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Abstract

We present results and background rationale in support of a Pólya–Carlson dichotomy between ratio-
nality and a natural boundary for the analytic behaviour of dynamical zeta functions of compact group
automorphisms.
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1. Introduction

Let θ : X → X be a continuous map on a compact metric space with the property that

Fθ (n) = |{x ∈ X | θn x = x}|

is finite for all n > 1. The associated dynamical zeta function

ζθ (z) = exp

n>1

Fθ (n)

n
zn

is an invariant of topological conjugacy for the map θ , and the analytic properties of the zeta
function and weighted versions of it may be used to study orbit-growth and other properties of θ .
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In particular, for situations in which the zeta function has a finite positive radius of convergence
and a meromorphic extension beyond the radius of convergence Tauberian methods may be used
to relate analytic properties of singularities of the zeta function to orbit-growth properties of
the map. For smooth maps with sufficiently uniform hyperbolic behaviour, the zeta function is
rational (see Manning [10]), and in particular hyperbolic toral automorphisms have this property.
On the other hand, for some natural families of dynamical systems the arithmetic and analytic
properties of the zeta function are known to be very different. The third author [25], for a family
of isometric extensions of the full shift on p symbols (p a prime) parametrized by a probability
space, shows that with the possible exception of two values of p the dynamical zeta function
is not an algebraic function almost surely. Everest, Stangoe and the third author [6] studied the
specific automorphism of a compact group dual to the automorphism r → 2r on Z[

1
6 ], showing it

to have a natural boundary on the circle |z| =
1
2 (we refer to Segal [23, Chapter 6] for a convenient

introduction to the theory of complex functions with natural boundary). Buzzi [2] shows that
a certain weighted random zeta function has a natural boundary. In a different direction, for
dynamical systems with a polynomial growth bound on the number of periodic orbits, a more
natural complex function that captures all the periodic point data is given by an orbit Dirichlet
series, and many natural examples are known to have infinitely many singularities on the critical
line with no lower bound on their separation by work of Everest, Stevens et al. [5], or even to
have a natural boundary in calculations of Pakapongpun and the third author [16].

One of the fundamental links between the arithmetic properties of the coefficients of a
complex power series and its analytic behaviour is given by the Pólya–Carlson theorem [3,17].

Pólya–Carlson Theorem. A power series with integer coefficients and radius of convergence
1 is either rational or has the unit circle as a natural boundary.

Unfortunately, while there are some natural group automorphisms whose zeta function has
radius of convergence 1, many do not—and for most (in cardinality) it is not at all clear how
to compute the radius of convergence without refined information about the arithmetic of linear
recurrence sequences.

The suggestion we wish to explore here is that there is a Pólya–Carlson dichotomy for group
automorphisms in exactly the same sense: the zeta function of a compact group automorphism is
either rational or admits a natural boundary at its radius of convergence.

Conjecture. Let θ : X → X be an automorphism of a compact metric abelian group, with the
property that Fθ (n) < ∞ for all n > 1. Then ζθ is either a rational function or admits a natural
boundary.

We cannot prove this, but will show it for a large class of automorphisms of connected finite-
dimensional abelian groups (these groups are called solenoids). In addition, the arguments here
do we hope make this suggestion plausible, and clarify what sort of issues would arise in attempt-
ing to prove the full statement. The conjecture – if true – may be seen as a rigidity phenomenon
in algebraic dynamics, preventing small changes to the analytic properties of the dynamical zeta
function for these systems. This contrasts with other orbit-growth properties for compact group
automorphisms which can take all values along a continuum (we refer to the work of Baier,
Jaidee, Stevens et al. [1] for examples of dynamical properties that can vary continuously in this
setting).

In addition to the Pólya–Carlson theorem, we will make essential use of the Hadamard
quotient theorem (see van der Poorten [18] and Rumely [21]).
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Hadamard Quotient Theorem. Let K be a field of characteristic zero, and suppose that
n>0 bnzn and


n>1 cnzn in K[[z]] are expansions of rational functions. If there is a finitely-

generated ring R over Z with an =
bn
cn

∈ R for all n > 1, then


n>0 anzn is also the expansion
of a rational function.

Given the fact that there are well-known arithmetical constraints on the possible sequences
(Fθ (n)) of periodic point counts for any map (see Puri and the third author [19]), and additional
(less well-known) constraints in the case of group automorphisms (see the thesis of Moss [14] for
more details, or the survey of Staines et al. [13] for an example of a linear recurrent divisibility
sequence that counts periodic points for some map but that cannot be the periodic point count for
a group automorphism), we should point out that the suggested dichotomy certainly cannot hold

for all maps. To see this, notice for example that there is a continuous map θ with Fθ (n) =


2n
n


for all n > 1 (by work of Puri and the third author [19]) and so

n>1

Fθ (n)zn
=

1
√

1 − 4z
− 1.

