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Abstract

We develop a general framework for effective equations of expectation values in quantum
cosmology and pose for them the quantum Cauchy problem with no-boundary and tunneling
wavefunctions. Cosmological configuration space is decomposed into two sectors that give
qualitatively different contributions to the radiation currents in effective equations. The field-
theoretical sector of inhomogeneous modes is treated by the method of Euclidean effective action,
while the quantum mechanical sector of the spatially homogeneous inflaton is handled by the
technique of manifest quantum reduction to gauge invariant cosmological perturbations. We apply
this framework in the model with a big negative non-minimal coupling, which incorporates a recently
proposed low energy (GUT scale) mechanism of the quantum origin of the inflationary Universe and
study the effects of the quantum inflaton mode. 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

This paper is a sequel to the previous work [1] on quantum dynamics of the early
Universe starting from initial conditions inspired by quantum cosmology. These initial
conditions, encoded in the no-boundary [2–4] and tunneling [5] quantum states, can
be a source of the inflationary scenario at the low (typically GUT) energy scale [6,7],
compatible with the observational status of inflation theory. In [6,7] the initial conditions
were found as a sharp peak in the probability distribution of the quantum scalar field
whose expectation value simulates the effective Hubble constant and drives inflation. The
parameters of this peak — its location and quantum width — are suppressed relative to the
Planckian values by a small factor coinciding with the magnitude of the CMBR anisotropy,
�T/T ∼ 10−5, according to normalization on COBE [8,9]. In [10,11] these results were
extended to the open model based on the Hawking–Turok instanton [12].
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Although, a priori these features make this model attractive, serious objections usually
arise regarding the present day status of initial conditions in cosmology. Their issue in
inflation theory is a subject of strong debate in current literature [13] and numerous
meetings on structure formation of the Universe. The possibility of quantum cosmological
imprint on the observational data was called in question from the viewpoint of the self-
reproducing inflation scenario [14,15], eternal inflation [13] and anthropic principle [16].
These objections rely on special conditions guaranteeing self-reproduction and eternal
inflation. However, in the model of [1,6,7] these conditions are not satisfied at the
probability peak of the distribution function. The energy scale at this peak turns out to be
far below the threshold beyond which eternal inflation begins (see Section 2 below). Thus
this model represents a sound example of the low-energy phenomenon of the quantum birth
of the Universe deserving further studies.

The dynamical consequences of the inflaton probability peak were first studied at the
level of classical equations [6,7]. Then they were reexamined at the level of effective
equations for quantum expectation values of fields [1]. Note that in cosmology it is often
considered that the description in terms of the mean field and the set of higher-order
correlation functions is not exhaustive. In contrast with conventional quantum field theory,
interpretation of quantum cosmology is marred by the conceptual issues of the physical
observer being the part of a quantum system. In particular, it is often assumed that the
observational process leads to the reduction of the cosmological state to those values of
fields which are far from their quantum expectations. This complicated and, in our opinion,
not yet completely understood phenomenon is usually modelled in terms of stochastic
random process serving, in particular, as a basis for eternal inflation and self-reproduction.
Thus, eternal inflation starting from members of quantum ensemble remote from the
probability peak can start dominating in the full stochastic ensemble which replaces the
quantum one. This phenomenon goes beyond the scope of this paper, because we will be
interested in the effective equations of motion for a particular, most probable, member
of this ensemble. This can be justified by the fact that for a very sharp probability peak
(located far away from the self-reproduction domain) stochasticity is unlikely to contribute
essentially to effective equations in question.1

The effective equations analyses of [1] was not complete — their quantum contribution
included all modesexceptthe main spatially homogeneous mode related to quantum
fluctuations of the inflaton field. This is the main spatially global degree of freedom

1 Note that effective equations is a well defined concept when they are supplied with initial conditions given
by expectation values in the initial quantum state. These equations can be derived from the demand that their
solution is an evolving expectation value of the quantum Heisenberg operator (see Section 3 below). From this
it unambiguously follows that for small quantum effects effective equations coincide with classical ones up to
loop corrections. Similarly, the history evolving from the outskirts of the initial quantum distribution demands
a precise definition. A priori ascribing to it classical equations of motion might lead to inconsistencies. Indeed,
it is natural to assume that this history is again the time evolving expectation value, but now — with respect to
the new quantum state which arose as a result of the wave function reduction to the domain distant from the
probability maximum. Its equation of motion will be semiclassical only when this new state is semiclassical
itself. As we see, this in turn implies strong assumptions about the nature of wave function collapse underlying
the stochastic description and eternal inflation.
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in cosmology. It is responsible for the quantum fluctuations of the homogeneous
(minisuperspace) background on top of which all the other inhomogeneous modes
dynamically evolve. As was understood in [1], the contribution of this mode requires the
calculational technique different from the technique for inhomogeneous ones. The latter is
strongly facilitated by the method ofEuclidean effective actionwhich is based on specific
properties of their quantum state on the quasi-de Sitter background — Euclidean de Sitter
invariant vacuum [17]. On the contrary, the quantum state of the inflaton is irrelevant to
this vacuum and its contribution cannot be obtained by the analytic continuation from
the Euclidean effective action. Rather, this state is determined by the peak of the inflaton
probability distribution and can be approximated by the gaussian packet. Direct quantum
averaging with respect to this packet is required for obtaining the contribution of the
inflaton mode to effective equations. This step, however, should be preceded by several
other calculational steps involving the Hamiltonian reduction to the physical sector, setting
the quantum Cauchy problem in the minisuperspace sector of the system, etc. Thus, the
goal of the present paper is to pose the quantum Cauchy problem in cosmology for
the no-boundary and tunneling quantum states, derive the one-loop contribution of the
homogeneous mode to effective equations and analyze its influence on the inflationary
dynamics.

One of particular questions, to be clarified in this work, is to what an extent this
contribution can change the conclusions of our previous papers [1,7]. In the spatially closed
model with the no-boundary and tunneling cosmological states these conclusions were
pretty stringent. The no-boundary quantum state can give rise only to the eternally long
inflation, while the finite inflation stage with the conventional exit to the matter-dominated
Universe exists only for the tunneling state.2 These conclusions give an undoubtful
preference to the tunneling state from the viewpoint of the observational cosmology, but, at
the fundamental level, the tunneling state has an intrinsic problem if one goes beyond the
tree-level approximation.3 So, there is a hope that the inclusion of quantum fluctuations
in the minisuperspace sector can render the no-boundary state viable from the viewpoint
of the inflationary cosmology. Unfortunately, as we shall see, this hope does not realize —
the effect of this mode turns out to be too small. This result, however, is model dependent,
and the application of the general framework of this paper might lead to other conclusions
in alternative models with well-defined quantum states of the inflaton.

It should be emphasized, that despite intensive studies on the inflationary dynamics,
quantum nature of the homogeneous inflaton mode has not yet been completely under-

2 In open cosmology based on the Hawking–Turok instanton [12] the initial conditions for finite inflation stage
can be realized for the no-boundary state [10,11], but the models of [11,12] with all their merits and disadvantages
go beyond the scope of this paper.

3 Point is that the classical Euclidean action enters the exponential of the tunneling wavefunction with the
“wrong” sign — opposite to that of the loop corrections [18]. This mismatch invalidates the conventional
renormalization procedure of absorbing the ultraviolet divergences into the redefinition of classical coupling
constants [19]. This inconsistency does not break the results of [1,6,7] (heavily relying on loop effects) for
accidental reasons — renormalization ambiguous part of the distribution function in the slow roll approximation
factors out as an inert overall normalization. However, it shows up beyond this approximation and, thus, persists
at the fundamental level.
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stood. This mode is peculiar because of its ghost nature — its kinetic term enters the action
with the wrong sign. This fact was emphasized in [20], but its cosmological consequences
have not yet properly been examined. There is a viewpoint that this mode should at all
be excluded from the quantum perturbations spectrum on the physical grounds that it is
always beyond the horizon and not directly observable [21]. This approach can hardly be
justified, because this mode is in some sense the most fundamental one, for it determines
the homogeneous background on top of which all observable perturbations are unraveling.
The energy of this quantum mechanical mode in view of its ghost nature is not positive
definite, and it leads to peculiar back reaction phenomena which we are going to discuss
here. Despite their actual small magnitude in our model, in other cases they might essen-
tially contribute to the cosmological evolution. As we shall see, quantum fluctuations of
the homogeneous inflaton have the equation of statep + ε = 0 and, thus, it can even be
a candidate for the present day cosmological constant, instead of quintessence. This is one
more motivation for our studies.

The organization of the paper is as follows. In Section 2 we briefly recapitulate the
results of [6,7,18] for the model with a big negative nonminimal coupling of the inflaton,
−ξRϕ2/2, −ξ = |ξ | � 1, having a quasi-quartic potentialV (ϕ) = λϕ4/4 + · · ·. We
formulate the mechanism of one-loop radiative corrections due to which the inflaton
distribution acquires a sharp peak. This peak gives rise to initial conditions for inflation
and quantum fluctuations contributing to the radiation currents — quantum terms in the
effective equations. In Section 3 we reveal the general structure of these currents and
their gauge invariance properties. In particular, their decomposition into the contributions
of two sectors is presented: the quantum mechanical sector of the homogeneous inflaton
and the field-theoretical sector of inhomogeneous modes. The Euclidean effective action
method is formulated for the calculation of the latter, while the former is supposed to be
obtained by direct quantum averaging with respect to the peak-like wavefunction of the
inflaton. In Section 4 we go over to the generic model with minimally coupled inflaton.
For this model we pose the Cauchy problem for the classical solution — the tree-level
approximation for expectation values. We perform quantum reduction of the wavefunction
from minisuperspace (of the scale factor and inflaton) to the physical subspace, the
latter playing the role of the Cauchy surface in minisuperspace at which quantum initial
conditions are posed. For the no-boundary and tunneling wavefunctions this subspace is
chosen as a domain corresponding to the nucleation of the Lorentzian quasi-de Sitter
spacetime from the Euclidean one. In Section 5 a similar quantum Cauchy problem is posed
for cosmological perturbations. Their physical reduction is briefly presented along the lines
of [20]. Perturbations of minisuperspace variables — scale factor, lapse and inflaton — are
expressed in the Newton gauge in terms of the invariant physical variables of [20]. The
latter, in their turn, are found as operators in the representation of the physical wavefunction
on the Cauchy surface of the above type. In Section 6 we get back to the nonminimal model
of Section 2 and discuss its reparametrization to the Einstein frame which allows one to
transform its quantum Cauchy problem to that of the minimal model of Sections 4 and 5.
We also describe here the calculation of radiation currents and derive the expression for the
rolling force in the effective inflaton equation. Sections 7 and 8 present the resulting effects
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respectively at the beginning of inflation and at late steady inflationary stage. Concluding
section contains a brief summary of results and prospective implications of its technique.

2. Quantum origin of the Universe as a low-energy phenomenon

The starting point of our considerations is the assumption that quantum cosmology can
give initial conditions for inflation, which in their turn determine main cosmological para-
meters of the observable Universe, including the density parameterΩ . The requirement of
Ω > 1 in closed cosmology gives the bound on the e-folding numberN — the logarith-
mic expansion coefficient for the scale factora during the inflation stage with a Hubble
constantH = ȧ/a,

(2.1)N =
tF∫

0

dt H

(with t = 0 andtF denoting the beginning and the end of inflation epoch). This bound reads
N � 60 [12]. On the other hand, the value ofN is directly related to the initial conditions
for inflation — initial value of the inflaton,ϕI ,

(2.2)N 	 −
ϕI∫

0

dϕ
H(ϕ)

ϕ̇
.

In the chaotic inflation model the effective Hubble constantH = H(ϕ) is generated by
the inflaton and, therefore, all the parameters of the inflationary epoch can be found as
functions ofϕI . This initial condition belongs to the quantum domain, i.e., it is subject to
the quantum distribution following from the cosmological wavefunction. If this distribution
has a sharp probability peak at certainϕ = ϕI , then this value serves as the initial condition
for inflation.

There are two known quantum states that lead in the semiclassical regime to the closed
inflationary Universe — the no-boundary [2–4] and tunneling [5] wavefunctions. They
both describe quantum nucleation of the Lorentzian quasi-de Sitter spacetime from the
Euclidean (positive signature) hemisphere — the gravitational instanton responsible for
the classically forbidden state of the gravitational field. In the tree-level approximation
they generate the distribution functions

(2.3)ρtree
NB,T(ϕ)∼ exp

[∓I (ϕ)],
where I (ϕ) is the Euclidean action of this instanton with the inflatonϕ. For a wide
class of monotonically growing potentials with an infinite range ofϕ (most natural from
the viewpoint of quantum field theory of renormalizable matter fields), these functions
are unnormalizable in the high-energy domainϕ → ∞ and generally devoid of the
observationally justified probability peaks. However, by including quantum loop effects
and applying the theory to a particular model with strong nonminimal curvature coupling
of the inflaton one can qualitatively change the situation — generate a sharp probability
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peak at GUT energy scale satisfying the above bound onN [6,7,18]. The basic formalism
underlying this result is as follows.

Beyond the tree level the distributionρNB,T(ϕ) is not just the square of the cosmological
wavefunction (2.3). It becomes the diagonal element of the reduced density matrix obtained
by tracing out all degrees of freedom butϕ. As shown in [18,22–24] in the one-loop
approximation it reads

(2.4)ρNB,T(ϕ)∼ exp
[∓I (ϕ)− Γ 1-loop(ϕ)

]
,

where the classical action is amended by the Euclidean effective actionΓ 1-loop(ϕ) of all
quantum fields that are integrated out. This action is calculated on the same instanton,
and its contribution can qualitatively change predictions of the tree-level theory due to the
logarithmic scaling behaviour ofΓ (ϕ). On the instanton of the size 1/H(ϕ) it looks like
Γ (ϕ) ∼ Z lnH(ϕ), whereZ is the total anomalous scaling of all quantum fields in the
model.

