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ON THE NUMBER OF ZEROS OF LINEAR COMBINATIONS OF

INDEPENDENT CHARACTERISTIC POLYNOMIALS OF RANDOM

UNITARY MATRICES

YACINE BARHOUMI, CHRISTOPHER HUGHES, JOSEPH NAJNUDEL,
AND ASHKAN NIKEGHBALI

Abstract. We show that almost all the zeros of any finite linear combination of inde-
pendent characteristic polynomials of random unitary matrices lie on the unit circle. This
result is the random matrix analogue of an earlier result by Bombieri and Hejhal on the
distribution of zeros of linear combinations of L-functions, thus providing further evidence
for the conjectured links between the value distribution of the characteristic polynomial
of random unitary matrices and the value distribution of L-functions on the critical line.

1. Introduction

Over the past two decades, there have been many new results at the interface of random
matrix theory and analytic number theory that can be considered as evidence for the zeros
of the Riemann zeta function being statistically distributed as eigenvalues of large random
matrices (GUE matrices or Haar distributed unitary matrices); the interested reader can
refer to [17], [12] and [19] for a detailed account with many references, and to [11] for
the function field framework. Since the seminal papers by Keating and Snaith [13, 14],
it is believed that the characteristic polynomial of random unitary matrices on the unit
circle models very accurately the value distribution of the Riemann zeta function (or more
generally L-functions) on the critical line. This analogy was used by Keating and Snaith
to produce the moments conjecture and since then the characteristic polynomial has been
the topic of many research papers, and the moments of the characteristic polynomial
have now been derived with many different methods, e.g. representation theoretic methods
(see [5, 18]), super-symmetry method (see [17]), analytic methods (Toeplitz determinant
methods as explained in the lecture by E. Basor in [17], orthogonal polynomials on the
unit circle method [15]) or probabilistic methods ([3]), each method bringing a new insight
to the problem. Many more fine properties of the characteristic polynomial have been
established (e.g. large deviations principle in [8], local limit theorems [16], the analogue
of the moments conjecture for finite field zeta functions [10], etc.). Moreover, thanks to
this analogy, one has been able to perform calculations in the random matrix world (whose
analogue in the number theory world seems currently out of reach) to produce conjectures
for the analogue arithmetic objects (see [21] for a recent account).

There are nonetheless certain results that can be proved in both sides, such as Selberg’s
central limit theorem for the Riemann zeta function and the Keating-Snaith central limit
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theorem for the characteristic polynomial of random unitary matrices (see [13]). In fact
Selberg’s central limit theorem can be proved more generally for a wide class of L-functions
(see [20] and [2]). Roughly speaking, an L-function must be defined by a Dirichlet series
for Re(s) > 1, have an Euler product (with some growth condition on the coefficients of
this product), an analytic continuation (except for finitely many poles all located on the
line Re(s) = 1), and must satisfy a functional equation. Such L-functions are expected to
satisfy the general Riemann hypothesis (GRH), which says that all the non-trivial zeros
are located on the critical line, the line Re(s) = 1/2.

Now if one considers a finite number of such L-functions, satisfying the same functional
equation, then one can wonder if the zeros of a linear combination of these L-functions are
still on the critical line. The answer is in general that GRH does not hold anymore for such
a linear combination even though it still has a functional equation (this can be thought
of coming from the fact that such a linear combination does not have an Euler product
anymore). But Bombieri and Hejhal proved in [2] that nonetheless 100% of the zeros of
such linear combinations are still on the critical line (under an extra assumption of “near
orthogonality” which ensures that the log of the L-functions are statistically asymptotically
independent). In this paper we will show that a similar result holds for linear combinations
of independent characteristic polynomials of random unitary matrices. The result on the
random matrix side is technical and difficult and besides being an extra piece of evidence
that the characteristic polynomial is a good model for the value distribution of L-functions,
the result is also remarkable when viewed in the general setting of random polynomials as
we shall explain it. The main goal of this article is to show that on average, any linear
combination of characteristic polynomials of independent random unitary matrices has a
proportion of zeros on the unit circle which tends to 1 when the dimension goes to infinity.