In the parameter space of all compact metric abelian group automorphisms over which we
are suggesting the dichotomy holds, the results below are restricted in three different ways.
Removing the assumption of connectedness – or at least dealing with the totally disconnected
case – is likely to be relatively straightforward because of the additional information available
about the arithmetic properties of linear recurrence sequences over finite fields, and it is expected
that the most interesting arithmetic questions occur in the connected setting considered here. The
bound on the topological dimension of the compact group is needed to avoid Salem numbers,
the familiar bane of several investigations in arithmetic and dynamics. Removing this bound on
the face of it would involve subtle Diophantine problems involving linear forms in logarithms.
The third way in which we restrict the cases we deal with concerns a subset S of a countable
collection P of places of a number field. We are able to handle the situations in which S is finite
or infinite but extremely thin, and the case in which P \ S is finite. Understanding the general
case seems to require different techniques.

2. One-dimensional solenoids

A one-dimensional solenoid X has a Pontryagin dual group isomorphic to a subgroup of
Q. Given an automorphism θ : X → X of a one-dimensional solenoid, the dual group naturally
carries the structure of a module over a ring of the form Z[r±1

], where r ∈ Q× and multiplication
by r corresponds to application of the dual automorphism θ . To avoid trivial (from a dynamical
point of view, non-ergodic) automorphisms, we assume r ≠ ±1 throughout. For a more detailed
account of these systems, we refer to the papers of Chothi, Everest and the third author [4] and
the recent survey by Staines et al. [13]. Relevant background and references for all the results
we will need on linear recurrence sequences may be found in the monograph of Everest, van der
Poorten, Shparlinski and the third author [7].

There is a convenient formula for Fθ (n), which we shall use as the basis for our discussion.
Since there may be uncountably many non-conjugate automorphisms of one-dimensional
solenoids that share the same zeta function (we refer to Miles [12, Example 1] for an example),
this not only avoids complex classification problems for these systems but has the added
advantage that no background in algebraic dynamics is needed to access the main results of
this section; instead the formula (1) below serves as a starting point.
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Let P(Q) denote the set of rational primes. For any x ∈ Q and S ⊂ P(Q), write |x |S =
p∈S |x |p. Miles [12, Theorem 3.1] shows that there is a distinguished set of primes T ⊂ P(Q)

such that Fθ (n) = |rn
− 1|

−1
T , for all n > 1, and that |r |p = 1 for all p ∈ T (see Miles

[12, Remark 1]). Therefore, by the Artin product formula (see Weil [26, Section IV.4] for a
complete treatment of the valuation theory of number fields used here) we have

Fθ (n) = |rn
− 1| · |rn

− 1|S, (1)

where S = P(Q) \ T . Furthermore, |r |p ≠ 1 necessarily implies that p ∈ S.
If T = ∅, then we obtain the trivial sequence (1, 1, . . .), so we assume that T ≠ ∅ throughout.

In this section, we do not discuss further the problem of determining which dynamical systems
give rise to the same formula (1), it is sufficient to note that for any r ≠ ±1 and any S ⊂ P(Q)

with |r |p = 1 for all p ∈ P(Q) \ S, the automorphism x → r x on the ring R = Z[
1
p : p ∈ S]

dualizes to an automorphism θ of the solenoid X = R, and its sequence of periodic point counts
is given by (1). We refer to [4] for further details of this construction.

From now on, we assume that r ∈ Q \ {±1} is fixed and consider the sequences ( fS)

defined by fS(n) = |rn
− 1| · |rn

− 1|S for n > 1 that arise by varying the set S. We also
write FS(z) =


n>1 fS(n)zn for the associated ordinary generating function. We are able

to concentrate on the ordinary generating function rather than the zeta function (and hence
have more ready access to the theory of linear recurrence sequences) because of the following
fundamental relationship.

Lemma 1. Let F(z) =


n>1 Fθ (n)zn . If ζθ is rational then F is rational. If ζθ has analytic
continuation beyond its circle of convergence, then so too does F. In particular, the existence of
a natural boundary at the circle of convergence for F implies the existence of a natural boundary
for ζθ .

Proof. This follows from the fact that F(z) = zζ ′
θ (z)/ζθ (z). �

In order to handle the sequence fS = ( fS(n)) more easily, we need a way to evaluate
expressions of the form |rn

− 1|p when |r |p = 1. To this end, the following lemma is useful,
and we state this in the more general setting of number fields, since this will be needed in the
next section. Moreover, it will be necessary to deal with number fields of unknown degree for
the putative linear recurrence sequences that arise inside arguments by contradiction. Let K be
an algebraic number field, and let P(K) denote the set of places of K. For a place v ∈ P(K) with
|ξ |v = 1, let Kv denote the residue class field, let mv denote the multiplicative order of the image
of ξ in K×

v , and let ϱv denote the residue degree. We assume that | · |v is normalized so that the
Artin product formula holds (we refer to Ramakrishnan and Valenza [20] or Weil [26, Section
IV.4] for the details).

Lemma 2. Let p be the characteristic of Kv . There exists a non-negative integer constant
Dv > 0 and a rational constant Cv > 0, such that for any n ∈ N,

|ξn
− 1|v =


1 if mv - n,

Cv|n|
ϱv
p if mv | n and ordp(n) > Dv,

and |ξn
− 1|v assumes at most finitely many values otherwise.