The model of [6,7] has the graviton–inflaton sector with a big negative constant−ξ =
|ξ | � 1 of nonminimal curvature coupling,

S[gµν,ϕ] =
∫
d4x g1/2

(
m2
P

16π
R(gµν)− 1

2
ξϕ2R(gµν)

(2.5)− 1

2
(∇ϕ)2 − 1

2
m2ϕ2 − λ

4
ϕ4

)
,

and generic GUT sector of Higgsχ , vector gaugeAµ and spinor fieldsψ coupled to the
inflaton via the interaction term

Sint =
∫
d4x g1/2

(∑
χ

λχ

4
χ2ϕ2 +

∑
A

1

2
g2
AA

2
µϕ

2

(2.6)+
∑
ψ

fψϕψ̄ψ + derivative coupling

)
.

This model is of a particular interest for a number of reasons. Firstly, from the
phenomenological viewpoint a strong nonminimal coupling allows one to solve the
problem of exceedingly smallλ (because here the observable magnitude of CMBR
anisotropy�T/T ∼ 10−5 is proportional to the ratio

√
λ/|ξ | [26,27]). Secondly, this

coupling is inevitable from the viewpoint of renormalization theory. Also, among recent
implications, it might be important in the theory of an accelerating Universe [25]. Finally,
for a wide class of GUT-type particle physics sectors this model generates a sharp
probability peak inρNB,T(ϕ) at someϕ = ϕI [6,7]. This peak belongs to the GUT
energy scale — the corresponding effective Hubble constant,H(ϕI ) = √

λ/12|ξ |ϕI , is
proportional tomP

√
λ/|ξ | ∼ 10−5mP . This, in its turn, justifies the use of GUT for matter

part of the model, because this scale is much below the supersymmetry and string theory
scales.

The mechanism of this peak is based on a large value of|ξ | and the interaction (2.6)
which induces via the Higgs effect large masses of all the particles directly coupled the
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inflaton. Due to this effect the parameterZ (dominated by terms quartic in particle masses)
is quadratic in|ξ |, Z = 6|ξ |2A/λ, with a universal combination of the coupling constants
from (2.6)

(2.7)A = 1

2λ

(∑
χ

λ2
χ + 16

∑
A

g4
A − 16

∑
ψ

f 4
ψ

)
.

Therefore, the probability peak in this model reduces to the extremum of the function

(2.8)lnρNB,T(ϕ)	 const± 24π(1+ δ)|ξ |
λ

m2
P

ϕ2 − 3
|ξ |2
λ

A ln
ϕ2

µ2 + O

(
m4
P

ϕ4

)
.

Here theϕ-dependent part of the classical instanton action is taken in the lowest order of
the slow roll smallness parameter,m2

P /|ξ |ϕ2 � 1, renormalization ambiguous parameter
µ enters only the overall normalization ofρNB,T(ϕ) and

(2.9)δ ≡ −8π |ξ |m2

λm2
P

.

For the no-boundary and tunneling states the peak exists for positiveA and respectively
negative and positive values of 1+ δ, ±(1+ δ) < 0. The parameters of this peak — mean
values of the inflaton and Hubble constants and the quantum width∆,

(2.10)ϕI =mP

√
8π |1+ δ|

|ξ |A , H(ϕI )=mP

√
λ

|ξ |
√

2π |1+ δ|
3A

,

(2.11)∆= 1√
12A

√
λ

|ξ | ϕI ,

are strongly suppressed by a small ratio
√
λ/|ξ | known from the COBE normalization for

�T/T ∼ 10−5 [8,9]. Because of small width the distribution function can be approximated
by the gaussian packet

(2.12)ρNB,T(ϕ)	 1

∆
√

2π
exp

[
− (ϕ− ϕI )

2

2∆2

]
.

It is important that the initial conditions (2.10), (2.11) are well out of range of eternal
inflation and self-reproduction. The expression for self-reproduction scale is well known
for the model with minimally coupled field for a wide class of slow-roll potentials. But
the model (2.5) can be transformed to the Einstein frame of new metricḡµν and inflaton
ϕ̄ fields minimally coupled to one another. This transformation and, in particular, the
potential of the inflaton in the minimal frame�V (ϕ̄) are given in Section 6 below. The
condition for eternal inflation,�H 2/2π ˙̄ϕ > 1, written in this frame in terms of�V (ϕ̄),

(2.13)m3
P

d�V /dϕ̄
�V 3/2

∣∣∣∣
ϕ̄∗

∼ 1,

gives the valueϕ̄∗ beyond which eternal inflation and self-reproduction begin. Using
Eqs. (6.9), (6.10) and transforming the result back to the original nonminimal frame, one
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gets the critical value

(2.14)ϕ∗ 	mP

(
2

λ

)1/4

(1+ δ)1/2 � ϕI ,

which turns out to be far away from the probability peak — by the order of magnitude
(|ξ |/√λ)1/2 times bigger thanϕI . It is instructive to calculate the parameters of the model
atϕ∗. The corresponding Hubble constant and the inflaton potential read

(2.15)H(ϕ∗)	mP

(√
λ

|ξ |
)1/2

(1+ δ)1/2 �H(ϕI ),

(2.16)V (ϕ∗)	m4
P (1+ δ)2.

Thus, the spacetime curvature at the self-reproduction threshold is much bigger than in our
initial conditions, but still remains below the Planck scale. On the contrary, the inflaton
energy density reaches Planckian value and, therefore, enters non-perturbative domain.4

This brings certain doubt on the conventional semiclassical mechanism of eternal inflation
in this model. This is one more reason to believe that eternal inflation does not wipe out
quantum initial conditions.

The value of the parameter (2.9) is crucial for the inflationary evolution from this
gaussian peak (2.12). The classical equations of motion in the slow roll approximation,

(2.17)ϕ̈ + 3Hϕ̇− F(ϕ)= 0,

(2.18)H(ϕ)	
√

λ

12|ξ | ϕ, F (ϕ)	 −λm2
P (1+ δ)

48πξ2 ϕ,

show that the inflaton decreases from its initial value,ϕ̇ 	 F/H < 0, only for 1+ δ > 0,
that is only for thetunnelingstate (minus sign in (2.8)). Only in this case the duration of
the inflationary epoch is finite with the e-folding number (2.2) [1]

(2.19)N 	 6π |ξ |ϕ2
I

m2
P (1+ δ)

= 48π2

A
.

Comparison withN � 60 immediately yields the boundA � 5.5 which can be regarded as
a selection criterion for particle physics models [6]. This conclusion remains qualitatively
true when taking into account the contribution of the inhomogeneous quantum modes to
the radiation current of the effective equations [1]. This contribution and its dynamical
effect were obtained in [1] by the method of the Euclidean effective action, however, the
quantum fluctuations of the inflaton field itself have not been taken into account.

For the proponents of the no-boundary quantum states in a long debate on the
wavefunction discord [28–31] this situation might seem unacceptable. According to this
result the no-boundary proposal does not generate realistic inflationary scenario, while the
tunneling state does not satisfy important aesthetic criterion — the universal formulation
of the initial conditions and dynamical aspects in one concept — spacetime covariant

4 This mismatch between curvature and energy density is explained by the fact that the effective Planck mass
in nonminimally coupled model is much bigger than the bare one, see Eq. (6.6) below.



A.O. Barvinsky, D.V. Nesterov / Nuclear Physics B 608 (2001) 333–374 341

path integral over geometries,5 not to say about intrinsic inconsistency mentioned in
Introduction. Thus, one of the motivations of considering the quantum mechanical sector
of the inflaton mode is the hope that it can handle this difficulty. In view of the smallness of
the quantum width (2.11) the quantum fluctuations�ϕ ∼∆ are expected to be negligible,
but those of their quantum momenta�pϕ ∼ 1/∆ blow up for small∆. Therefore, a priori,
it is hard to predict the overall magnitude of the quantum rolling force and its sign due to
�ϕ(t). In what follows we carefully consider this problem.

3. Effective equations: setting the problem

Effective equations for expectation values of operators in the quantum state|Ψ 〉,
(3.1)g(x)= 〈Ψ |ĝ(x)|Ψ 〉,
(3.2)ĝ(x)= ϕ̂(x), χ̂(x), ψ̂(x), Âµ(x), ĝµν(x), . . . ,

can be obtained by expanding the Heisenberg equations of motion,δS[ĝ]/δĝ(x)= 0, for
the full quantum field̂g(x)= g(x)+�ĝ(x) in powers of quantum disturbances�ĝ(x)

δS[g]
δg(x)

+
∫
dy

δ2S[g]
δg(x)δg(y)

�ĝ(y)

(3.3)+ 1

2

∫
dy dz

δ3S[g]
δg(x)δg(y)δg(z)

�ĝ(y)�ĝ(z)+ · · · = 0,

and averaging them with respect to|Ψ 〉. The linear in�ĝ(x) term identically drops out of
this expansion, because〈�ĝ(x)〉 ≡ 0, and the effective equations acquire a generic form

(3.4)
δS[g]
δg(x)

+ J (x)= 0.

HereS[g] is the classical action of the system, and the radiation currentJ (x) accumulates
all quantum corrections which begin with the one-loop contribution

(3.5)J (x)= 1

2

∫
dy dz

δ3S[g]
δg(x)δg(y)δg(z)

G(z, y)+ · · · .

The Wightman function of quantum disturbancesG(z, y) in a given quantum state|Ψ 〉
(3.6)G(z, y)= 〈Ψ |�ĝ(z)�ĝ(y)|Ψ 〉,
(3.7)�ĝ(y)≡ ĝ(y)− g(y),

can be found by iterations as a loop expansion in powers ofh̄. Because semiclassically
�ĝ = O(h̄1/2) andJ (x)= O(h̄), it follows from Eqs (3.3) and (3.4) that the linear in�ĝ
term of (3.3) is at least linear in̄h. Therefore, in the one-loop approximation the quantum
perturbation�ĝ(y) can be identified with the solution of the linearized classical equation

5 The Lorentzian path integral for the tunneling state of [30] also requires, in this respect, extension beyond
minisuperspace level, development of the semiclassical expansion technique, etc.
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on the mean-field background

(3.8)
∫
dy

δ2S[g]
δg(x)δg(y)

�ĝ(y)= 0.

Its solution can be parametrized by the operator-valued initial conditions. Depending on the
representation of the initial state|Ψ 〉, they can be either the creation–annihilation operators,
or operators of initial fields and their conjugated momenta, so that quantum averaging in
(3.6) becomes straightforward. Continuing this procedure by iterations one can obtain the
radiation current in any loop order as a complicated but, in principle, calculable functional
of the mean field.

Alternatively to (3.5), (3.6), the one-loop radiation current can be written as

(3.9)J 1-loop(x)= 1

2

〈[
δS[ĝ]
δĝ(x)

]
2

〉
,

where[. . .]2 denotes the quadratic part of the quantity expanded in powers of disturbances
�ĝ that solve linearized classical equations, and〈. . .〉 implies the quantum averaging with
respect to|Ψ 〉.

For the cosmological system this simple perturbative scheme should, however, be
amended by two important aspects. One of them reflects the local gauge (general
coordinate) invariance of the problem and the other deals with disentangling the collective
variables. The latter describes the most important (minisuperspace) cosmological degrees
of freedom having non-trivial expectation values. In the next two sections we consider
these two aspects of the problem.

3.1. Gauge properties of the radiation current

In view of local general coordinate and other gauge invariances, fields and their
perturbations contain purely gauge variables that should be gauged away. Thus, the
physical sector should be disentangled from the full configuration space of the system and
the physical state should be prescribed on this physical sector. This is the general scheme of
the reduced phase space quantization [24,32,33]. For describing this scheme in application
to perturbative radiation currents we simplify the formalism by using condensed notations
for the full set of fields (3.1),ga = g(x), in which the condensed indexa includes both
discrete spin labels and spacetime coordinatesx. Contraction of these indices implies also
the spacetime integration. In these notations, the invariance of the actionS[g] under local
gauge transformations,ga → ga + Raµf

µ, with infinitesimal gauge parametersf µ (the
condensed indexµ bearing together with discrete tensor labels spacetime arguments of the
local functionf µ = f (x)) reads

(3.10)Raµ
δS

δga
= 0.

Here,Raµ is a generator of the gauge transformation — the quasilocal two-point kernel
with respect to spacetime coordinates associated with condensed labelsa andµ.

A gauge breaking procedure — a part of the physical reduction — can be enforced by
adding to the classical action the gauge-breaking term and, in the quantum domain —
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for Heisenberg equations — by including the action of Faddeev–Popov ghosts. Then the
derivation of effective equations repeats the perturbative scheme of the above type with
gauge-breaking and ghost terms included into the full action. However, for the purpose of
physical reduction gauge conditions should be unitary, that is transforming under gauge
transformations locally in time (not involving time derivatives of the gauge parameters
f µ). In such a gauge the ghosts are not propagating, and the ghost action can be omitted
from the total quantum system. As a result, the one-loop effective equations again take the
form (3.4) with the same radiation current

(3.11)J
1-loop
a = 1

2

δ3S

δgaδgbδgc

〈
�ĝb�ĝc

〉
.

The only modification due to local invariance is that the linearized equations of motion
(3.8) for quantum perturbations�ĝa are supplied with the linear gauge conditions

(3.12)
δ2S

δgaδgb
�ĝb = 0,

(3.13)χµa �ĝ
a = 0.