More precisely, if U is a unitary matrix of order N > 1, let ΦU be the characteristic
polynomial of U , in the following sense: for z ∈ C,

ΦU (z) = det (IN − zU) .

From the fact that U is unitary, we get the functional equation:

ΦU(z) = (−z)N det(U)ΦU (1/z).

For z on the unit circle, this equation implies that

ΦU (z) = R(z)
√

(−z)N det(U),

where R(z) is real-valued (with any convention taken for the square root). The fact that
ΦU has many zeros (in fact, all of them) on the unit circle can be related to the fact that the
condition needed for ΦU to vanish is in only unidimensional (i.e. R(z) = 0 for a real-valued
function R). Now, let (Uj)16j6n be unitary matrices of order N , and let (bj)16j6n be real
numbers: we wish to study the number of zeros on the unit circle of the linear combination

FN =
n∑

j=1

bjΦUj
.
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If we want that F has most of its zeros on the unit circle, it is reasonable to expect that we
need a “unidimensional condition” for the equation F (z) = 0 if |z| = 1, i.e. a functional
equation similar to the equation satisfied by U . This equation obviously exists if all the
characteristic polynomials ΦUj

satisfy the same functional equation, i.e. the matrices Uj

have the same determinant. By symmetry of the unitary group, it is natural to assume
that the unitary matrices have determinant 1. More precisely, the main result of the article
is the following:

Theorem 1.1. Let (bj)16j6n be a family of (deterministic) real numbers, different from
zero. For N > 1, let

FN :=

n∑

j=1

bjΦUN,j
,

where (UN,j)16j6n is a family of independent matrices following the Haar measure on the
special unitary group SU(N). Then, the expected proportion of zeros of FN on the unit
circle tends to 1 when N goes to infinity, i.e.

E (|{z ∈ U, FN(z) = 0}|) = N − o(N),

where |{z ∈ U, FN(z) = 0}| is the number of z on the unit circle which satisfy FN (z) = 0.

The whole paper is devoted to the proof of this result. Before explaining the strategy of
the proof, we make a few remarks.

Remark 1.2. Theorem 1.1 can be stated as

lim
n→∞

E

(
1

N
|{z ∈ U, FN(z) = 0}|

)
= 1.

Since the random variable
1

N
|{z ∈ U, FN(z) = 0}| is bounded by 1, in fact the convergence

holds in all Lp spaces for p > 1. It also holds in probability since convergence in L1 implies
convergence in probability.

Remark 1.3. The fact that we impose our matrices to have the same determinant is similar
to the condition in [2] of the L-functions to have the same functional equation. Moreover,
in our framework, the analogue of the Riemann hypothesis is automatically satisfied since
all the zeros of each characteristic polynomial are on the unit circle.

Remark 1.4. The fact that the proportion of zeros on the unit circle tends to 1 is a re-
markable fact as a result about random polynomials. Indeed it is well known that the
characteristic polynomial of a unitary matrix is self-inversive (that is aN−k = exp(iθ)āk
for some θ ∈ R, if (ak)06k6N are the coefficients of the polynomial). As explained in [1],
self-inversive random polynomials are of interest in the context of semiclassical approxi-
mations in quantum mechanics and determining the proportion of zeros on the unit circle
is there an important problem. Bogomolny, Bohigas and Leboeuf showed that if the first
half of the coefficients (the second half being then fixed by the self-inverse symmetry) are
chosen as independent complex Gaussian random variables, then asymptotically a fraction
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of 1√
3
of the zeros are exactly on the unit circle. Hence we can say that our result is

not typical of what is expected for classical random polynomials built from independent
Gaussian random variables. In our framework, we do not even know the distribution of
the coefficients and we also know that they are in fact not independent. Consequently the
classical methods which use the independence of the coefficients (or the fact that they are
Gaussian if one wants to add some dependence) would not work here. Using general results
on random polynomials whose coefficients are not independent and which do not have the
same distribution as stated in [9], one can deduce that the zeros cluster uniformly around
the unit circle. But showing that they are almost all precisely on the unit circle is a much
more refined statement.