Proof. See [11, Lemma 4.9], for example. �
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Remark 3. The proof of [11, Lemma 4.9] shows in fact that Dv is the least positive integer D
such that

|ξm p pD+1
− 1|v = |p|v|ξ

m p pD
− 1|v,

and also that

Cv = |p|
−Dv
v |ξm p pDv

− 1|v.

Furthermore, in the particular case K = Q, Dp = 0 when p > 2, and Dp ∈ {0, 1} when p = 2.

We begin by establishing precisely when FS is rational.

Theorem 4. The function FS is rational if and only if |r |p ≠ 1 for all p ∈ S.

Proof. Let S′
= {p ∈ S : |r |p = 1} and S′′

= {p ∈ S : |r |p > 1}. Then

fS(n) = |rn
− 1| |r |

n
S′′ f (n),

where f (n) = |rn
− 1|S′ . If r = a/b, then without loss of generality we can assume that a > |b|

because ζθ = ζθ−1 . Then

|rn
− 1| |r |

n
S′′ = an

− bn
⇒ fS(n) = (an

− bn) f (n), (2)

and this shows immediately that FS is rational if S′
= ∅.

To prove the converse, we assume that S′
≠ ∅ and aim to show that the sequence fS does not

satisfy a linear recurrence over Q, which will in turn imply that FS is irrational.
To begin with, assume that S is finite, so the sequence f = ( f (n)) lies in a finitely generated

extension of Z. For a contradiction, assume that fS is given by a linear recurrence relation. Then,
using (2) and the Hadamard quotient theorem, it follows that f also satisfies a linear recurrence
relation. Let q be a rational prime not in S, and define

n(e) = qe

p∈S′

m p pDp ,

where Dp is as in Lemma 2 and e > 1. Applying Lemma 2, we see that

f (kn(e)) = f (n(e))

whenever k is coprime to n(e). Hence the sequence f assumes infinitely many values infinitely
often, and so it cannot satisfy a linear recurrence by a result of Myerson and van der Poorten
[15, Proposition 2], giving a contradiction.

Now assume that S is infinite and recall that S ≠ P(Q). Using the Artin product formula and
(2), if T = P(Q) \ S′, then

fS(n) fT (n) = |rn
− 1| |rn

− 1|S′′ = |rn
− 1| |r |

n
S′′ = an

− bn .

Note that both fS and fT are positive integer sequences and the product sequence fS fT satisfies
a linear recurrence over Q. Moreover, by the Hadamard quotient theorem, fS satisfies a linear
recurrence over Q if and only if fT satisfies a linear recurrence over Q.

Hence, if either fS or fT satisfies a linear recurrence, it follows that for n sufficiently large
we have

fS(n) =

d
i=1

Pi (n)αn
i (3)
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and

fT (n) =

e
j=1

Q j (n)βn
j , (4)

for some natural numbers d and e and rational polynomials

P1, . . . , Pd , Q1, . . . , Qe,

and algebraic numbers α1, . . . , αd , β1, . . . , βe. Let N be a nonzero natural number with the prop-
erty that N Pi and N Q j are integer polynomials and Nαi and Nβ j are algebraic integers for i, j ∈

{1, . . . , d}×{1, . . . , e}. We let N ′ denote the product of the norms of α1, . . . , αd and β1, . . . , βe.
Let p be a prime number that does not divide abN N ′. We may then regard α1, . . . , αd ,

β1, . . . , βe as elements of the algebraic closure Qp, and since p does not divide N , we have that

|αi |p, |β j | 6 1

for (i, j) ∈ {1, . . . , d} × {1, . . . , e}. Moreover, since p does not divide N ′, we have

|αi |p = |β j |p = 1

for (i, j) ∈ {1, . . . , d} × {1, . . . , e}. Let G ∈ Q[x] be the monic polynomial of smallest degree
that has α1, . . . , αd , β1, . . . , βe as zeros. Then, by construction, G has no coefficients with de-
nominators divisible by p when written in lowest terms. We note that G modulo p splits in some
extension Fq of Fp, so there is some k > 0 such that

|α
pk

i − αi |p < 1

and

|β
pk

j − β j |p < 1

for (i, j) ∈ {1, . . . , d} × {1, . . . , e}. In particular, we have |α
pk

−1
i − 1|p < 1 for i ∈ {1, . . . , d}

and |β
pk

−1
j − 1|p < 1 for j ∈ {1, . . . , e}. We also have

|Pi (pk
− 1) − Pi (−1)|p < 1

and

|Q j (pk
− 1) − Q j (−1)|p < 1

for (i, j) ∈ {1, . . . , d} × {1, . . . , e} (simply because Pi and Q j are integral polynomials). It
follows from (3) and (4) that p divides fS(pk

− 1) if and only if p divides
d

i=1 Pi (−1)

and p divides fT (n) if and only if p divides
e

j=1 Qi (−1). Since fS(pk
− 1) fT (pk

− 1) =

a pk
−1

− bpk
−1

≡ 0 (mod p), we see that
d

i=1

Pi (−1)


e

j=1

Qi (−1)


≡ 0 (mod p)

for all sufficiently large primes p. Hence one of
d

i=1 Pi (−1) and
e

j=1 Q j (−1) must be zero.