The functional matrix (two-point kernel) of the linear gauge conditionχ
µ
a is assumed to

form the Faddeev–Popov operator

(3.14)Qµ
ν ≡ χµa R

a
ν ,

which is ultralocal in time,Qµ
ν ∼ δ(tµ − tν) (the property of the unitary gauge), and

invertible. In view of this ultralocality the inverse ofQµ
ν ,Q−1ν

µ , does not require imposing
any boundary conditions in the past or future of the time variable.

The system of Eqs. (3.12), (3.13) for quantum perturbations�ĝb has a number
of peculiarities. First, the linearized gauge condition (3.13) guarantees that the gauge-
breaking term (usually quadratic in gauge conditions) does not contribute to the radiation
current (3.11). Second, it fixes uniquely the solution for�ĝa under given initial conditions.
In the absence of gauge conditions, Eq. (3.12) would have the ambiguity in the solution,
�ĝa →�ĝa +Raµf̂

µ, with arbitraryf̂ µ because of a simple corollary of (3.10)

(3.15)
δ2S

δgaδgb
Raµ = − δS

δga

δRaµ

δgb
.

Here the right-hand side vanishes on the classical solution,δS/δga = 0. So, the gauge
generatorsRaµ are zero vectors of the Hessian of the action on this background, which
implies the gauge invariance of the linearized solution of the above type. However, the
auxiliary condition (3.13) gauges this invariance away and guarantees the uniqueness of
the solution for�ĝa .

The parametrization of the general solution of Eqs. (3.12), (3.13) in terms of the
symplectic (phase space) initial conditions is equivalent to the Hamiltonian reduction of
this linearized system to the physical sector. This reduction should be done in the canonical
formalism. The unitarity of gauge conditions (3.13) guarantees that they can be rewritten in
terms of the phase space variables — configuration coordinates and conjugated momenta
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— contained in the set of�ĝa and d�ĝa/dt (the rest of the variables in�ĝa are the
Lagrange multipliers). Solving these canonical gauge conditions together with the first
class constraints — the nondynamical subset of Eq. (3.12) — one finds all the perturbations
�ĝa as functions of the physical variables�ĝphyswhich in their turn become functions of
initial physical coordinates and momenta(q0,p0)

(3.16)�ĝa =�ĝa(�ĝphys),

(3.17)�ĝphys=�ĝphys(q0,p0).

If the initial quantum state is known on the physical sector in the representation of these
quantum variables,|Ψ 〉 = Ψ (q0), p̂0 = ∂/i∂q0, then the calculation of averages in (3.11)
becomes straightforward.

In what follows we use this calculational strategy. The no-boundary and tunneling
wavefunctions as solutions of the Wheeler–DeWitt equations on superspace will, first,
be reduced to the physical sector. This quantum reduction in the one-loop approximation
will be performed by the technique of [24,32,33].6 Simultaneously, the physical reduction
will be performed for the cosmological background and its perturbations, the both being
parametrized in terms of initial data encoded in the (reduced) physical wavefunction. This
makes further calculation of radiation currents straightforward.

We finish this section with gauge invariance of the radiation current — the corollary
of the Noether identity for the classical action (3.10). The latter, after two consequitive
functional differentiations, yields another identity

(3.18)Raµ
δ3S

δgaδgbδgc
= −δRaµ

δgb

δ2S

δgaδgc
− δRaµ

δgc

δ2S

δgaδgb
− δ2Raµ

δgbδgc

δS

δga
.

Using it, one shows on account of the linearized equations (3.12) that the radiation current
satisfies the relation

(3.19)RaµJ
1-loop
a = − δ2Raµ

δgbδgc

δS

δga

〈
�ĝb�ĝc

〉
.

Here the right-hand side vanishes on the classical background,δS/δga = 0, and, moreover,
on an arbitrary mean field background when the generator is linear in the field,
δ2Raµ/δg

bδgc = 0. But this is a well known property of the generators of general coordinate
transformations that form the closed algebra of spacetime diffeomorphisms. Thus, the one-
loop radiation currents also satisfy the Noether identity

(3.20)RaµJ
1-loop
a = 0.

This property will be very important in what follows. It implies that the radiation currents
are linearly dependent, which reduces the number of effective equations to be solved

6 The fact that the cosmological states are known as solutions of quantum Dirac constraints on superspace,
and the fact that their quantum reduction to the physical sector is readily available from [24,32,33], explains
why we work within unitary gauge fixing procedure. Relativistic gauges with propagating Faddeev–Popov ghosts
would require a quantum state on extended Hilbert space with indefinite metric, satisfying the zero BRST-charge
equation (see review of this problem in [24]). Lifting the Dirac wavefunctions of the no-boundary and tunneling
states to this space, to the best of our knowledge, has not been done and goes beyond the scope of this paper.
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in cosmological applications. Moreover, this identity reflects the gauge invariance of
effective equations themselves. In particular, for purely gravitational system withga(x)=
gµν(x), when the radiation current coincides with the expectation value of the stress
tensorJµν1-loop(x) = 〈T̂ µν(x)〉, this property signifies the covariant conservation law,
∇µ〈T̂ µν(x)〉 = 0.

3.2. Two configuration space sectors of the model

In closed cosmological model, the total metric and inflaton scalar field are usually de-
composed into the spatially homogeneous background and inhomogeneous perturbations

(3.21)ds2 = −N2(t) dt2 + a2(t)γij dx
i dxj + hµν(x) dx

µ dxν,

(3.22)ϕ(x)= ϕ(t)+ δϕ(x), x = (t,x),

wherea(t) is the scale factor,N(t) is the lapse function andγij is the spatial metric of
the 3-sphere of unit radius. Therefore, the full set of fields consists of the minisuperspace
sector of spatially homogeneous variablesQ(t) and inhomogeneous fieldsf (x) essentially
depending on spatial coordinatesxi = x

(3.23)g(x)=Q(t), f (t,x),

(3.24)Q(t)= a(t), ϕ(t),N(t),

(3.25)f (x)= δϕ(t,x), hµν(t,x),χ(t,x),ψ(t,x),Aµ(t,x), . . . .

From the structure of the initial quantum state, that will be discussed later, it follows that
only minisuperspace variables have nonvanishing expectation values

(3.26)
〈
Q̂(t)

〉 �= 0,
〈
f̂ (x)

〉 = 0.

Therefore, the full set of effective equations reduces to the following three equations in the
minisuperspace sector

δS[Q]
δQ(t)

+ JQ(t)= 0,

(3.27)JQ = JN,Ja, Jϕ,

their quantum radiation currentsJQ(t) containing the contribution of quantum fluctuations
of minisuperspace modes themselves and those of spatially inhomogeneous fields.

The set of these equations is, however, redundant in view of the Noether identities
for both classical (3.10) and quantum (3.20) parts. In the minisuperspace sector the
general coordinate transformations reduce to reparametrizations of time. Infinitesimal
transformations of minisuperspace variablesQ(t)= (N(t), a(t), ϕ(t)), in the notations of
Section 3.1, read as:f µ ≡ f (t),∇a

µf
µ ≡ ∇Qf = (d(Nf )/dt, ȧf, ϕ̇f ), and the identity

(3.20) takes the form

(3.28)ϕ̇Jϕ + ȧJa −NJ̇N = 0.
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The currentsJN andJϕ have direct physical interpretation in terms of the quantum energy
densityε and pressurep

(3.29)JN = −a3√γ ε, Ja = 3a2√γ p,
so that Eq. (3.28) in the cosmic time,N = 1, takes the form

(3.30)ε̇+ 3
ȧ

a
(ε+ p)+ Jϕ√

γ a3
ϕ̇ = 0.

As we shall see later, the third currentJϕ can be interpreted in terms of the quantum
rolling force driving the evolution of the inflaton field. Therefore, this equation measures
the balance of the conservation for the quantum stress tensor vs the work of this force. In
the slow roll regime,ϕ̇ 	 0, it reduces to the conventional covariant conservation law on
the Robertson–Walker background.

The Hamiltonian reduction to the physical sector, discussed above,

(3.31)�g(x)= (
�Q(t), f (x)

) →�gphys(x)=
(
�Qphys(t), fphys(x)

)
,

(3.32)fphys(x)=
(
hTT(x),matter fields

)
,

leaves us with the set of physical variables�gphys(x) which also splits into minisuperspace
and field-theoretical subsets. Here�Qphys(t) is a single field variable that originates
from the minisuperspace sector of metric and inflaton perturbations.7 The rest,fphys(x),
represent the transverse traceless modes of the gravitational wavehTT(x) and other
physical nongravitational degrees of freedom. The nature of�Qphys(t) depends on the
gauge used for disentangling the physical sector. A particular gauge fixing procedure
widely used in the theory of cosmological perturbations [20,34] picks up a special gauge
invariant variable�Qphys(t) = q(t) that will be discussed in much detail in Section 5.
At the nonlinear level (beyond perturbation theory on a classical background) another
choice ofQphys(t) is possible by simply identifying it with the spatially homogeneous
inflaton fieldϕ(t), Qphys(t) = ϕ(t). In both cases, particular expressions for the original
minisuperspace variablesQ(t) and their perturbations�Q(t) in terms ofQphys(t) and
�Qphys(t) depend on the choice of gauge conditions. Two types of these gauge conditions
will be considered in Sections 4 and 5.

Splitting the whole configuration space into minisuperspace and inhomogeneous sectors
(3.23) reflects the choice of the collective variables. Moreover, it reflects distinctly different
nature of quantum states for the modes belonging to these two sectors. This results in
different calculational strategies for the corresponding quantum averages. To see it, note
that on the space of physical variables(ϕ,fphys(x)), with fphys(x) treated perturbatively,
the initial no-boundary and tunneling wavefunctions read (see Section 4)

(3.33)Ψ 1-loop(ϕ,fphys)= P(ϕ)exp

[
∓1

2
I (ϕ)− 1

2
Ω(ϕ)f 2

phys+O
(
f 3

phys

)]
.

7 Counting the number of physical degrees of freedom is usual: in 3-dimensional configuration space of
(N,a,ϕ) subject to one first class constraint the number of physical degrees of freedom equals 3− 2× 1= 1.
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HereP(ϕ) is the loop prefactor and the tree-level exponential contains the Euclidean action
expanded up to a quadratic term in inhomogeneous modes,Ω(ϕ)f 2

phys.
From (3.33) it follows that the one-loop quantum correlators between the minisuper-

space modes and inhomogeneous fields vanish,8 therefore they contribute additively to the
total one-loop radiation current

(3.34)J = J q + J f ,

(3.35)J q(t)= 1

2

∫
dt ′ dt ′′ δ3S[Q]

δQ(t)δQ(t ′)δQ(t ′′)
〈
�Q̂(t ′)�Q̂(t ′′)

〉
,

(3.36)J f (t)= 1

2

∫
dx dy

δ3S[Q+ f ]
δQ(t)δf (x)δf (y)

∣∣∣∣
f=0

〈
f̂ (x)f̂ (y)

〉
.

Similarly to (3.9) these contributions represent the quantum averages of the quadratic
terms of the expansion ofδS/δQ correspondingly in�Q̂(t) and f̂ (x). However, the
calculation methods forJ q andJ f are very different, and the difference can be attributed
to qualitatively different quantum states of the modesϕ andfphys. Let us begin with the
radiation currentJ f which can be obtained by the effective action method [1].

The matrix of quantum dispersionsΩ(ϕ) in the gaussian state of inhomogeneous modes
is such that this state turns out to be the Euclidean quasi-de Sitter invariant vacuum [17,35]

(3.37)|vac〉DS = C(ϕ)exp

[
−1

2
Ω(ϕ)f 2

phys

]
.

The corresponding quantum averages

(3.38)DS〈vac|fphys(x)fphys(y)|vac〉DS =GDS(x, y)

are given by de Sitter invariant Green’s functions which can be obtained by analytic
continuation from the unique Green’s function on the Euclidean section of the de Sitter
spacetime — the inverse of the Hessian of the Euclidean action

(3.39)GDS(x, y)=GE(xE,yE)
∣∣++++→−+++,

(3.40)
∫
dyE

δ2I [Q+ f ]
δf (xE)δf (yE)

∣∣∣∣
f=0

GE(yE, zE)= δ(xE, zE),

(3.41)I [Q+ f ] = −iS[Q+ f ]∣∣++++→−+++.

HerexE denotes the coordinates on the Euclidean de Sitter manifold related by the analytic
continuation to the Lorentzian spacetime coordinates,x4

E = π/2H + ix0, xE = x, with H
— the Hubble constant or the inverse radius of the Euclidean 4-sphere9 andx0 = t —

8 Note that due to the gaussian nature of the statef ∼ h̄1/2, so that the terms contributing to〈f�ϕ〉-correlators,
O(f 3)∼ h̄3/2, go beyond the one-loop approximation.

9 The Lorentzian Green’s functionGDS(x, y) = iG
(+)
DS (x, y) is the positive frequency Wightman function —

the solution of the homogeneous linearized equation of motion. On the contrary,GE(xE,yE), as an inverse
of the Hessian, solves the inhomogeneous equation. However, the Wightman function can be obtained from
GE(xE,yE) by taking the boundary value of its analytic continuation on a proper shore of the cut in the complex
plane of[σ(x, y)]1/2 — the geodetic distance between the pointsx andy [17].
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the cosmic time in the unperturbed de Sitter metric (3.21) corresponding toN = 1, a(t)=
cosh(H t)/H .

In view of this relation and in view of a similar analytic continuation rule between the
Lorentzian,δ3S/δQδf 2, and Euclidean,δ3I/δQδf 2, 3-vertices, one finds theEuclidean
effective actionalgorithm for the radiation current of inhomogeneous quantum modes

(3.42)J f
(
x0) = −δΓ 1-loop[Q]

δQ(x4)

∣∣∣∣++++→−+++
,

(3.43)Γ 1-loop[Q] = 1

2
Tr ln

δ2I [Q+ f ]
δf (xE)δf (yE)

∣∣∣∣
f=0

.

