dia-
gram shows that pn is an isomorphism of spectral spaces. u

6. COMPLETELY REAL RINGS AND

SEMIALGEBRAIC GEOMETRY

In this final section we will briefly indicate that the rings we have
constructed so far are in fact of interest for semialgebraic geometry.
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A detailed study of these rings in the framework of geometry will be done in
a forthcoming paper.

Throughout this section let R be a real closed field and S � Rm a
closed semialgebraic subset. We let R½S� denote the ring of R-valued poly-
nomial functions on S, ~S � SperR½S� the constructible subset correspond-
ing to S and

P½S� :¼ ff 2 R½S� j 8x 2 S : fðxÞ � 0g:

For the rest of this section we fix some n � 2. We denote by ðRn½S�;Pn½S�Þ
the completely real hull of exponent n of ðR½S�;P½S�Þ and by

Z : ðR½S�;P½S�Þ �! ðRn½S�;Pn½S�Þ

the canonical embedding. Since the ring ðCðSÞ; CðSÞþÞ of continuous semi-
algebraic functions on S is completely real of exponent n there is a unique
R½S�-embedding Rn½S� �! CðSÞ. Therefore we will regard the elements of
Rn½S� as semialgebraic funtions on S. By the last section we know:

(1) Spec ðZÞ : SpecRn½S� �! Spec ðR½S�;P½S�Þ is bijective.
(2) Sper ðZÞ : Sper ðRn½S�;Pn½S�Þ �! Sper ðR½S�;P½S�Þ is an iso-

morphism of spectral spaces.
(3) Pn½S� ¼ ff 2 Rn½S� j 8x 2 S : fðxÞ � 0g.
(4) dimR½S� ¼ dimRn½S.
(5) For every prime ideal } 2 SpecRn½S� we have Rn½S�=} �

kð} \ R½S�Þ.
Given } 2 Spec ðR½S�;P½S�Þ we set

~} ¼ Spec ðZÞ�1ð}Þ:

and

Zð}Þ ¼ fx 2 S j 8 f 2 } : fðxÞ ¼ 0g
Zð~}Þ ¼ fx 2 S j 8 f 2 ~} : fðxÞ ¼ 0g

By (2.8) we know that in general Spec ðZÞ is not an isomorphism. In parti-
cular we may have Zð}Þ 6¼ Zð~}Þ. In a first step, we therefore will have a
closer look at the sets Zð~}Þ.

A point x 2 Zð}Þ � S is called a central point of Zð}Þ if x admits a
generalization a 2 ~S � SperR½S� with suppðaÞ ¼ }. We let Zð}Þc � Zð}Þ
denote the subset of the central points.
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Proposition 6.1. Let } 2 Spec ðR½S�;P½S�Þ. Then the following statements
hold:

(1) Zð}Þc � Zð~}Þ � Zð}Þ:
(2) Zð~}Þ is Zariski-dense in Zð}Þ.
(3) ~} ¼ ff 2 Rn½S� j 8 x 2 Zð}Þc : fðxÞ ¼ 0g.

Proof. Obviously Zð~}Þ � Zð}Þ. So let x 2 Zð}Þc. Then there is some a 2 ~S
with } ¼ suppðaÞ which specializes to x. By (5.6) we know that

Sper ðZÞ : Sper ðRn½S�;Pn½S�Þ �! Sper ðR½S�;P½S�Þ

is an isomorphism of spectral spaces. Let ~a; ~x 2 Sper ðRn½S�;Pn½S�Þ be the
preimages of a; x. Since SperðZÞ is an isomorphism we have ~a � ~x. Now ~} ¼
~a \ �~a implies x 2 Zð~}Þ which proves (1). Statement (2) now follows from
(1) and the fact that Zð}Þc is Zariski-dense in Zð}Þ. It remains to prove (3).
Let I � Rn½S� be the vanishing ideal of Zð}Þc. By (1) we have ~} � I. Con-
versely, let ~}0 be a minimal prime divisor of I. From (2) we infer I \ R½S� ¼ }
which implies ~}0 \ R½S� ¼ }. Hence ~} ¼ ~}0 as Spec ðZÞ is bijective. u

Let us draw a first consequence of the last result. A point x 2 S is
called central if x 2 Zð}Þc for some minimal prime ideal } of ðR½S�;P½S�Þ
and we say that S is central if all points of S are central. Finally we call S
irreducible if R½S� is an integral domain. In this situation we let RðSÞ denote
the quotient field of R½S�.