Without loss of generality, assume that
d

i=1 Pi (−1) = 0. This means that p divides fS(pk
− 1)

for every prime p that does not divide abN N ′. In particular, p ∉ S for any such prime p.
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Thus we may assume that S is finite and non-empty, and this case has been handled
already. �

We record two curious consequences for the special case of one-dimensional solenoids.

Corollary 5. The function FS is rational if and only if the associated zeta function is rational.

Proof. The proof above shows that if FS is rational then fS(n) = an
− bn with a > |b| > 1, in

which case ζθ (z) =
1−bz
1−az . The other implication is covered by Lemma 1. �

Corollary 6. If FS has radius of convergence 1, then FS has the unit circle as a natural
boundary.

Proof. The theorem above shows that if FS is rational, then fS(n) = an
−bn , where a > |b| > 1,

so FS has radius of convergence 1
a < 1. Thus, FS having radius of convergence 1 implies that

FS is irrational, and the result follows from the Pólya–Carlson Theorem itself. �

As an example of Corollary 6, consider the case where P(Q) \ S is finite and non-empty, so
fS(n) grows polynomially in n (as fS corresponds to a sequence of periodic point counts for a
system of finite combinatorial rank [5]), and FS has radius of convergence 1. Then the corollary
shows that FS has a natural boundary. Corollary 6 also applies to many of the cases where S is
infinite, but it is not straightforward to exhibit examples.

We now turn our attention to finite S, for which the radius of convergence of FS is
always strictly less than 1. It will be useful to consider certain rational functions that arise
from congruence conditions, especially for our subsequent work involving Lambert series. The
following (a generating function analogue of the Euler product construction for certain Dirichlet
series) is readily established using a simple application of the inclusion–exclusion principle.

Lemma 7. For a finite set of rational primes S, the function HS(z) =


n>1 zn , where n runs
over all positive integers with p - n for all p ∈ S, is a rational function of the form

I∈I

dI zkI

1 − zkI
,

where I = I(S) is a finite indexing set, dI ∈ {−1, 1}, and each kI ∈ N is divisible only by
primes appearing in S.

For a singleton set, we write more briefly H{p} = Hp. Thus, for example,

H3(z) =
z

1 − z
−

z3

1 − z3 .

The next example is a simplified account of the case considered by Everest, Stangoe and
the third author [6]. It gives a simple illustration of the irrational case in Theorem 4, and the
functional equation found may be used to show the existence of a natural boundary in this case.

Example 8. For r = 2, consider F{2,3}, which is the ordinary generating function for the periodic
point sequence for the map dual to x → 2x on Z[

1
6 ]. For this simple example, we can establish

a functional equation to show that F{2,3} has a natural boundary. Let

F(z) =


n>1

|2n
− 1|3zn,



8 J. Bell et al. / Indagationes Mathematicae ( ) –

so that F{2,3}(z) = F(2z) − F(z). Since F has radius of convergence 1, showing that the unit
circle is a natural boundary for F is enough to prove that the circle |z| =

1
2 is a natural boundary

for F{2,3}. Since

F(z) =
1
3


2|n

|n|3zn
+


2-n

zn,

we have F(z) =
1
3 G(z2)+H2(z), where G(z) =


n>1 |n|3zn . Furthermore, since H2 is rational,

it is enough to show that G has the natural boundary |z| = 1 to establish this for F . Writing
n = 3ek, where e > 0 and 3 - k, gives

G(z) =


e>0

1
3e


3-k

z3ek
=


e>0

1
3e H3(z

3e
) = H3(z) +

1
3


e>0

1
3e H3(z

3e+1
).

It follows that G(z) = H3(z) +
1
3 G(z3). Using this functional equation inductively, we deduce

that there are dense singularities of G on the unit circle, occurring at 3e-th roots of unity, e ∈ N.

In general, it is difficult to establish functional equations of the same sort to demonstrate a
natural boundary. However, for finite sets S, we are nonetheless able to identify distinguished
singularities on the circle of convergence for FS that lead to a natural boundary, by means of the
following calculation.

Theorem 9. Let S be a finite set of rational primes such that |r |p = 1 for all p ∈ S, and let
F(z) =


n>1 |rn

− 1|Szn . Then there is a constant E(S) > 0 such that for any q ∈ S and any
δ ∈ Z[1/q], with the possible exception of finitely many values of δ,

|F(λ exp(2πδi))| → ∞

as λ → 1− whenever |δ|q > q E(S).

Proof. Let m p denote the multiplicative order of r modulo p for any prime p in S, and note that
|rn

− 1|p ≠ 1 if and only if m p | n by Lemma 2. Let T comprise the set of primes in S together
with all those that divide m p for some p ∈ S. Choose δ ∈ Z[1/q] with

−ordq(δ) > E(S) = 1 + max{ordt (m p) : t ∈ T, p ∈ S}

and set E = −ordq(δ) − 1. We wish to consider the behaviour of F(z) when

z = λ exp(2πδi)

and λ → 1−. To do this, we will split up the sum defining F as follows.
Let

J =


p∈T

pep : 0 6 ep < E for all p ∈ T


and for any j ∈ J , let N ( j) denote the set of positive integers n such that

ordp(n) = ordp( j)

for all p | j and ordp(n) > E for all p ∈ T with p - j , so that {N ( j)} j∈J forms a partition of N.
Notice that

m p | n for some n ∈ N ( j) ⇐⇒ m p | n for all n ∈ N ( j)
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for any p ∈ S. Furthermore, if we define

S( j) = {p ∈ S : p - j and m p | n for some n ∈ N ( j)},

then by Lemma 2, for all n ∈ N ( j),

|rn
− 1|S = c j |n|S( j)

for some non-negative rational constant c j . Hence, we can write

F(z) =


j∈J


n∈N ( j)

c j |n|S( j)z
n

=


j :S( j)≠∅

c j


n∈N ( j)

|n|S( j)z
n

  
G(z)

+


j :S( j)=∅

c j


n∈N ( j)

zn .