Note that this is exactly the functional that yields the one-loop contribution to the
distribution function (2.4), when evaluated at the classical solution for the minisuperspace
backgroundQ(x4)=Q(x4, ϕ) parametrically depending onϕ,

(3.44)Γ 1-loop(ϕ)= Γ 1-loop
[
Q

(
x4, ϕ

)]
.

This algorithm was used in the previous paper [1] for the calculation one-loop radiation
currents off -modes. In [1]Γ 1-loop[Q] was obtained by the local Schwinger–DeWitt
expansion — the expansion in spacetime derivatives of the background fields, which in the
cosmological context corresponds to the slow-roll expansion.10 Within this expansion the
one-loop action is represented as a spacetime integral of the effective Lagrangian expanded
in powers of curvatures, matter field strengths and their covariant derivatives. Therefore,
the analytic continuation rule (3.42) is trivial — the currentJ f (x0) can be given by the
functional variation of thelocal Lorentzian one-loop action

(3.45)J f
(
x0) = δS1-loop[Q]

δQ(x0)
,

(3.46)S1-loop
[
Q

(
x0)] = iΓ 1-loop

[
Q

(
x4)]∣∣++++→−+++.

Therefore, within the local expansion theJ f part of the radiation current can be absorbed
in the functional variation of the totalLorentzianeffective actionSeff[Q], and the effective
equations acquire the final form

(3.47)
δSeff[Q]
δQ(x0)

+ J q
(
x0) = 0,

(3.48)Seff[Q] = S[Q] + S1-loop[Q].
HereSeff[Q] can be obtained from the classical actionS[Q] by adding loop corrections
to the classical coefficient functions in the curvature and gradient expansion of the

10 The algorithm (3.42), (3.43) looks as a generalization of the analytic continuation method for the effective
equations in asymptotically flat spacetime [38]. Strictly speaking, this algorithm as derived above holds only for
exactde Sitter background, while the method of [38] was proven for arbitrary asymptotically flat backgrounds
that are perturbatively related to flat spacetime. For the deviations from the de Sitter geometry (measured by the
magnitude of the slow-roll smallness parameter) the relations (3.42), (3.43) hold for local terms of the effective
action, and might not be true for an essentially nonlocal part that cannot be expanded in powers of derivatives. But
for the slow-roll inflation regime, which we use throughout the paper, such an expansion — the local Schwinger–
DeWitt series — is definitely applicable, which justifies the effective action method.
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Lagrangian.11 These corrections, in their turn, can be calculated in the Euclidean spacetime
by the local Schwinger–DeWitt technique [39]. For our model these corrections has been
obtained in [1]. Thus, this essential simplification in treating theJ f -part of the radiation
current exists due to the two important aspects of the problem — de Sitter-invariant
vacuum off -modes and the slow roll approximation. In contrast to this, to the best of
our knowledge, no simplification is available in the calculation of the quantum mechanical
part of the currentJ q .

To begin with, the wavefunction of the quantum mechanical minisuperspace modeϕ

is not gaussian. Moreover, in the tree-level approximation the graph of the probability
distribution (2.3) is very flat. It does not have good probability peaks and is even
unnormalizable. This means that the tree-level quantum averages〈�Q�Q〉tree are badly
defined. Beyond the tree-level approximation the situation can be improved, because they
should now be defined with the aid of the reduced density matrix

(3.49)
〈
�Q(t)�Q(t ′)

〉 = tr
[
�Q̂(t)�Q̂(t ′)ρ̂

]
,

(3.50)ρ̂ ≡ ρ(ϕ,ϕ′)=
∫
df Ψ (ϕ,f )Ψ ∗(ϕ′, f ),

which originates from tracing thef -variables out and includes loop corrections. As shown
in [22–24,41], the diagonal element of this density matrix — the distribution function ofϕ,

(3.51)ρ(ϕ)= ρ(ϕ,ϕ),

is given in the approximation of a gaussian integral by the effective action algorithm (2.4).
Effective action contributes the factor that can generate a sharp probability peak (2.12) with
the dispersion∆ defined by (2.11). With this modification the quantum correlators become
well defined, being expressed in terms of〈�ϕ�ϕ〉 ∼∆2 <∞. Certainly, this improvement
is achieved by exceeding the precision of the one-loop approximation — badly defined
tree-level quantum correlators become finite due to one-loop contribution (therefore, in
their turn they effectively contribute to the radiation currents two-loop quantities). But
overstepping the conventional rules of the loop expansion is justified here because it reflects
the underlying physics of the slow roll dynamics.

Point is that the inflaton field in models satisfying the slow-roll conditions effectively
represents the massless scalar field — its mass is roughly proportional to the slow-roll
smallness parameter [7]. But massless scalar fields do not have a well defined de Sitter
invariant vacuum [17]. This fact, in particular, manifests itself in the unnormalizability of
the tree-level wavefunction exp[∓I (ϕ)/2], absence of its local maxima, etc. As we see,
loop effects render this state a quasi-gaussian nature (2.12) and thus justify the improved

11 Note that the notion ofSeff[Q], as a generator of equations for expectation values, is legitimate only within
the local derivative expansion. For nonlocal contributions this action does not exist at all — there is no mean
field functional that could yield by the variational procedure effective equations for expectation values [38]. The
reason of this is that for nonlocalities the analytic continuation from the Euclidean to Lorentzian spacetime is
not unique — in addition, it requires setting the retardation boundary conditions for nonlocal form factors (see
[38] and cf. the previous footnote). These boundary conditions prohibit the existence of the effective action for
expectation values.
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semiclassical expansion. A major part of the paper in what follows deals with the direct
calculation of the quantum mechanical radiation currentJ q and its physical implications.

4. Quantum Cauchy problem: tree level approximation

Loop expansion for effective equations is essentially perturbative. Therefore, we solve
them by iterations starting with the classical solution. Then, in the one-loop approximation
the radiation current can be calculated on the classical background — the lowest order
approximation for the mean field. Here we pose the initial conditions for this solution that
follow from the no-boundary and tunneling cosmological wavefunctions.

In this and the next section we work with the model of minimally coupled inflaton
field φ having a generic potentialV (φ) (we reserve the notationφ as opposed to the
notationϕ for the nonminimal inflaton). This general framework of the Cauchy problem
for the cosmological background and perturbations can be easily extended to include the
nonminimal model by reparametrizing the latter to the Einstein frame [11,40], and this will
be done in Section 6. Thus, we begin with the action

(4.1)S[gµν,ϕ] =
∫
d4x g1/2

(
m2
P

16π
R(gµν)− 1

2
(∇φ)2 − V (φ)

)
.

Under the (unperturbed) ansatz for spatially homogeneous metric (3.22), it takes the
minisuperspace form

(4.2)S[a,φ,N] =
∫
dt Na3√γ

[
3

κ

(
1

a2 − ȧ2

N2a2

)
+ 1

2

φ̇2

N2 − V (φ)

]
,

(4.3)
√
γ ≡ 2π2, κ = 8π

m2
P

.

Classical equations for this action in the cosmic time gauge,N = 1, read

(4.4)
1

a3√γ
δS

δN
≡ 3

κ

(
1

a2 + ȧ2

a2

)
− φ̇2

2
− V (φ)= 0,

(4.5)
1

Na3√γ
δS

δφ
≡ −φ̈ − 3

ȧ

a
φ̇ − Vφ(φ)= 0,

(4.6)
1

3Na2√γ
δS

δa
≡ 1

κ

(
1

a2 + 2
ä

a
+ ȧ2

a2

)
+ φ̇2

2
− V (φ)= 0.

The first of Eqs. (5.1) represents the nondynamical Hamiltonian constraint. In terms
of the momenta conjugated toa and φ, Πφ = √

γ a3φ̇/N , Πa = −6
√
γ aȧ/κN , this

constraint has the following form

(4.7)H (a,φ,Πa,Πφ)= − κ

12a
√
γ
Π2
a + 1

2a3√γ Π
2
φ + a3√γ

[
V (φ)− 3

κa2

]
= 0,

which at the quantum level in the coordinate representation of the quantum minisuperspace,
Π̂a = ∂/i∂a, Π̂φ = ∂/i∂φ, gives rise to the minisuperspace Wheeler–DeWitt equation on
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Ψ (φ, a)

(4.8)H (a,φ, ∂/i∂a, ∂/i∂φ)Ψ (φ, a)= 0.

There are two well known semiclassical solutions of this equation — the so-called no-
boundary and tunneling wavefunctions. In the approximation of the inflationary slow roll
(when the derivatives with respect toφ are much smaller than the derivatives with respect
to a) these two solutions read [28]

(4.9)Ψ NB(φ, a)= CNB
(
a2H 2(φ)− 1

)−1/4 exp

[
−1

2
I (φ)

]
cos

[
S(a,φ)+ π

4

]
,

(4.10)Ψ T(φ, a)= CT
(
a2H 2(φ)− 1

)−1/4
exp

[
+1

2
I (φ)+ iS(a,φ)+ iπ

4

]
.

They describe two types of the nucleation of the Lorentzian quasi-de Sitter spacetime
(described by the Hamilton–Jacobi functionS(φ, a)) from the gravitational semi-instanton
— the Euclidean signature hemisphere bearing the Euclidean gravitational actionI (φ)/2

I (φ)= − πm2
P

H 2(φ)
,

(4.11)S(φ, a)= − πm2
P

2H 2(φ)

(
a2H 2(φ)− 1

)3/2
.

The size of this hemisphere — its inverse radius — as well as the curvature of the quasi-
de Sitter spacetime are determined by the effective Hubble constant,ȧ/a 	H(φ), driving
the inflationary dynamics of the model

(4.12)H 2(φ)= 8πV (φ)

3m2
P

= κV (φ)

3
.

The nucleation of the Lorentzian spacetime from the Euclidean hemisphere takes place
at a = 1/H(φ). This domain forms the one-dimensional curve in the two-dimensional
superspace. Its embedding equation can be written in the form

(4.13)χ(φ,a)= a −
√

3

κV (φ)
= 0.

The dimensionality of this subspace coincides with the number of physical degrees of
freedom in the minisuperspace sector of the model. The intrinsic coordinate on this
subspace becomes the physical coordinate and the restriction of the Dirac wavefunction
Ψ (φ, a) to this subspace becomes the physical wavefunction, provided one takes care of a
proper relation between the quantum measures on the original superspace and the physical
subspace. For a generic constrained system, the details of such a quantum reduction can be
found in [24,32,33]. Here we just briefly repeat it for our model.

Let us identifyχ(φ,a) in (4.13) with the gauge condition fixing the time reparametriza-
tion invariance in the theory (4.2) and chooseφ as the physical coordinate. Then, according
to the formalism of [32], the physical wavefunctionΨ (φ) in the one-loop (linear in̄h ap-
proximation) can be obtained from the semiclassical Dirac wavefunctionΨ (φ, a) by the
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transformation

(4.14)Ψ (φ)= ∣∣{χ,H }∣∣1/2Ψ (φ, a)∣∣
χ(φ,a)=0.

Here we distinguish the original Dirac wavefunction in 2-dimensional minisuperspace
from the physical wavefunction by the number of their arguments. The factor|{χ,H }| —
the Poisson bracket of the gauge condition with the first class Hamiltonian constraint —
is the Faddeev–Popov determinant which should be calculated at the semiclassical values
of momenta,Πa = ∂aS(φ, a),Πφ = ∂φS(φ, a). In the slow roll approximation, when the
Πφ -momentum is negligible, this factor equals|{χ,H }|1/2 ∼ (H 2a2 − 1)1/4 and, thus,
cancels the preexponential factors in Eqs. (4.9), (4.10) divergent at the nucleation surface
(4.13).

Thus, the physical wavefunction on the nucleation surface (4.13) which should be
regarded asthe Cauchy surface in minisuperspacereads as

(4.15)Ψ NB,T(φ)= CNB,T exp

[
∓1

2
I (φ)

]
,

minus and plus signs related respectively to the the no-boundary and tunneling states.
It is well known that the graphs of these wavefunctions are very flat for the situations
when the slow roll approximation holds (equivalent to smallφ-derivatives). Therefore,
they are generally not normalizable and do not have good probability peaks that could
be interpreted as a source of initial conditions for inflation. The inclusion of loop terms
via Eq. (2.4) might lead to the normalizability of the wavefunction and, for the model of
the nonminimally coupled inflaton, even yield a sharp probability peak of the above type.
Then, the expectation value of the inflatonφ = 〈φ̂〉 becomes finite. It is determined by the
location of this peak and serves as the initial condition for the classical extremal that will
be used as the background for the calculation of the one-loop radiation currents.

The second initial condition for this classical extremal — the time derivative of the
inflaton — arises from the the expectation value of thephysicalmomentum conjugated to
φ, pφ = 〈p̂φ〉. In view of reality of the initial density matrix (3.50) this expectation value
is vanishing

(4.16)〈p̂φ〉 =
∫
dφ

1

i

∂

∂φ
ρ(φ,φ′)

∣∣
φ′=φ = 0.

From the Hamiltonian reduction of the symplectic form in the gaugeχ(φ,a)= 0 it follows
that the physical momentum expresses in terms of the original momenta

Πa da +Πφ dφ = pφ dφ,

(4.17)pφ =Πφ −Πaχφ/χa, χφ ≡ ∂φχ, χa ≡ ∂aχ.