We now say a few words about our strategy of proof of Theorem 1.1. In fact we use
the same general method as in [2], called the ”carrier waves” method, but the ingredients
of our proof are different, in the sense that they are probabilistic: for instance we use the
coupling method, concentration inequalities and the recent probabilistic representations of
the characteristic polynomial obtained in [3]. More precisely, for U ∈ U(N) and t ∈ R, we
denote by ZU(t) the characteristic polynomial of U taken at e−it, i.e. ZU(t) = ΦU(e

−it).
Then we make a simple transformation of the linear combination FN in order that it is real
valued when restricted as a function on the unit circle:

iNeiNθ/2FN (e
−iθ) = iNeiNθ/2

n∑

j=1

bjΦUj
(e−iθ) =

n∑

j=1

bji
NeiNθ/2ZUj

(θ). (1)

Using the fact that Uj ∈ SU(N), one checks that iNeiNθ/2ZUj
(θ) is real, and that then

the number of zeros of FN on the unit circle is bounded from below by the number of sign
changes, when θ increases from θ0 to θ0 + 2π (with θ0 to be chosen carefully), of the real
quantity given by the right-hand side of the equation above. The notion of carrier waves is
explained in detail in [2], p. 824–827 and we do not explain it again but we would rather
give a general outline. The main idea is that informally, with ”high” probability and for
”most” of the values of θ, one of the characteristic polynomials ZUj

dominates all the others
(it is the ”carrier wave”). More precisely, Lemma 3.8 implies the following: if δ depends
only on N and tends to zero when N goes to infinity, then there exists, with probability
1 − o(1), a subset of [θ0, θ0 + 2π) with Lebesgue measure o(1) such that for any θ outside
this set, one can find j0 between 1 and N such that log |ZUj0

(θ)| − log |ZUj
(θ)| > δ

√
logN

for all j 6= j0. In other words, one of the terms in the sum of the right-hand side of (1)
should dominate all the others. Moreover, Lemma 3.13 informally gives the following: with
high probability, the order of magnitude of each of the characteristic polynomials does not
change too quickly, and then, if the interval [θ0, θ0 + 2π) is divided into sufficiently many
equal subintervals, the index of the carrier wave remains the same in a ”large” part of each
subinterval. Now, in an interval for which the carrier wave index j0 remains the same, the
zeros of ZUj0

correspond to sign changes of iNeiNθ/2ZUj0
(θ), i.e. the dominant term of (1).

Then, one gets sign changes of iNeiNθ/2FN(e
−iθ), and by counting all these sign changes,

one deduces a lower bound for the number of zeros of FN on the unit circle. The main issue
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of the present paper is to make rigorous this informal construction, in such a way that one
gets a lower bound N − o(N). One of the reasons why the proof becomes technical and
involved is that we have to take into account two different kinds of sets, and show that
they have almost ”full measure”: subsets of the interval [θ0, θ0+2π) and subsets of SU(N).

More precisely, our proof is structured as follows. We first give two standard results
(Propositions 2.1) and 2.2), one on the disintegration of the Haar measure on U(N) (indeed,
most results on random matrices are established for U(N) and we must find a way to go
from the results for U(N) to those for SU(N)) and the other one which establishes a
relationship between the number of eigenvalues in a given fixed arc to the variation of the
imaginary part of the log of the characteristic polynomial. Then we provide some estimates
on the real and imaginary parts of the log of the characteristic polynomial (Lemmas 3.1 and
3.2) as well as a bound on the concentration of the law of the log-characteristic polynomial
(Lemma 3.3). These estimates and some more intermediary one we establish are also
useful on their own and complete the existing results in the literature on the characteristic
polynomial. Then we provide bounds on the oscillations of the real and imaginary parts of
the log of the characteristic polynomial (Lemma 3.7). We then introduce our subdivisions
of the interval [θ0, θ0 + 2π) and the corresponding relevant random sets to implement the
carrier waves technique. Finally we combine all these estimates together to show that the
average number of sign changes of (1) is at least N

(
1− O

(
(logN)−1/22

))
(the exponent

−1/22 not being playing any major role in our analysis).