The second series on the right-hand side (given by summands for which S( j) is empty) is
a rational function with radius of convergence 1 by Lemma 7, so has only finitely many
singularities on the circle of convergence |z| = 1. Therefore, for all but finitely many choices
of δ ∈ Z[1/q], this second series is bounded as λ → 1−. From now on assume that δ has been
chosen so as to avoid these singularities. To demonstrate the required conclusion of the theorem,
it is sufficient to show that |G(z)| → ∞ as λ → 1−. For ease of notation, we now omit the
clause S( j) ≠ ∅ when writing G(z).

For any j ∈ J , let

U ( j) =

 
p∈S( j)

pep : ep > E for all p ∈ S( j)


,

and

j ′ = j


p∈T \S( j):p- j

pE .

Note that any n ∈ N ( j) can be written uniquely in the form n = u j ′k with u in U ( j) and p - k
for all p ∈ S′( j) = S( j) ∪ {p : p | j}. Hence,

G(z) =


j


u∈U ( j)

c j

u


k

zu j ′k, (5)

where k runs through all positive integers with p - k for all p ∈ S′( j). Consider first the terms
in the series for which ordq(u j) > E . In this case, zu j ′k

= λu j ′k and the inner sum comprises
strictly positive real terms, and diverges as λ → 1−. To complete the proof, we will show that
the sum of the remaining terms in the series for G(z) is bounded. For these terms, we have
ordq(u j) 6 E .

First suppose q - u j , so q ∉ S( j) and q - j , which implies that q ∉ S′( j). Using Lemma 7 for
the corresponding terms of G(z), the inner sum in (5) may be written as HS′( j)(zu j ′). Moreover,
the rational expression given in Lemma 7 shows that

|HS′( j)(z
u j ′)| 6


I∈I(S′( j))

1

|1 − zu j ′kI |
, (6)
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and since q ∉ S′( j), ordq(u j ′kI ) = ordq(u j ′) = E . Thus there is a constant M(δ, j) > 0 such
that

|1 − zu j ′kI | > M(δ, j).

Therefore, using (5) and (6), the sum of terms of G(z) for which q - u j is bounded in absolute
value by

j


u∈U ( j)

c j |I(S′( j))|

M(δ, j)u
=


j

c j |I(S′( j))|

M(δ, j)


p∈S( j)

1
pE (1 − 1/p)

.

It remains to consider the terms of G(z) for which 0 < ordq(u j) < E . In this case, ordq(u j) =

ordq( j) > 0, so q ∈ S′( j). Let S′′( j) = S′( j) \ {q}, and notice that we may write

HS′( j)(w) = HS′′( j)(w) − HS′′( j)(w
q)

=


I∈I(S′′( j))

dI


wkI

1 − wkI
−

wqkI

1 − wqkI



=


I∈I(S′′( j))

dI


wkI + w2kI + · · · + w(q−1)kI

1 − wqkI


, (7)

where, q - kI for all I ∈ I(S′′( j)).
Once again, for the terms of G(z) with 0 < ordq(u j) < E , the inner sum in (5) is HS′( j)(zu j ′),

and using (7) we obtain the bound

|HS′( j)(z
u j ′)| 6


I∈I(S′′( j))

q − 1

|1 − zu j ′qkI |
. (8)

Furthermore, since

ordq(u j ′qkI ) = 1 + ordq(u j) 6 E,

there is a constant M(δ, j) > 0 such that |1 − zu j ′qkI | > M(δ, j). Just as before we can use (5)
and (8), to obtain a bound for the remaining terms of G(z). �

Corollary 10. If S is finite and FS is irrational, then the circle of convergence of FS is a natural
boundary for the function.

Proof. Exactly as in the proof of Theorem 4, and without loss of generality, we can assume that
fS(n) is given by (2). Then, as in Example 8, write

FS(z) = F(az) − F(bz),

where F is given by Theorem 9. Since a > |b| and since F has the unit circle as a natural
boundary, this shows that FS has the circle |z| =

1
a as a natural boundary. �

In the next section we will give an alternative proof of Corollary 10 for higher-dimensional
solenoids based on the Pólya–Carlson Theorem. However, this method does not explicitly reveal
why the natural boundary occurs in the way that Theorem 9 does.