Therefore, forpφ = 0, Πφ homogeneously expresses in terms ofΠa and, after plugging
this relation into the Hamiltonian constraint (4.7), it implies that at the initial Cauchy
surfaceΠφ = 0 andΠa = 0. Thus, the full set of initial conditions for the classical
background reads

(4.18)φ = 〈φ̂〉, a = 1

H(φ)
, φ̇ = ȧ = 0.
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5. Cauchy problem for cosmological perturbations

In this section we pose the Cauchy problem for quantum cosmological perturbations
propagating on the classical background of the previous section. First, the set of
perturbations is reduced by the technique of [20] to the set of linearized invariants of
spacetime diffeomorphisms, and their quadratic action is constructed. The ghost nature
of their minisuperspace sector is revealed and the original perturbations are built in terms
of invariants in the Newton gauge. Then, quantum initial conditions for perturbations are
obtained with the aid of the linearized version of the minisuperspace gauge introduced
above. Again, we consider the minimal model which will be later, in Section 6,
reparametrized to the nonminimal curvature coupling.

5.1. Hamiltonian reduction to the physical sector

Here we start with the physical reduction for cosmological perturbations on the classical
background of Section 4. In the main, we follow the notations of [20] where this reduction
was presented in much detail. In particular, we use the conformal time denoted byη

corresponding toN = a(η). In this gauge the classical equations of motion (4.4)–(4.6)
have the form

3

κ
H2 − φ′2

2
+ 3

κ
− a2V = 0,

H2 + 1−H′ = κ

2
φ′2,

(5.1)φ′′ + 2Hφ′ + a2Vφ = 0,

where primes denote the derivatives with respect to the conformal time, subscriptφ implies
the partial derivative with respect to the inflaton,Vφ ≡ ∂φV (φ), andH is the “conformal”
Hubble constant

(5.2)H ≡ a′

a
, a′ ≡ da

dη
,

related to the Hubble constant in cosmic timeH by the equationH = aH .
The cosmological perturbations(hij ,A,Si, δφ) of metric and inflaton field are intro-

duced according to the ansatz

(5.3)ds2
total = a2(η)

[−(1+ 2A)dη2 + 2Si dx
i dη+ (γij + hij ) dx

i dxj
]
,

(5.4)φtotal = φ + δφ,

(5.5)hij = −2ψγij + 2E|ij + 2F(i|j) + tij ,

Si = ∇iB + Vi, ∇iF
i = ∇iV

i = t ii = ∇i tij = 0.

They consist of the scalar perturbations(ψ, δφ,E,A,B), transverse vector perturbations
(Fi,Vi) and transverse-traceless tensor onestij . Here ∇i denotes the spatial covariant
derivative.

Spatially homogeneous modes from the minisuperspace sector, upon which we focuse in
this paper, belong to scalar perturbations. As discussed above, the inhomogeneous modes
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which contribute to theJ f radiation current can be treated by the effective action method
and do not require a manifest physical reduction. Thus we consider only the scalar sector.
After constructing the quadratic part of the action in terms of scalar perturbations one
introduces the momenta conjugated to(ψ, δφ,E)

Πψ = 2a2√γ
κ

[
−3

(
ψ ′ − κ

2
φ′δφ +HA

)
−�(B −E′)

]
,

Πδφ = a2√γ (δφ′ − φ′A),

(5.6)ΠE = 2a
√
γ

κ
�

[
ψ ′ − κ

2
φ′δφ +HA− (B −E′)

]
,

and finds out that(A,B) play the role of Lagrange multipliers to the linearized Hamiltonian
and momentum constraints

(5.7)CA = −HΠψ + φ′Πδφ + a2√γ
[
− 2

κ
Dψ + (Hφ′ − φ′′)δφ

]
,

(5.8)CB =ΠE,

whereD is the following modified covariant Laplacian acting on a closed 3-sphere with
the metricγij

(5.9)D =∆+ 3, ∆= γ ij∇i∇j .

The constraints (5.7) generate the diffeomorphisms in the scalar perturbation sector with
respect to the vector-field parameterλµ = (λ0,∇iλ)

(5.10)δλψ = −Hλ0, δλ(δφ)= φ′λ0, δλE = λ,

(5.11)δλΠψ = 2a2√γ
κ

Dλ0, δλΠδφ = a2√γ (φ′′ −Hφ′)λ0, δλΠE = 0,

accompanied by the transformations of the Lagrange multipliersδλA = (λ0)′ + Hλ0,
δλB = λ′ − λ0. There are two obvious invariants of the gauge canonical transformations
(5.10), (5.11)

(5.12)Ψ =ψ + H
φ′ δφ,

(5.13)Πψ =Πψ − 2a2√γ
κφ′ Dδφ.

It turns out that after solving the constraints,CA = CB = 0, (5.7), (5.8), with respect to
Πδφ andΠE and feeding the result into the canonical action the latter entirely expresses in
terms of these two invariants. Moreover, they play the role of a single pair of canonically
conjugated variables in the physical sector [20]: on the constraint surface in phase space
the original symplectic form goes over into the physical one,Πψψ

′ +Πδφδφ
′ +ΠEE

′ =
ΠψΨ ′ + (. . .)′. The corresponding canonical action quadratic in(Ψ ,Πψ) reads

S[Ψ ,Πψ ]∣∣2 =
∫
dη

[
ΠψΨ ′ − 2a2√γ

κ2φ′2

(
DΨ + κH

2a2√γ Πψ

)2
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(5.14)− a2√γ
κ

ΨDΨ + κ

4a2√γ Πψ
1

D
Πψ

]
.

Somewhat simpler form this action acquires in terms of the new variables(q,p) related to
(5.12), (5.13) by the canonical transformation

q = 2a

κφ′ Ψ + H
φ′

1

a
√
γD

Πψ,

(5.15)p = −φ′a
2H

√
γDΨ + κφ′

4a
Πψ.

In terms of them the quadratic action in thephysicalsector of scalar perturbations looks as

S[q,p]∣∣2 =
∫
dη

[
pq ′ + pq

(
φ′′

φ′ + κφ′2

4H

)
+ 1

2
√
γ

p
1

D
p

(5.16)+ κφ′2

8H2

(
−H2 + 1− κφ′2

4

)√
γ qDq − 1

2
√
γ (Dq)2

]
.

With the extremal expression for the momentum

(5.17)p = −√
γD

[
q ′ + (

φ′′/φ′ + κφ′2/4H
)
q
]

the Lagrangian form of this action is even shorter

(5.18)S[q]∣∣2 = 1

2

∫
dη

√
γ (−Dq)

[
− d2

dη2
+ φ′

(
1

φ′

)′′
+ κφ′2

2
+D

]
q.

The invariant fieldq here is well known from the theory of cosmological perturbations
[20]. It is actually given by the so-called Bardeen variable [20,36],ΦH =H(B−E′)−ψ ,
q = −2aΦH/κφ

′.
Note that the operatorD given by (5.9) is negative definite except for two modes:

the zero mode corresponding to the Laplacian eigenvalue∆ = −3 and the spatially
homogeneous mode for∆ = 0, D = +3. In view of the overall factor−D the zero
mode does not enter the action at all, while the homogeneous mode enters (5.18) with a
wrong sign — its kinetic term is negative. Thus, this is a ghost variable signifying the
classical instability of the model. This instability at the linearized level is nothing but
the manifestation of the inflation which is a huge instability phenomenon incorporating
the runaway modes. In contrast with a conventional wisdom of the S-matrix theory, this
instability should not be regarded as an irrecoverable flaw of the theory, because we know
a nonlinear damping mechanism that provides an exit from the inflation stage in case of
the inflaton field rolling down to smaller values of the potential. In particular, no special
measures like introducing the indefinite metric should be undertaken to eradicate this
phenomenon. Homogeneous fluctuations of the inflaton field do not have a particle nature
and one should not take care of guaranteeing the energy positivity of their excitations.
Therefore, this mode can and should be quantized in the coordinate representation with
positive metric in the Hilbert space.

A single spatially homogeneous modeq(η) contained in the full set of

(5.19)q(x)= (
q(η),q(η,x)

)
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corresponds to theD = +3 eigenvalue of the operator (5.9) in the action (5.18). It also
satisfies all the above relations with a simple ultralocal substitutionD = +3 and is actually
responsible for the perturbations in the minisuperspace sector of the cosmological model.
Indeed, from the metric ansatz (5.3), (5.5) it follows that spatially homogeneous variables
ψ(η), δφ(η) andA(η) induced byq(η) generate the variations of the scale factor, inflaton
field and lapse function

(5.20)δa = −aψ + O
(
ψ2), δφ, δN = aA+ O

(
A2).

Actual expression forψ(η), δφ(η) andA(η) in terms of(q(η),p(η)) depend on the
particular gauge chosen for minisuperspace variables. In what follows we will need two
types of such gauges. One will be used for gauge fixing the dynamical evolution of
perturbations as a function of dynamically evolving invariant variableq(η). Another gauge
serves as a part of the quantum Cauchy problem — as shown in the previous section, it
facilitates the quantum reduction to the physical sector and relates the wavefunction to
the initial conditions for both the classical background and thehomogeneousperturbation
variableq(η). The first gauge may coincide with the second one. However, its use is
strongly biased by practical necessities of the theory of cosmological perturbations [37]
and, therefore, is usually chosen to be the Newton gauge which is essentially different from
the minisuperspace gauge of Section 3. Thus we consider these two gauges separately.

5.2. Newton gauge

Newton gauge is widely used in the theory of cosmological perturbations [37] to express
them in terms of the Bardeen invariantq. The Newton gauge for spatially inhomogeneous
modes reads

(5.21)B = 0, E = 0.

From the equations for momenta (5.6) and the momentum constraintCB = 0 this implies
that

(5.22)Πψ = −6a2√γ
κ

(
ψ ′ − κ

2
φ′δφ +HA

)
= 0.

In the spatially homogeneous sector of the theory, where the contribution ofB andE
is missing (they enter only differentiated with respect to spatial coordinates) the latter
equation should be regarded as the definition of the Newton gauge. This gauge involves
only the phase space coordinate — the momentumΠψ — and, therefore, it is unitary and
can be identified with the gauge (3.13).

Canonical equations of motion for(Ψ ,Πψ), which follow from the action (5.14), in
this gauge have a simple corollary(aψ)′/a − κφ′δφ/2 = 0. When compared with (5.6),
Πψ = 0, this corollary yields the main relation in the Newton gauge

(5.23)A=ψ.

Then one easily expresses all the perturbations in terms of the physical phase space
variables(q,p). On substituting the Lagrangian value of the momentum (5.17) these
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expressions finally simplify to

(5.24)ψ = κφ′

2a
q,

(5.25)δφ = (φ′q)′

aφ′ .

Eqs. (5.23)–(5.25) form the needed set of relations (3.16) of the physical reduction for
minisuperspace perturbations.

5.3. Minisuperspace gauge

The minisuperspace gaugeχ(a,φ)= 0 of Section 3 was used for the physical reduction
of the minisuperspace wavefunction and for establishing the tree-level initial conditions
— for the classical background. Let us now use it in order to find the initial conditions
for (q,p). The linearized minisuperspace gauge condition (the gauge (3.13) in condensed
notations of Section 3.1) gives the perturbation ofa in terms ofδφ. Taking into account
the relations (5.20), expressingδa in terms of the perturbationψ , we get

(5.26)ψ = χφ

aχa
δφ.

The corresponding reduction of the symplectic form gives the expression for the physical
momentumpδφ conjugated toδφ

(5.27)Πψψ
′ +Πδφδφ

′ = pδφδφ
′ + · · · , pδφ =Πδφ +Πψ

χφ

aχa
.

Then, by solving the linearized constraintCA = 0 one easily findsΠψ andΠδφ as functions
of (δφ,pδφ) and, via the formalism above, proceeds to the final transformation relating
(q,p) to (δφ,pδφ)

(5.28)q(η)= 1

M

[(
H− φ′′

φ′

)
a2χaH

3
+ 2χ2

φ

κχa

]
δφ(η)+ χaH

3M
√
γ
pδφ(η),

(5.29)

p(η)= √
γ

{
κφ′2

4M

[(
H − φ′′

φ′

)
a2χaH

3
+ 2χ2

φ

κχa

]
− M

χa

}
3

H δφ(η)+ χa

M

κφ′2

4
pδφ(η),

(5.30)M ≡ φ′χφ +Haχa.

Note that this relation is written down in the homogeneous sector which is emphasized by
the time arguments of the phase space variables. In the right-hand side of these equations
the spatial homogeneity manifests itself in the particular value of the operatorD, D = 3.
One can easily check that this transformation is canonical,{q,p} = {δφ,pδφ} = 1, and
invertible. Inverting it, one can find all the minisuperspace perturbations as functions of
q andq ′, similarly to the relations (5.23)–(5.25) in the Newton gauge. However, the goal
of working in the gauge (4.13) is somewhat different. We shall need the relations (5.28)–
(5.30) in order to express initial conditions for(q(η),p(η)) in terms of initial conditions
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for (δφ,pδφ). The latter in their turn follow from the cosmological wavefunction in the
physical sector.

We begin by noting that at the initial moment of time the following relations hold

H = η+ O
(
η2), φ′ = −3Vφ

κV
η+ O

(
η2), H

φ′

∣∣∣∣
0
= H′

φ′′

∣∣∣∣
0
= − κV

3Vφ
,

M = η

(
3

κV

)1/2(
1− 3

2

V 2
φ

κV 2

)
+ O

(
η2), η→ 0.

Using these relations in Eqs. (5.28), (5.29) we obtain the asymptotic behaviour of
the invariant variables(q,p) for η → 0 in terms of the physical variables of the
minisuperspace gauge fixing(δφ(η),pδφ(η))

(5.31)

(
κV

3

)1/2

q 	 − 1

3η
δφ + κV

9

1

1− 9ε2/16

pδφ√
γ
,

(5.32)

(
3

κV

)1/2

p 	 − 9

κV

(
1− 9ε2/32

)√
γ δφ, η→ 0.

Just to emphasize the role of the slow roll expansion we retained here the corrections
proportional to the smallness parameter

(5.33)ε2 ≡ 8

3

V 2
φ

κV 2 � 1.