Corollary 6.2. Assume that S is irreducible and central. Then Rn½S� is an
integral domain.

Proof. Let ~} � Rn½S� be the prime ideal lying above ð0Þ. Then Sc � Zð~}Þ
by (6.1) (1). Hence Zð~}Þ ¼ S as S is central. Now the claim follows from
(6.1) (3). u

In example (6.5) we will see that the converse of the last result does not
hold. But let us first show that statement (1) of (6.1) above is sharp in the
sense that we may have Zð~}Þ ¼ Zð}Þc as well as Zð~}Þ ¼ Zð}Þ.
Example 6.3. Let S ¼ R3 and let n � 2. We consider the prime ideal } � R
½X;Y;Z� which is generated by

h ¼ ZðX2 þ Y2Þ � X3:

We claim Zð~}Þ ¼ Zð}Þc. Since 0 � X2 � X2 þ Y2 there exist by (2.7) k; l 2
N and g 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðX2 þ Y2Þp � Rn½S� with
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2k ¼ 3l and X2k ¼ g � ðX2 þ Y2Þl:

Now consider the function f ¼ Zl � g 2 Rn½S�. Then

f � ðX2 þ Y2Þl ¼ ZlðX2 þ Y2Þl � X3l 2 ~}:

Hence f 2 ~}. Next let ðx; y; zÞ 2 Zð}Þ n Zð}Þc. Then gðx; y; zÞ ¼ 0 as
g 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðX2 þ Y2Þp

. Hence fðx; y; zÞ ¼ zl 6¼ 0 which shows Zð~}Þ ¼ Zð}Þc. u

Example 6.4. Again let S ¼ R3. This time we consider the prime ideal } �
R½X;Y;Z� generated by

f ¼ X3 þ ZX2 � Y2:

We claim Zð~}Þ ¼ Zð}Þ. First note that Zð}Þc \ SingðZð}ÞÞ is Zariski-dense
in the singular locus SingðZð}ÞÞ of the algebraic set Zð}Þ. Let }0 �
R½X;Y;Z� be the prime ideal generated by X and Y. Then Zð}0Þ ¼
SingðZð}ÞÞ. Since Zð}Þc \ SingðZð}ÞÞ is Zariski-dense in SingðZð}ÞÞ there
are a 2 gZð}Þ and b 2 gZð}0Þ such that a specializes to b; suppðaÞ ¼ } and
suppðbÞ ¼ }0. Let ~a; ~b 2 SperRn½S� be the preimages of a; b with respect to
SperðZÞ. Since SperðZÞ is an isomorphism we get

~} ¼ supp ð~aÞ � supp ð~bÞ ¼ ~}0:

Hence Zð~}Þ ¼ Zð}Þ. u

Next we show that in general the converse direction of (6.2) is false.

Example 6.5. Let

S ¼ fðx; y; zÞ 2 R3 j x3 þ zx2 � y2 ¼ 0g:

Then S is irreducible but not central. Let ~} � Rn½S� be the prime ideal lying
above ð0Þ � R½S�. As in the last example we get Zð~}Þ ¼ S. Hence ~} ¼ ð0Þ,
i.e., Rn½S� is an integral domain. u

We call x 2 S an isolated point if fxg is open in S with respect to the
strong topology. The next result shows another feature of the completely
real hull ðRn½S�;Pn½S� of ðR½S�;P½S�Þ.

Proposition 6.6. Let x 2 S and let mx � R½S� be its maximal ideal. Then the
following statements are equivalent:
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(1) x is an isolated point of S.
(2) ~mx is a minimal prime ideal of Rn½S�.