To conclude this section, we consider the occurrence of natural boundaries for certain infinite
sets of primes S. We begin with the following application of Fabry’s gap Theorem (see Segal
[8, Section 6.4]).
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Lemma 11. Let a > 1 and let g(n) be an integer-valued sequence satisfying g(n) 6 an for all
n > 1. Suppose that g(n) does not satisfy a linear recurrence and suppose that for every real
number s > 1 there is a sequence of natural numbers n1 < n2 < · · · with n j/j → ∞ such that
g(n) < sn for n ∉ {n1, n2, . . .}. Then there is some R ∈ [

1
a , 1] such that


n>1 g(n)zn admits

the circle |z| = R as its natural boundary.

Proof. Let

R−1
= lim sup

n→∞

g(n)1/n

and notice that 1
a 6 R 6 1. If R = 1, then the Pólya–Carlson theorem immediately gives us the

result. Let s ∈ (1, 1
R ), let N denote the set of natural numbers n such that g(n) < sn , and write

{n1, n2, . . .} for the complement of N in the natural numbers. By assumption n j/j → ∞. Let

G(z) =


n>1

g(n)zn

and

G N (z) =


n∈N

g(n)zn .

Then G N has radius of convergence at least 1
s , which is strictly greater than R. Hence the set

of singularities of G(z) − G N (z) that lie on the circle of radius R is identical to the set of
singularities of G(z) on the circle of radius R. However

G(z) − G N (z) =


j

g(n j )z
n j

has the circle of radius R as its natural boundary by Fabry’s gap theorem. �

Lemma 12. Let p be a rational prime such that |r |p = 1. Then there is an integer constant A
depending only on r such that

|rn
− 1|

−1
p <


log(n)

n
+

ℓp log(A)

n

n

,

where ℓp denotes the smallest natural number n for which |rn
− 1|p < 1

2 .

Proof. First note that if p > 2, |rn
− 1|p < 1/2 ⇐⇒ |rn

− 1|p < 1, so ℓp = m p, where m p is
as in Lemma 2, but this is not the case if p = 2. If n is not a multiple of ℓp, then |rn

− 1|
−1
p 6 2,

by Lemma 2 and Remark 3, so the result is immediate. For n a multiple of ℓp, write n = ℓp pek
where p - k and e > 0. Then, by Lemma 2 and Remark 3,

|rn
− 1|

−1
p = |rℓp pek

− 1|
−1
p 6 ℓp|r

ℓp − 1|
−1
p pe 6 Aℓp pe,

where A is the height of r (so A is an integer constant depending only on r and is independent
of p). Furthermore,

Aℓp pe
=


e log(p) + ℓp log(A)

n

n

,

giving the desired result since e log(p) 6 log(n). �
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Theorem 13. Let S be a set of primes such that P(Q) \ S = {p1 < p2 < · · ·} is infinite and
satisfies

log(pn+1)

pn
−→ ∞

as n → ∞. Then FS admits some circle of radius R 6 1 as its natural boundary.

Proof. Let T = P(Q) \ S = {p1 < p2 < · · ·}. By our earlier assumptions on S, |r |p = 1 for all
p ∈ T . Furthermore fS(n) = |rn

− 1|
−1
T by the Artin product formula.

Let s > 1 and let C be a natural number with 2 log(A)/C < log(s)/2, where A is the
constant appearing in Lemma 12. For each k, we let ℓk denote the smallest natural number such
that |rℓk −1|p j < 1/2. Note that Aℓk > pk and so ℓk > log(pk). On the other hand, ℓk 6 pk −1,
when pk ≠ 2. Since

pk = o(log(pk+1))

and ℓk+1 > log(pk+1), we see that ℓk+1/ℓk → ∞.
Assume that k is large enough to ensure that ℓi > Cℓi−1 for i > k and

ℓk−1 > max{Cℓ1, . . . , Cℓk−2}.

Let n be a natural number in {ℓk−1, . . . , ℓk − 1} that is not in {ℓk−1 j : j 6 C}. Then we
have fS(n) =


i<k |rn

− 1|
−1
pi

, since pi cannot divide fS(n) for i > k. Note that if n is not
a multiple of ℓi then |rn

− 1|
−1
pi

> 1/2; if n is a multiple of ℓi then |rn
− 1|

−1
pi

6 sn
i , where

si 6 log(n)/n + ℓi log(A)/n, by Lemma 12. Hence

log( fS(n))

n
6

i<k


log(n)

n
+

ℓi log(A)

n


6

k log(n)

n
+


i<k

ℓi log(A)

n
.

Since ℓi/ℓi−1 → ∞, we see that for n sufficiently large we must have

log( fS(n))

n
<


k log(n)/n + 2ℓk−1 log(a)/n if ℓk−1 | n,

k log(n)/n + o(1) if ℓk−1 - n.

If n is a multiple of ℓk−1 then we must have n > Cℓk−1 by construction, and hence in either case
we have

log( fS(n))

n
<

k log(n)

n
+

log(s)

2

for k sufficiently large. We claim that k = o(n/ log(n)). To see this, it is sufficient to show
that n = o(k log(k)). But n > ℓk−1 and ℓk−1 > log(pk−1); moreover, by assumption,
log(log(pk−1)) > pk−3 for k sufficiently large and since pk−3 is necessarily greater than k
for k large, we have

n > ℓk−1 > log(pk−1) > exp(k)

for k large, giving the claim. It follows that for k sufficiently large there are at most C values of
n ∈ {ℓk−1, . . . , ℓk − 1} for which we have fS(n) > sn . Hence there is some constant B such that

|{n < ℓk+1 : fS(n) > sn
}| 6 Ck + B.