In what follows we shall systematically discard such corrections retaining only the leading
order of the slow roll expansion.

Important peculiarity of the behaviour (5.31), (5.32) is its singularity atη → 0. This
singularity is, however, an artifact of the definition of the invariant variables (5.15)
nonanalytic atφ′ → 0, rather than the manifestation of some physical inconsistencies. To
see it, one can decompose the general classical solution forq(η) in the sum of two linearly
independent solutions of the equation of motion for the action (5.18)

(5.34)q(η)= c+q+(η)+ c−q−(η),

(5.35)

(
− d2

dη2 + φ′
(

1

φ′

)′′
+ κφ′2

2
+ 3

)
q±(η)= 0.

Because ofφ′(1/φ′)′′ ∼ 2/η2, η → 0, the initial momentη = 0 is a singular point of this
differential equation, at which one of the two solutions,q−(η), diverges as 1/φ′. One can
make a singular rescaling,

(5.36)q ≡ Q

φ′ ,

to a new variableQ(η) which is finite at this point. It satisfies the equation

(5.37)

(
− d2

dη2 + 2
φ′′

φ′
d

dη
+ κφ′2

2
+ 3

)
Q(η)= 0,
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and has as two solutions the following regular functions

(5.38)Q+(η)= η3(1+ O
(
η2)),

(5.39)Q−(η)= 1− 3η2/2+ O
(
η3).

Substituting the decomposition (5.34), withq± related toQ± by (5.36), to the left-hand
sides of (5.31), (5.32) one obtains the system of equations forc± with singular coefficients.
This system, however, has a regular solution in terms of the initial conditions for physical
variables(δφ(0),pδφ(0))

(5.40)c+ = −1

3

(
κV

3

)1/2 Vφ

κV

pδφ(0)√
γ

,

(5.41)c− =
(

3

κV

)1/2
Vφ

κV
δφ(0).

This basic relation will be used throughout the rest of the paper to express the Heisenberg
operators of quantum perturbations�Q̂phys(η) and�Q̂(η) in terms of the Schrödinger
operators,δφ̂(0) = δφ, p̂δφ(0) = ∂/i∂(δφ), and then find the quantum averages of their
bilinear combinations in the inflaton representation of the initial density matrix (3.50).

6. Non-minimal model

In what follows we go over to the model (2.5) that has a good peak-like behaviour of
the initial distribution function of the inflaton [6,7,18]. The inflaton–graviton sector of the
action in this model can be rewritten in the form

(6.1)S[gµν,ϕ] =
∫
d4x g1/2

{
−V (ϕ)+U(ϕ)R − 1

2
G(ϕ)(∇ϕ)2

}
.

In fact, the curvature (and derivative) expansion of any low-energy effective graviton-scalar
action can be truncated to this form with some coefficient functions of the zeroth and first
order in the curvature — the scalar field potentialV (ϕ), the effectiveϕ-dependent Planck
“mass” 16πU(ϕ) and the coefficient of the inflaton kinetic termG(ϕ). In the classical
model (2.5) these functions have a particular form

(6.2)U(ϕ)= m2
P

16π
+ 1

2
|ξ |ϕ2,

(6.3)V (ϕ)= m2ϕ2

2
+ λϕ4

4
,

(6.4)G(ϕ)= 1.

It is well known that the action (6.1) can be transformed to the Einstein frame by a
special conformal transformation and reparametrization of the inflaton field(gµν,ϕ) →
(ḡµν, ϕ̄),

S[gµν,ϕ] = �S[ḡµν, ϕ̄],
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(6.5)�S[ḡµν, ϕ̄] =
∫
d4x ḡ1/2

{
−�V (ϕ̄)+ m2

P

16π
R(ḡµν)− 1

2
(�∇ϕ̄)2

}
.

In what follows, we shall denote the fields and other objects in the Einstein frame of the
nonminimal model by bars and identify them with those of the minimal model considered
in Sections 3–5. In this way we reduce all the calculations, Cauchy data setting, gauge
fixing, reduction to the physical sector, etc. to the algorithms derived above for the case of
the minimal model.

6.1. Reparametrization to the minimal frame

The transformations relating the actionsS[gµν,ϕ] and�S[ḡµν, ϕ̄] are implicitly given by
equations [11,40]

(6.6)ḡµν = 16πU(ϕ)

m2
P

gµν,

(6.7)

(
dϕ̄

dϕ

)2

= m2
P

16π

GU + 3U2
ϕ

U2 ,

where, similarly to previous sections,ϕ-subscripts denote the derivatives of the coefficient
functions with respect to the inflaton,Vϕ ≡ dV/dϕ,Vϕϕ ≡ d2V/dϕ2, etc. The action in
terms of new fields (6.5) has a minimal coupling and the new inflaton potential

(6.8)�V (ϕ̄)=
(
m2
P

16π

)2
V (ϕ)

U2(ϕ)

∣∣∣∣
ϕ=ϕ(ϕ̄)

.

For the coefficient functions (6.2), (6.3) the explicit reparametrization between the frames
can be found for large value of the nonminimal coupling constant|ξ | � 1 and small value
of the parameterm2

P /|ξ |ϕ2 � 1 [11]

(6.9)ϕ(ϕ̄)	 mP

|ξ |1/2 exp

[√
4π/3

(
1+ 1

6|ξ |
)−1/2

ϕ̄

mP

]
,

(6.10)�V (ϕ̄)= λm4
P

256π2|ξ |2
[
1− 1+ δ

4π

m2
P

|ξ |ϕ2 + · · ·
]
ϕ=ϕ(ϕ̄)

,

where we have retained only the first order term inm2
P /|ξ |ϕ2. In view of (6.9), for largeϕ̄

this potential exponentially approaches a constant and satisfies the slow roll approximation
with the expansion parameter [11]

(6.11)ε = mP√
3π

�Vϕ̄(ϕ̄)
�V (ϕ̄) 	 1+ δ

3π

(
1+ 1

6|ξ |
)−1/2 m2

P

|ξ |ϕ2 � 1,

which justifies the smallness of the parameterm2
P /|ξ |ϕ2 chosen above.

Let us now consider the minimal model of Sections 3–5 as an Einstein frame of the
nonminimal model and label all the objects of the minimal model — the metric, inflaton
field, scale factor, conformal time, cosmological perturbations and the minisuperspace
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gauge fixing conditions — by bars

ḡµν,φ = ϕ̄, ā, η̄,

(6.12)ψ̄, δφ = δϕ̄, Ā, �Πψ, �Πδφ, χ̄(ā, ϕ̄),

as opposed to the objects in the original — nonminimal — frame:gµν,ϕ, a, η,ψ, δϕ,A,

χ(a,ϕ). Comparing the metrics in these frames, perturbed by the cosmological distur-
bances from the scalar sector,

ds2 = a2[−(1+ 2A)dη2 + (1− 2ψ)γij dxi dxj
]
,

(6.13)ds̄2 = ā2[−(1+ 2Ā )dη̄2 + (1− 2ψ̄)γij dxi dxj
]
,

(6.14)ds̄2 = 16πU

m2
P

ds2,

one finds the relations between these two sets of variables

(6.15)ā =
√

16πU(ϕ)

m2
P

a 	
√

8π |ξ |ϕ2

m2
P

a, η̄= η,

(6.16)δφ ≡ δϕ̄ =
√
m2
P

16π

U + 3U ′2
U2 	

√
3

4π

mP

ϕ
δϕ,

(6.17)ψ̄ =ψ − Uϕ

2U
δϕ 	ψ − δϕ

ϕ
,

(6.18)Ā=A+ Uϕ

2U
δϕ 	A+ δϕ

ϕ
,

where the last three relations hold in the linear order of perturbation theory in cosmological
disturbances. The canonical momentaΠδϕ and Πψ obviously transform by the rule
contragradient to (6.16) and (6.17).

We also need the frame transformation between the physical sectors defined in the
minisuperspace gauge of Section 5.3. The gauge condition itself transforms as a scalar
— only in this case it represents one and the same Cauchy surface, written in two different
coordinate systems on minisuperspace

(6.19)χ̄(ā, ϕ̄)= χ(a,ϕ).

As regards the reparametrization between these coordinate systems, (6.9) and (6.15), it has
a general form

(6.20)ϕ̄ = ϕ̄(ϕ), ā = ā(ϕ, a),

mixing the inflaton and the scale factor only in the transformation ofa. Therefore, the
linearized perturbations ofa andϕ and their momenta in both frames are related by a
triangular transformation

(6.21)δϕ̄ = ∂ϕ̄

∂ϕ
δϕ, ψ̄ = −1

a

∂ā

∂ϕ
δϕ + a

ā

∂ā

∂a
ψ,

(6.22)�Πδϕ = ∂ϕ

∂ϕ̄
Πδϕ − 1

a

∂a

∂ϕ̄
Πψ, �Πψ = ā

a

∂a

∂ā
Πψ.
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The physical momentum̄pδϕ expresses in terms of phase space momenta by the barred
version of Eq. (5.27). Then, in view of the above relations, one easily finds

(6.23)p̄δϕ = ∂ϕ

∂ϕ̄
pδϕ.

This equation holds exactly for an arbitrary choice of the gauge condition functionχ(a,ϕ),
and this is a corollary of the triangular form of the transformation (6.20). In our nonminimal
model with|ξ | � 1 this implies the following simple relation between the physical sectors
in two frames

(6.24)δϕ̄ 	
√

3

4π
mP

δϕ

ϕ
, p̄δϕ 	

√
4π

3

ϕ

mP

pδϕ.

6.2. Quadratic order currents

In the minisuperspace sector of the nonminimal modelQ = (N(t), a(t), ϕ(t)) the
functional derivatives of the classical action read

(6.25)
1

a3√γ
δS

δN
= 6U(ϕ)

(
1

a2 + ȧ2

a2

)
+ 6Uϕ(ϕ)ϕ̇

ȧ

a
− ϕ̇2

2
− V (ϕ),

(6.26)
1

Na3√γ
δS

δϕ
= −ϕ̈ − 3

ȧ

a
ϕ̇ + 6Uϕ(ϕ)

(
1

a2
+ ä

a
+ ȧ2

a2

)
− Vϕ(ϕ),

where dots are used to denote the parametrization invariant derivativeȧ ≡ da/Ndt, ϕ̇ ≡
dϕ/Ndt . Now we use the perturbed ansatz (6.14) for total minisuperspace variables in
these equations,N2 → N2

tot = a2(1 + 2A), a2 → a2
tot = a2(1 − 2ψ), ϕ → ϕtot = ϕ + δϕ,

and carefully expand the first order variations of the classical action up to the second order
in perturbations(A,ψ, δϕ) on theclassicalbackground. The result reads as follows

1

a
√
γ

[
δS

δN

]
2
=A2(24UH2 + 24UϕHϕ′ − 2ϕ′2)

+Aψ
(
36UH2 + 36UϕHϕ′ − 3ϕ′2) +Aψ ′(24UH+ 12Uϕϕ′)

+Aδϕ
(−12UϕH2 − 12UϕϕHϕ′) +Aδϕ′(−12UϕH+ 2ϕ′)

− 12Uψ2 +ψψ ′(12UH+ 6Uϕϕ′)+ 6Uψ ′2

+ψδϕ
[−6Uϕ

(
1+ 3H2) − 18Uϕϕϕ

′ + 3a2Vϕ
]

+ψ ′δϕ(−12UϕH− 6Uϕϕϕ′)+ψδϕ′(−18UϕH+ 3ϕ′)

− 6Uϕψ ′δϕ′ + δϕ2
[
3Uϕϕ

(
1+H2) − 1

2
a2Vϕϕ + 3UϕϕϕHϕ′

]
(6.27)+ 6UϕϕHδϕδϕ′ − 1

2
δϕ′2,

1

a2√γ
[
δS

δϕ

]
2
=A2(2a2Vϕ − 12Uϕ

) +AA′(18UϕH− 3ϕ′)

+Aψ(6a2Vϕ − 24Uϕ)+ (Aψ)′(18UϕH− 3ϕ′)+ 6Uϕ(Aψ
′)′

+Aδϕ
[
6Uϕϕ

(
1−H2 −H′) − a2Vϕϕ

] + 2HAδϕ′
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− 6UϕϕHA′δϕ+ (Aδϕ′)′

− 12Uϕψ2 +ψψ ′(18UϕH− 3ϕ′)+ 6Uϕψψ ′′

+ψδϕ
[−6Uϕϕ

(
1+ 3H2 + 3H′) + 3a2Vϕϕ

] − 18UϕϕHψ ′δϕ
+ 6Hψδϕ′ + 3(ψδϕ′)′ − 6Uϕϕψ ′′δϕ

(6.28)+ δϕ2
[
3Uϕϕϕ

(
1+H2 +H′) − 1

2
a2Vϕϕϕ

]
.

Here the unlabelled variables correspond to the minisuperspace background in the
conformal time gauge,N = a, t = η, primes denote derivatives with respect toη andH =
a′/a denotes the conformal time background Hubble constant. The background satisfies
classical equations of motion which were used to simplify the coefficients of the above
quadratic forms in�Q= (A,ψ, δϕ).

6.3. Quantum rolling force: effective action and minisuperspace contributions

In the presence of the spatial densities of one-loop radiation currents

(6.29)jN ≡ 1

a3√γ
〈[
δS

δN

]
2

〉
,

(6.30)jϕ ≡ 1

Na3√γ
〈[
δS

δϕ

]
2

〉
,

N andϕ components of the effective equations of motion in the nonminimal model read

(6.31)6U

(
1

a2
+ ȧ2

a2

)
+ 6Uϕϕ̇

ȧ

a
− ϕ̇2

2
− V + jN = 0,

(6.32)−ϕ̈ − 3
ȧ

a
ϕ̇ + 6Uϕ

(
1

a2 + ä

a
+ ȧ2

a2

)
− Vϕ + jϕ = 0.