Proof. First assume that x is an isolated point of S. Then there is a
function f 2 mx with fðyÞ � 1 for all y 2 S n fxg. Thus

0 � f � f nþ1

with respect to Pn½S�. Hence there is some g 2 Rn½S� with fn ¼ gfnþ1. Now
let ~} � Rn½S� with ~} 6¼ ~mx. Then f =2 ~} by (6.1) (3) and the choice of f.
Hence

0 ¼ fnð1� g � fÞ 2 ~}

implies 1� g � f 2 ~}. But 1� g � f =2 ~mx. Hence ~} �
=� ~mx which shows that ~mx

is a minimal prime ideal. Conversely, assume that x 2 S is not isolated. Then
there exists a prime ideal } � R½S� with dim} � 1 and x 2 Zð}Þc. But then
x 2 Zð~}Þ by (6.1) (1). Hence } �

=� ~mx. u

Let us denote by IsoðSÞ � S the subset of the isolated points of S.
We conclude this paper with a closer look at semialgebraic sets of
dimension 1.

Corollary 6.7. Let S be an irreducible semialgebraic set of dimension 1. Then

cardðMin� SpecRn½S�Þ ¼ 1þ cardðIsoðSÞÞ:

Proof. By the last result every x 2 IsoðSÞ corresponds to a minimal prime
ideal of Rn½S�. So let ~} 2Min� SpecRn½S� be given such that ~} \ R½S� is not
a maximal ideal. Then dimZð~}Þ ¼ 1. But then ~} \ R½S� ¼ ð0Þ as S is an
irreducible of dimension 1. u

As an immediate consequence of the last result we see that a point x 2
S of a 1-dimensional semialgebraic set S is central iff its maximal ideal mx

has height 1.

Corollary 6.8. Let S be an irreducible semialgebraic set of dimension 1. Then
the following statements are equivalent:

(1) Rn½S� is an integral domain.
(2) S is central.
(3) SpecðZÞ : SpecRn½S� �! Spec ðR½S�;P½S�Þ is an isomorphism.
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Proof. The equivalence of (1) and (2) is an immediate consequence of (6.7)
and obviously (3) implies (1). So assume that Rn½S� is an integral domain.
Then we may consider Rn½S� as a subring of the quotient field RðSÞ of R½S�.
Let 0 6¼ f 2 Rn½S�. Then there are g; h 2 R½S� with f ¼ g

h. This shows that

Vð f Þ ¼ f~} 2 SperRn½S� j f 2 ~}g

is finite. Hence Spec ðZÞ is a closed morphism. Now (3) follows as SpecðZÞ is
bijective. u

In view of (6.8) the next result completely describes the difference
between the topologies on SpecR½S� and SpecRn½S� in the case of
1-dimensional semialgebraic sets.

Corollary 6.9. Let S be an irreducible semialgebraic set of dimension 1 and
let k be the number of isolated points of S. Then

Rn½S� ffi
Yk

i¼1
R
 Rn½Sc�:

Proof. Let ~} � Rn½S� be the prime ideal lying above (0). By the (6.7) and its
proof we have

ð�Þ Rn½S� ffi
Yk

i¼1
R
 Rn½S�=~} and Zð~}Þ ¼ Sc:

So it remains to show Rn½S�=~} ffi Rn½Sc�. First note that R½S� ¼ R½Sc� as S is
irreducible. Therefore we have a morphism

j : ðRn½S�;Pn½S�Þ �! ðRn½Sc�;Pn½Sc�Þ:

From Zð~}Þ ¼ Sc we infer kerðjÞ ¼ ~}. Let f 2 P½Sc�. By ð�Þ there exists g 2
Rn½S� with gðxÞ ¼ 0 for all x 2 IsoðSÞ and gjSc ¼ f. Hence g 2 Pn½S� and
fþ ~} ¼ gþ ~} 2 Pn½S�=~}. Hence

ðR½Sc�;P½Sc�Þ � ðRn½S�=~};Pn½S�=~}Þ

is a completely real extension of exponent n. Now the claim follows from the
fact that ðRn½Sc�;Pn½Sc�Þ is a monoreflection of ðR½Sc�;P½Sc�Þ in CRRn. u

2114 BERR



REFERENCES

1. Becker, E. The Real Holomorphy Ring and Sums of 2nth Powers. In:
Colliot-Thélène, J.L., Coste, M., Mathé, L., Roy, M.F., Eds.; Géo-
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