Let n1 < n2 < · · · be those natural numbers with the property that fS(n) > sn ; that is,
fS(n) > sn if and only if n = ni for some i . Then, given a natural number i , there is some
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k such that Ck + B < i 6 C(k + 1) + B. By the remarks above we have ni > ℓk+1. Thus

ni

i
>

ℓk+1

Ck + B + C
→ ∞

as k → ∞, since we have shown that ℓk > exp(k) for k sufficiently large. The result now follows
from Lemma 11, taking g(n) = fS(n) and noting that g(n) does not satisfy a non-trivial linear
recurrence by Theorem 4. �

3. Higher-dimensional groups

A compact connected abelian group X of dimension d > 1 has a Pontryagin dual group X
that is a subgroup of Qd . For an automorphism θ : X → X , we use the following periodic point
counting formula, taken from [12, Theorem 1.1]. As before, Fθ (n) denotes the number of points
fixed by the automorphism θn , P(K) denotes the set of places of the number field K, and for any
set of places S in P(K), we write |x |S =


v∈S |x |v .

Proposition 14. If θ : X → X is an ergodic automorphism of a finite dimensional compact
connected abelian group, then there exist algebraic number fields K1, . . . , Kk , sets of finite
places T j ⊂ P(K j ) and elements ξ j ∈ K j , no one of which is a root of unity for j = 1, . . . , k,
such that

Fθ (n) =

k
j=1

|ξn
j − 1|

−1
T j

. (9)

The fields K j and sets of places T j appearing above depend only on X and θ , and are obtained
by considering X as a module over the Laurent polynomial ring Z[t±1

], where the module
structure is given by identifying multiplication by t with the application of the dual map θ (a
standard procedure for the study of automorphisms of compact abelian groups, see Schmidt [22]
for an overview). The precise method for obtaining the formula is constructive and is described
in [12, Section 4]; it is useful to note from this that K j = Q(ξ j ), j = 1, . . . , k. As in the
one-dimensional case, applying the Artin product formula to (9) gives

Fθ (n) =

k
j=1

|ξn
j − 1|P∞

j ∪S j , (10)

where P∞

j denotes the set of infinite places of K j and S j = P(K j ) \ T j . It is also worth noting
that [12, Remark 1] implies that |ξ j |v = 1 for all v ∈ T j , j = 1, . . . , k, as θ is an automorphism.
The main result of this section is the following.

Theorem 15. Under the assumptions of Proposition 14, suppose that the product in (10) only
involves finitely many places and that |ξ j |v ≠ 1 for all v in P∞

j and j = 1, . . . , k. Then ζθ is
either rational or has a natural boundary at its circle of convergence, and the latter occurs if and
only if |ξ j |v = 1 for some v ∈ S j , 1 6 j 6 k.

The condition that |ξ j |v ≠ 1 for all v ∈ P∞

j , j = 1, . . . , k, is equivalent to the statement
that none of the ξ j have algebraic conjugates on the unit circle. Hence, for example, the theorem
applies if each ξ j is a Pisot number. We remark that we do not believe the avoidance of conjugates
on the unit circle is necessary for the dichotomy stated in the theorem, but it is essential in the
proof we provide. Nonetheless, we obtain the following generalization of Corollary 10.
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Corollary 16. If the dimension of X is at most 3 and the product in (10) comprises finitely many
places, then ζθ is rational or has a natural boundary at the circle of convergence.

Proof. If the dimension of X is at most 3 then each of the field extensions K j |Q has degree at
most 3. Therefore, if any algebraic conjugate of any ξ j lies on the unit circle then ξ j must be a
root of unity. However, this is precluded by the hypothesis of Proposition 14. �

For the proof of Theorem 15 we use the following.

Lemma 17. Let S be a finite list of places of algebraic number fields and, for each v ∈ S, let ξv

be a non-unit root in the appropriate number field such that |ξv|v = 1. Then the function

F(z) =


n>1

f (n)zn,

where f (n) =


v∈S |ξn
v − 1|v for n > 1, has the unit circle as a natural boundary.

Proof. We will use the notation of Lemma 2. First note that F has radius of convergence 1. For
any function G that is analytic inside the unit circle and which can be analytically continued
beyond it, both G ′ and z −→ zG ′(z) can also be analytically continued beyond it.