In view of Eqs. (3.10) and (3.20) theira-component expresses in terms of the above
two ones, so that Eqs. (6.31), (6.32) in a consistent manner exhaust the quantum dynamics
of the mean fields. Differentiating the first of them with respect to time one obtains the
system of two equations for̈a and ϕ̈. Substituting the solution of this system forä into
the second equation one finally has the equation for the mean inflaton field with quantum
contributions to the friction term and the rolling force

(6.33)ϕ̈ +
(

3
ȧ

a
− a

2ȧ
Uϕjϕ

)
ϕ̇ − F(ϕ,a, ϕ̇)= 0,

(6.34)F(ϕ,a, ϕ̇)= 2VUϕ −UVϕ

U + 3U2
ϕ

− 1

2
ϕ̇2 d

dϕ
ln

(
U + 3U2

ϕ

) + Floop(ϕ, a, ϕ̇, ȧ),

(6.35)Floop(ϕ, a, ϕ̇, ȧ)= 1

U + 3U2
ϕ

(
Ujϕ − 2UϕjN − a

2ȧ

djN

dt

)
.

The first two terms in Eq. (6.34) represent the classical rolling force, theϕ̇2 contribution
belonging to the subleading order of the slow roll expansion. As regards the quantum
part, its radiation currents in the one-loop approximation split into the contributions of
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the quantum mechanical sector and the field sector of spatially inhomogeneous modes,
j1-loop = jq + jf (cf. Eq. (3.34)). According to the discussion of Section 3.1, see
Eqs. (3.45)–(3.48), thef -part of the current can be absorbed by the replacement of
the original classical action with the effective one (3.48). This implies the replacement
of the classical coefficient functionsV (ϕ),U(ϕ),G(ϕ), (6.2)–(6.4), by their effective
counterparts

(6.36)Seff[gµν,ϕ] =
∫
d4x g1/2

{
−V eff(ϕ)+Ueff(ϕ)R− 1

2
Geff(ϕ)(∇ϕ)2 + · · ·

}
,

and truncation of the (generally infinite) series to the first three terms. This truncation is
based on two assumptions — the smallness of inflaton derivatives due to the slow roll
regime and smallness ofR/m2

part — the curvature to particle mass squared ratio.12 Thus,
with this approximation, the effective equations of motion in our nonminimal model take
the form of (6.31) and (6.33) withVeff(ϕ),Ueff(ϕ),Geff(ϕ) replacingV (ϕ),U(ϕ),G(ϕ)
and the radiation currentsjN, jϕ saturated by the contribution of the quantum mechanical
mode,jqN , j

q
ϕ . The resulting rolling force in the leading order of the slow roll expansion

becomes the sum of the force induced by the effective action,F eff, and the quantum
mechanical force,Fq ,

(6.37)F = F eff + Fq,

(6.38)F eff = 2V effUeff
ϕ −UeffV eff

ϕ

GeffUeff + 3(Ueff
ϕ )2

,

(6.39)Fq = 1

U + 3U2
ϕ

(
Ujqϕ − 2Uϕ j

q

N − a

2ȧ

d j
q

N

dt

)
.

The one-loop calculation ofVeff(ϕ),Ueff(ϕ) andGeff(ϕ) and the effect ofF eff on the
inflationary dynamics have been studied in [1]. This effect is qualitatively different for
the no-boundary and tunneling cases and briefly looks as follows. For the no-boundary
state the one-loop corrections in the distribution function add up to form thefull Euclidean
effective action

(6.40)ρNB(ϕ)= constexp
[−Γ (ϕ)

]
,

(6.41)Γ (ϕ)= I (ϕ)+ Γ 1-loop(ϕ)= −96π2[Ueff(ϕ)]2
Veff(ϕ)

+ O
(
h̄2).

Its value on the de Sitter instanton follows from that of the classical Euclidean action,
I (ϕ) = −96π2U2/V , by replacing the classical coefficient functionsV (ϕ),U(ϕ) and
G(ϕ) by the effective ones, coinciding with those of the Lorentzian effective action (6.36).
Therefore, by the direct inspection of (6.38) one observes that the effective rolling force in

12 The Schwinger–DeWitt expansion involves the inverse powers of masses of particles of constituent quantum
fields. The latter acquire their masses via the Higgs effect due to the interaction with the inflaton, so that this ratio
becomes order of magnitudeλ/|ξ | � 1 [1].
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theno-boundarycase is proportional to the derivative of the distribution function13

F eff
NB = 1

96π2Ueff

(V eff)2

GeffUeff + 3(Ueff
ϕ )2

d

dϕ
lnρNB(ϕ)

(6.42)= −λm2
P (1+ δ)

48πξ2 ϕ

(
1− ϕ2

ϕ2
I

)
+ O

(
1/|ξ |3),

and, thus, vanishes at the probability peakϕI . The no-boundary peak is realized for
1+ δ < 0, therefore the pointϕI turns out to be an attractor — quantum terms in effective
rolling force lock the inflaton at its constant initial value and give rise to infinitely long
inflationary scenario with exactly de Sitter spacetime.

In the tunneling case, the distribution function is not related to the overall effective
action, because its tree-level part has a wrong sign. The probability peak exists in the
opposite range of the parameter (2.9),δ >−1, and the rolling force

(6.43)F eff
T = −λm2

P (1+ δ)

48πξ2
ϕ

(
1+ ϕ2

ϕ2
I

)
+ O

(
1/|ξ |3)

has the quantum term which initially doubles the negative classical part. Therefore, the
inflaton starts slowly decreasing under the influence of this force, and the tunneling
state generates a finite inflation stage with the estimated e-folding number (2.19). These
conclusions disregard the contribution of the quantum mechanical radiation currents, and
we proceed to their calculation.

6.4. Quantum state of the minisuperspace perturbations and their correlators

The calculation of quantum averages in the quadratic currents (6.27) and (6.28)
requires the set of quantum correlators (3.49) of bilinear combinations of minisuperspace
disturbances�Q̂ = (A,ψ, δϕ) and their derivatives. For this purpose we, first, need the
reduced density matrix of the inflaton fieldρ(ϕ,ϕ′) in the nonminimal model and, second,
the expressions for the Heisenberg operators�Q̂(η) in terms of the Schrödinger operators
of initial perturbations and their momenta,δϕ̂ = δϕ, p̂δϕ = ∂/i∂(δϕ).

As we know, the diagonal element of the density matrix has a quasi-gaussian behaviour
(2.12), which is, however, insufficient for averaging the operators involving momenta.
The necessary off-diagonal elements with one-loop contributions of various massive and
massless fields have been calculated in [41,42]. It was shown that in the model with a
big |ξ | the initial density matrix describes practically pure quantum state and expresses in
terms of the distribution function

(6.44)ρ(ϕ,ϕ′)
∣∣
t=0 	 √

ρ(ϕ)
√
ρ(ϕ′), |ξ | � 1.

The explanation of this property [41] is based on the fact that the decoherence factor
D(ϕ,ϕ′) by which the initial density matrix differs from (6.44) is a function of the

13 The explanation of this observation is simple. In the minimal frame the rolling force is given by the gradient
of the potential, while the logarithm of the distribution function is inverse proportional to it, the combination
V eff(ϕ)/[Ueff(ϕ)]2 representing the minimal frame potential in terms of the nonminimal objects (6.8).
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argumentsm/H(ϕ) andm/H(ϕ′) for a quantum field of a massm. For large|ξ | the masses
of particles generated by the Higgs effect give rise to big and predominantlyϕ-independent
ratiom/H(ϕ)∼ √|ξ |, so thatD(ϕ,ϕ′) ∼ 1. For massless fields a similar conclusion can
be drawn because for them the role of mass is played by the Hubble constantH(ϕ) of the
quasi-de Sitter background.

In view of (2.12), the effectively pure quantum state,

(6.45)Ψ NB,T(ϕ)	 √
ρNB,T(ϕ),

in the vicinity of the probability maximum, which is located atϕI , can, thus, be
approximated by the gaussian packet of small quantum width∆

(6.46)Ψ NB,T(δϕ)≡ Ψ NB,T(ϕI + δϕ)= 1

(2π)1/4
√
∆

exp

[
− δϕ2

4∆2

]
.

The operators of quantum disturbances in theδϕ-representation, acting on the wavefunc-
tion of the above type can be found by collecting together several sets of equations derived
above. First, we use Eqs. (6.16)–(6.18), relating�Q to the Einstein frame perturbations
��Q. Then, we apply the barred version of Eqs. (5.23)–(5.25) to express the minisuper-
space perturbations��Q in the Newton gauge as functions of the invariantsq andq ′ in the
minimal frame. Finally, we use the set of Eqs. (5.34), (5.36) and (5.40), (5.41) with barred
(minimal frame) potential and physical variables to express these invariants in terms ofδϕ̄

andp̄δϕ . The final result looks as follows

(6.47)A= − 1

3aϕ′

√
κ

|ξ |
[(

Q′+ − 3ϕ′

ϕ
Q+

)
ĉ+ +

(
Q′− − 3ϕ′

ϕ
Q−

)
ĉ−

]
,

(6.48)ψ = 1

3aϕ′

√
κ

|ξ |
[(

Q′+ + 3ϕ′

ϕ
Q+

)
ĉ+ +

(
Q′− + 3ϕ′

ϕ
Q−

)
ĉ−

]
,

(6.49)δϕ = 1√
6|ξ |aϕ′

(
Q′+ĉ+ + Q′−ĉ−

)
,

where the operatorŝc± with the aid of (6.24) read as

(6.50)ĉ+ = − 1+ δ

576π3

√
2π

3

m3
P

|ξ |2ϕI
∂

i∂(δϕ)
,

(6.51)ĉ− = 1+ δ

2λπ

m3
P

ϕ3
I

√
3

2π
δϕ.

Now we are ready to find the quantum correlators necessary for the radiation
currents. We choose a symmetrized combination of disturbances and their conformal time
derivatives,�Q1,2 = (�Q̂,�Q̂′,�Q̂′′), in the definition of the correlator

(6.52)〈�Q1�Q2〉 ≡ 1

2

∫
d(δϕ)Ψ ∗(δϕ)(�Q̂1�Q̂2 +�Q̂2�Q̂1)Ψ (δϕ),

because in the Hermitian operators of quadratic currents (3.9) the products of operator
valued disturbances automatically enter in symmetrized form (in view of the symmetry of
the 3-vertex function). The further calculation of the correlators and radiation currents is
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straightforward. However, the general answer that involves the basis functionsQ±(η) for
arbitraryη is still very complicated. Therefore, we separately consider the beginning of the
inflation epoch,η= 0, and the late stationary stage of inflation.

7. The onset of inflation

At the onset of inflation the basis functionsQ±(η) have a behaviour (5.38), (5.39).
Using it in Eqs. (6.47)–(6.49) with the operatorsĉ± defined by (6.50), (6.51) one easily
obtains the initial equal-time correlators with respect to the gaussian state (6.46).

In the leading order of the slow roll expansion those correlators that do not involve
derivatives (potential type correlators) read〈

A2〉
0 = −〈Aψ〉0 = 〈

ψ2〉
0 = λ

288π2|ξ |2
1

f
,

〈ψδϕ〉0 = −〈Aδϕ〉0 = λϕI

288π2|ξ |2
1

f
,

(7.1)
〈
δϕ2〉

0 = λϕ2
I

288π2|ξ |2
1

f
,

while the correlators of conformal time “velocities” (the kinetic type correlators) equal〈
A′2〉

0 = −〈A′ψ ′〉0 = 〈
ψ ′2〉

0 = λ

288π2|ξ |2f,

〈ψ ′δϕ′〉0 = −〈A′δϕ′〉0 = λϕI

288π2|ξ |2f,

(7.2)
〈
δϕ′2〉

0 = λϕ2
I

288π2|ξ |2f.

As we see, these two groups of correlators differ by the power of a special parameterf

which is inverse proportional to the square of quantum dispersion of the inflaton field

(7.3)f ≡ λ

48π2|ξ |2
1

κ∆2 =
(

A

16π2

)2 |ξ |
|1+ δ| .

Such a dependence onf reflects an obvious fact that the kinetic type correlators (or
correlators of momenta) in the gaussian state of the form (6.46) are inverse proportional
to ∆2, and thus grow with∆ → 0, while the potential type correlators (correlators of
coordinates) are proportional to∆2, and thus decrease with the narrowing of the gaussian
peak.

The calculation of mixed correlators with one or two derivatives of the form

(7.4)〈�Q�Q′〉0 = 〈�Q�Q〉0O
(
ε2), 〈�Q�Q′′〉0 = 〈�Q�Q〉0O(ε)

shows that they belong to the subleading order in the slow roll parameter (6.11). Finally,
the additional correlators with three derivatives, which arise in the calculation ofdj

q
N/dt
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in the quantum rolling force (6.39), express as

〈ψ ′′δϕ′〉0 = 〈ψ ′δϕ′′〉0 = −2H〈ψ ′δϕ′〉0,

〈δϕ′δϕ′′〉0 = −2H
〈
δϕ′2〉

0,

(7.5)〈ψ ′ψ ′′〉0 = −2H
〈
ψ ′2〉

0, η→ 0.

Although they tend to zero in view ofH(η) → 0 at η → 0, their contribution to the
quantum rolling force is nontrivial because in (6.35) they are divided byȧ/a =H/a.

Let us now go over to the calculation of radiation currents atη = 0. Within the slow
roll approximation,m2

P /|ξ |ϕ2 � 1, |ξ | � 1, and in view of a particular form of classical
coefficient functionsV (ϕ),U(ϕ), the quadratic currents (6.27), (6.28) are dominated by
the following expressions involving both the potential and kinetic terms

(7.6)j
q
N(0)=

λϕ4

4

[
−2

〈
ψ2〉 + 10

ϕ
〈ψδϕ〉 − 15

ϕ2

〈
δϕ2〉 + 〈

ψ ′2〉 − 2

ϕ
〈ψ ′δϕ′〉

]
,

(7.7)jqϕ (0)= λϕ3
[
4〈Aψ〉 + 7

ϕ
〈ψδϕ〉 + 1

2
〈A′ψ ′〉

]
.

On using the tables of correlators above, the radiation currents, contributing to the quantum
rolling force, take the following final form

(7.8)jN(0)= λϕ4
I

4

λ

96π2|ξ |2
(

1

f
− 1

3
f

)
,

(7.9)jϕ(0)= λϕ3
I

λ

96π2|ξ |2
(

1

f
− 1

6
f

)
,

(7.10)
a

2ȧ

d jN

dt
(0)= 0.

These quantities are strongly suppressed as compared to their classical values,−jN =
V (ϕI )	 λϕ4

I /4, −jϕ = Vϕ(ϕI )	 λϕ3
I by a very small factorλ/|ξ |2 ∼�T 2/T 2 ∼ 10−10

related to the CMBR anisotropy. Their sign crucially depends on the magnitude of the
parameterf , (7.3), which in our model is likely to be very big,f � 1. This follows from
the estimateN � 60 on the e-folding number (2.19) and the value of|ξ | ∼ 104 [27]. In this
case, the terms proportional tof ∼ 1/∆2, generated by the kinetic terms of the radiation
currents,〈�Q′�Q′〉, dominate and, in particular, result in

(7.11)εq(0)= −jN(0)	 λ2|1+ δ|
18|ξ |3

m4
P

(16π2)2
�m4

P .

Interestingly, the sign of the quantum rolling force due to the homogeneous mode is
independent of the magnitude off , because in the leading order of the slow-roll expansion
the contributions of potential terms,〈�Q�Q〉 ∼ 1/f , completely cancel out

(7.12)Fq(0)= Uj
q
ϕ (0)− 2Uϕj

q
N(0)

U + 3U2
ϕ

	 λϕ3
I

36

λ

96π2|ξ |3f > 0.
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In view of the expressions forf andϕI , (2.10), the magnitude of this force is again much
smaller than its classical counterpart

Fq(0) = λm2
P

48π |ξ |3ϕI
λ

144π2

A

16π2
	 ∣∣F class(0)

∣∣ λ

144π2|ξ |
A

16π2|1+ δ|
(7.13)� ∣∣F class(0)

∣∣.
Therefore, for the tunneling state it gives a negligible contribution to the effective force
(6.43). For the no-boundary state, the initial effective force (6.42) vanishes, but the only
effect that the positiveFq(0) can produce in this case is that it shifts the equilibrium point
from ϕI to slightly higher value of the inflatonϕ∗, Fq(0)+ F eff

NB(ϕ∗)= 0, at which again
the system will undergo endless inflation.

8. Late stage of inflation

At late stationary stage of inflation the dynamics of the classical background can be
approximated by the ansatz

(8.1)a = 1

H(ϕ)
cosh

[
H(ϕ)t

]
, ϕ 	 ϕI ,

(8.2)H 2(ϕ)= V (ϕ)

6U(ϕ)
	 λϕ2

12|ξ |
with the Hubble constantH(ϕ) approximately linear inϕ. In the Einstein frame, it looks
similar with the Hubble constant which is practically independent of the inflaton�H 2(ϕ̄)=
8π�V (ϕ̄)/3m2

P 	 λm2
P /96π |ξ |2, the cosmic time parameters being related in both frames

by t̄ 	 t
√

8π |ξ |ϕ/mP .
The transition period between the onset of inflation and its steady stage can be described

by solving the inflaton equation with the approximately constant rolling forceF and the
friction term based on the ansatz (8.1) forȧ/a

ϕ̈ + 3H tanh(H t)ϕ̇ − F = 0,

(8.3)ϕ(0)= ϕI , ϕ̇(0)= 0.

For late times,Ht � 1 (but not so late that the inflaton field evolves too far from its initial
value), the exact solution to this equation

(8.4)ϕ(t)= ϕI + F

3H 2 ln(coshHt)+ F

3H 2 tanh2(H t)

reads as an almost linear function oft

(8.5)ϕ(t)= ϕI + F

3H
t + F

3H 2(1− ln2)+ O
(
e−2Ht).

This behaviour corresponds to neglecting theϕ̈ term in the inflaton equation of motion
and solving it forϕ̇, ϕ̇ 	 F/3H . In our model with the classical rolling force (2.18),ϕ̇ 	
−4ϕHε/3 �Hϕ with ε ∼m2

P /|ξ |ϕ2 — the slow roll smallness parameter (6.11). Thus,
in the lowest order of the slow roll approximation the inflaton field remains constant.
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Let us study the behaviour of the basis functionsQ±(η) forHt � 1. To begin with, note
that for late times corresponding to exponentially large scale factor the potential terms in
the wave equation forQ±(η), (5.37), can be discarded. The first one,κϕ̄′2/2 = O(ε2), is
small in view of the slow roll regime and the second one, the spatial curvature term 3, is
small compared to the kinetic terms growing witha, d2/dη2 ∼ a2d2/dt2. Therefore, at
late times this equation simplifies to

(8.6)

(
− d2

dη2 + 2
ϕ̄′′

ϕ̄′
d

dη

)
Q±(η)= 0,

and has two explicit solutionsQ±

(8.7)Q−(η)= 1,

(8.8)Q+(η)=N+

η∫
0

dη̃ ϕ̄′2(η̃), N+ 	
(

8π |ξ |ϕ2
I

m2
P

)2
π

m2
P (1+ δ)2

,

compatible with the expansions (5.38), (5.39) at early timesη → 0. (The mismatch
between the constant function (8.7) and Eq. (5.39) has a simple explanation: the term
−3η2/2 in Q− of Eq. (5.39) is induced by the curvature term which we discard at late
times, while theO(η3) corrections are due to the perturbationκϕ̄′2/2.) In terms of the
cosmic time in the original frame,Q+ represents a well known growing mode [43] which
for late times in the slow roll approximation reads as

(8.9)Q+ = 1

3
sinhHt.

Thus at late times the operator of the invariant cosmological perturbation is dominated by
the growing mode

(8.10)Q̂(t)= ĉ+Q+(t)+ ĉ−Q−(t)	 ĉ+Q+(t), H t � 1,

and in the Newton gauge all the minisuperspace perturbations express in terms of one
operatorĉ+ defined by the momentum̂pδϕ , (6.50),

Ā= ψ̄ = κQ

2ā(t)
	

√
πλ

54

ĉ+
mP |ξ | ,

(8.11)δϕ̄ = Q̇

ā(t) ˙̄ϕ(t) 	 −
√

2λ

3

πϕ2

m2
P (1+ δ)

ĉ+.

Sinceδϕ̄ contains˙̄ϕ in the denominator, all the other perturbations in the minimal frame
are much smaller in magnitude,(Ā, ψ̄) ∼ O(ε)δϕ̄/mP � δϕ̄/mP . Therefore, in view of
Eqs. (6.16)–(6.18) the perturbations in the nonminimal frame read

(8.12)A	 −ψ 	
√

4π

3

δϕ̄

mP

, δϕ 	
√

4π

3

ϕ

mP

δϕ̄, H t � 1.

Another important property of the perturbations in both frames is that to the leading
order in slow roll they are constant in time forHt � 1. This follows from Eqs. (8.11)
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containing the exponentially growing functions of time in both of its numerator and
denominator (respectivelyQ and ā). As a result, the time derivatives of perturbations
belong to the subleading order of the slow roll expansion,�Q̇≡ (Ȧ, ψ̇, δϕ̇)= O(ε)�Q.

Thus, we arrive at the following list of correlators at late times. The potential type
correlators read〈

A2〉 = 〈
ψ2〉 = −〈Aψ〉 = λ

2592π2|ξ |2f,

〈ψδϕ〉 = −〈Aδϕ〉 = λϕ

2592π2|ξ |2f,

(8.13)
〈
δϕ2〉 = λϕ2

2592π2|ξ |2f,
where the parameterf is given by Eq. (7.3), while the kinetic type correlators are
negligibly small

〈�Q�Q′〉 = O(ε)aH 〈�Q�Q〉,
〈�Q′�Q′〉 = O

(
ε2)(aH)2〈�Q�Q〉,

〈�Q�Q′′〉 = O(ε)(aH)2〈�Q�Q〉,
(8.14)〈�Q′�Q′′〉 = O

(
ε2)(aH)3〈�Q�Q〉.

In view of these relations, the terms that give the leading contribution to radiation
currents are exhausted by a small fraction of terms in Eqs. (6.27), (6.28). They include
only the potential type correlators and read

(8.15)j
q
N = λϕ4

4

[
4
〈
A2〉 + 6〈Aψ〉 − 4

ϕ
〈Aδϕ〉 + 6

ϕ
〈ψδϕ〉 − 5

ϕ2

〈
δϕ2〉],

(8.16)jqϕ = λϕ3
[
2
〈
A2〉 + 6〈Aψ〉 − 8

ϕ
〈Aδϕ〉 + 6

ϕ
〈ψδϕ〉 − 3

ϕ2

〈
δϕ2〉].

The resulting radiation currents, thus, equal

(8.17)j
q
N = λϕ4

4

λ

864π2|ξ |2f,

(8.18)jqϕ = λϕ3

2

λ

864π2|ξ |2f, H t � 1.

Similarly to the onset of inflation, Eqs. (7.8), (7.9), they are strongly suppressed relative to
the classical values,−V (ϕ)	 −λϕ4/4 and−Vϕ(ϕ)	 −λϕ3 by the factorλ/|ξ |2 ∼ 10−10.
In absolute units, the energy density of the quantum mechanical mode is given by

(8.19)εq = −jqN 	 −λ2|1+ δ|
54|ξ |3

m4
P

(16π2)2
, |εq | �m4

P .

Note that, in contrast to the onset of inflation, this energy is negative. Apparently, this
is a manifestation of the ghost nature of the invariant physical modeq , whose kinetic
term enters the action (5.18) with the wrong sign. In the slow roll approximation with
negligibleϕ̇ a constant energy density (8.19) in view of Eq. (3.30) — the conservation law
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for radiation current — generates the effective equation of state of the inflaton excitation
mode

(8.20)εq + pq = 0, εq < 0, H t � 1,

which in the absence of other sources would maintain the anti-de Sitter spacetime. Similar
equation of state at the onset of inflation corresponds to the de Sitter case, so that the
inflaton quantum excitation undergoes a sort of phase transition reversing the sign of its
energy density.

In view of the relation between the radiation currents,j
q
N = ϕjϕ/4 + O(ε), and

approximately constant value ofjqN , djqN/dt = O(ε), the quantum rolling force in
Eq. (6.35),

(8.21)Fq 	 1

6|ξ |ϕ
(
ϕjqϕ − 4jqN − 1

2H

d j
q

N

dt

)
= O(ε),

vanishes in the leading order of the slow roll expansion. Thus, similarly to the onset of
inflation, at late times of inflation epochFq does not qualitatively change the cosmological
evolution.

9. Conclusions

We have developed a general framework for effective equations of inflationary dynamics
in quantum cosmology and for their quantum Cauchy problem with no-boundary and
tunneling quantum states. This framework combines the Euclidean effective action method
and the method of direct quantum averaging for calculations of two distinctly different
parts of radiation currents — contributions of the field theoretical and quantum mechanical
(minisuperspace) sectors of the system. We focus on the latter and show that its calculation
is based on explicit physical reduction for the spatially homogeneous cosmological
perturbation. Because of the ghost nature of this perturbation, its effect is not related
to the conventional analytic continuation from the Euclidean spacetime. Rather, in the
model of strongly coupled nonminimal inflaton it originates from the quasi-gaussian
state which incorporates the tree-level and one-loop effects on the de Sitter instanton. It
is, thus, irrelevant to the de Sitter invariant Euclidean vacuum and cannot be obtained
by analytic continuation from the Euclidean section of spacetime. This means that the
universality of analytic continuation methods of [44] should not be overestimated — they
apply to spatially inhomogeneous, particle like excitation but may fail for minisuperspace
cosmological modes.

Unfortunately, the dynamical contribution of the quantum mechanical mode to effective
equations turned out to be disappointingly small — it is strongly dominated by the effective
rolling force (contributed on equal footing by the classical term and the one-loop term
due to the inhomogeneous modes). The property of its strong suppression by powers of
1/|ξ | � 1 was actually conjectured in [1], and now it is quantitatively confirmed. Thus,
the inflaton mode cannot change the dynamical predictions in spatially closed model
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with strong nonminimal coupling. As a model of the low-energy quantum origin of
the Universe only the tunneling state remains observationally justified, because the no-
boundary wavefunction generates infinitely long inflationary stage. The role of this mode
should not, however, be underestimated, because its effect is model dependent, and might
be important in other models generating initial conditions for inflation [45]. Moreover,
the quantum inflaton mode simulates the de Sitter and anti-de Sitter effective equations
of state,ε + p = 0, respectively at the onset of inflation and at late times. The sign of
its energy density contribution can change depending on the balance of the potential and
kinetic terms of this ghost mode. Therefore, it is not quite clear at the moment, what can
the role of this mode be at post inflationary epoch. A natural question arises if this mode
can be responsible for the present day observable acceleration of the Universe [46] as an
alternative to quintessence [47] or be capable of inducing de Sitter–anti-de Sitter phase
transitions in cosmology? This question is subject to further studies [45].
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