Assume, for the purposes of a contradiction, that F has analytic continuation beyond the
unit circle. Let ϱ =


v∈S ϱv be the sum of all the residue degrees, and repeat the process of

differentiating then multiplying by z precisely ϱ times, beginning with the function F and finally
obtaining the function


n>1 nϱ f (n)zn , which by construction is analytic in a region strictly

containing the open unit disc (by our initial observation). So too then is the function G defined by

G(z) = C

n>1

nϱ f (n)zn,

where C =


v∈S C−1
v , the constant Cv being given by Remark 3. Note that

lim sup
n→∞

(nϱ f (n))1/n
= 1,

so G also has radius of convergence 1.
We claim that Cnϱ f (n) is a positive integer for all n > 1. To see this, it is enough to notice

that C−1
v nϱv |ξn

−1|v is a positive integer for all n > 1, which is shown by Lemma 2. Since G has
integer coefficients, radius of convergence 1 and analytic continuation beyond the unit circle, it is
a rational function by the Pólya–Carlson Theorem. Furthermore, H(z) = C


n>1 nϱzn defines a

rational function, and F is the Hadamard quotient of G by H . Since the sequence of coefficients
f = ( f (n)) is drawn from a finitely generated ring over Z, the Hadamard quotient theorem
implies that F is also a rational function. Therefore, f is given by a linear recurrence sequence.

Let pv denote the characteristic of the residue field Kv and let q be a rational prime coprime to
all pv for each v ∈ S. Proceeding as in the proof of Theorem 4, define n(e) = qe 

v∈S mv pDv
v ,

where Dv is given by Lemma 2 and e ∈ N. Then f (kn(e)) = f (n(e)) whenever k is coprime
to n(e). Hence, the sequence f takes on infinitely many values infinitely often, which is not pos-
sible for a linear recurrence sequence by the result of Myerson and van der Poorten [15]. This
contradiction means that the assumption that F has analytic continuation beyond the unit circle
is untenable. �
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Proof of Theorem 15. Let S′

j = {v ∈ S j : |ξ j |v ≠ 1}, let

f (n) =

k
j=1

|ξn
j − 1|S j \S′

j
,

and let

g(n) =

k
j=1

|ξn
j − 1|P∞

j ∪S′
j
.

So, Fθ (n) = f (n)g(n) by (10). By the ultrametric property

g(n) =

k
j=1

|ξ j |
n
S′′

j
|ξn

j − 1|P∞
j

,

where S′′

j = {v ∈ S j : |ξ j |v > 1}. Extending the method of Smale [24] for toral automorphisms,
we can expand the product over infinite places using an appropriate symmetric polynomial (see
for example [11, Lemma 4.1]) to obtain an expression of the form

g(n) =


I∈I

dI w
n
I , (11)

where I is a finite indexing set, dI ∈ {−1, 1} and wI ∈ C.
Moreover, since |ξ j |v ≠ 1 for all v ∈ P∞

j , j = 1, . . . , k, there is a dominant term wJ in the
expansion (11), for which

|wJ | =

k
j=1

|ξ j |S′′
j


v∈P∞

j

max{|ξ j |v, 1} =

k
j=1


v∈P∞

j ∪P (K j )

max{|ξ j |v, 1},

and |wJ | > |wI | for all I ≠ J (note that log |wJ | is the topological entropy, as given by [9]).
Furthermore, by (11),

ζθ (z) = exp


I∈I

dI


n>1

f (n)(wI z)n

n


.

If S j \ S′

j = ∅ for all j = 1, . . . , k, then f (n) ≡ 1, and it follows immediately that ζθ is rational.
Now suppose that S j \ S′

j ≠ ∅ for some j . As noted in Lemma 1, we need only exhibit a
natural boundary at the circle of convergence for

I∈I
dI


n>1

f (n)(wI z)n

to exhibit one for ζθ (z). Moreover, lim supn→∞ f (n)1/n
= 1, so for each I ∈ I , the series

n>1

f (n)(wI z)n

has radius of convergence |wI |
−1, and since |wJ |

−1 < |wI |
−1 for all I ≠ J , this means

that it suffices to show that the circle of convergence |z| = |wJ |
−1 is a natural boundary for

n>1 f (n)(wI z)n . But this is the case precisely when


n>1 f (n)zn has the unit circle as a
natural boundary, and this has already been dealt with by Lemma 17. �
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We conclude with the following example.

Example 18. Suppose X is a two dimensional solenoid, so X ↩→ Q2. Consider an automorphism

θ : X → X dual to multiplication by the matrix A =


2 1
1 1


on X . In the case X = T2, θ is the

well-known cat map which has dynamical zeta function

ζθ (z) =
(1 − z)2

(1 − ξ z)(1 − ηz)
, (12)

where ξ = (3 +
√

5)/2 and η = ξ−1
= (3 −

√
5)/2. More generally, the method of [12, Section

4] shows that there are natural Z[ξ±1
]-module embeddings Z[ξ±1

] ↩→ X ↩→ Q(ξ), whereX is considered as a Z[ξ±1
]-module by identifying multiplication by A with multiplication

by ξ . Dynamically, this means that the cat map on T2 is always an algebraic factor of (X, θ).
Furthermore, the finite places appearing in (10) are a subset of P(Q(ξ)) and, by expanding the
product over the two infinite places of Q(ξ), this formula simplifies to

Fθ (n) = (ξn
+ ηn

− 2)|ξn
− 1|S,

where S is the set of places v ∈ P(Q(ξ)) for which | · |v is unbounded on X under the natural
embedding X ↩→ Q(ξ). In the case S = ∅, ζθ is given by (12). In any other case when S is
finite, ζθ is shown to have a natural boundary on the circle |z| = η by Theorem 15.
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