Notation

We gather here some notation used throughout the paper.
U(N) stands for the unitary group of order N , while SU(N) stands for the subgroup

of elements U(N) whose determinant is equal to 1. PU(N) and PSU(N) will denote the
probability Haar measure on U(N) and SU(N) respectively. Similarly we denote by EU(N)

and ESU(N) the corresponding expectations.
We shall denote the Lebesgue measure on R by λ. If α > 0 is a constant and if I is an

interval of length α, then λα will denote the normalized measure 1
α
λ on the interval I.

If n is an integer, we note J1, nK the set of integers {1, · · · , n}.
If E is a finite set, we note |E| the number of its elements.

For n a positive integer, we note P
(n)
SU(N) be the n-fold product of the Haar measure on

SU(N), and E
(n)
SU(N) the corresponding expectation.

If U is a unitary matrix, we note for z ∈ C its characteristic polynomial by ΦU(z) =
det (IN − zU). For t ∈ R, we denote by ZU(t) the characteristic polynomial of U taken at
e−it, i.e. ZU(t) = ΦU (e

−it).
We shall introduce several positive quantities in the sequel: K > 0, M > 0 and δ > 0.

The reader should have in mind that these quantities will eventually depend on N . Unless
stated otherwise, N > 4 and K is an integer such that 2 6 K 6 N/2, and M = N/K. In
the end we will use K ∼ N/(logN)3/64 and δ ∼ (logN)−3/32.



6 Y. BARHOUMI, C.P. HUGHES, J. NAJNUDEL, AND A. NIKEGHBALI

2. Some general facts

In this section, we state some general facts in random matrix theory, which will be used
in the sequel.

2.1. Disintegration of the Haar measure on unitary matrices.

Proposition 2.1. Let PU(N) be the Haar measure on U(N), PSU(N) the Haar measure on
SU(N), and for θ ∈ R, let PSU(N),θ be the image of PSU(N) by the application U 7→ eiθU
from U(N) to U(N). Then, we have the following equality:

∫ 2π

0

PSU(N),θ
dθ

2π
= PU(N), (2)

i.e. for any continuous function F from U(N) to R+, the expectation ESU(N),θ(F ) of F
with respect to PSU(N),θ is measurable with respect to θ and

∫ 2π

0

ESU(N),θ(F )
dθ

2π
= EU(N)(F ).

Proof. One has

ESU(N),θ(F ) =

∫
F (Xeiθ)dPSU(N)(X), (3)

which, by dominated convergence, is continuous, and a fortiori measurable with respect to
θ. By integrating (3) with respect to θ, one sees that the proposition is equivalent to the
following: if U is a uniform matrix on SU(N), and if Z is independent, uniform on the unit
circle, then ZU is uniform on U(N). Now, let A be a deterministic matrix in U(N). For
any d ∈ C such that d−n = det(A), one has Ad ∈ SU(N), and then ZUA = (Z/d)(UAd),
where:

(1) UAd follows the Haar measure on SU(N) (since this measure is invariant by mul-
tiplication by Ad ∈ SU(N)).

(2) Z/d is uniform on the unit circle (since d, as det(A), has modulus 1).
(3) These two variables, which depend deterministically on the independent variables

A and Z, are independent.

Hence ZUA has the same law as ZU , i.e. this law is invariant by right-multiplication by
any unitary matrix. Hence, ZU follows the Haar measure on U(N). �

2.2. Number of eigenvalues in an arc: The result we state here relates the number
of eigenvalues of a unitary matrix on a given arc to the logarithm of its characteristic
polynomial. For U ∈ U(N) and t ∈ R, we denote by ZU(t) the characteristic polynomial
of U taken at e−it, i.e. ZU(t) = ΦU(e

−it). Moreover, if eit is not an eigenvalue of U (which
occurs almost surely under Haar measure on U(N), and also under the Haar measure on
SU(N), except for eit = 1 and N = 1), we define the logarithm of ZU(t), as follows:

logZU(t) :=
N∑

j=1

log(1− ei(θj−t)), (4)
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where θ1, . . . , θN is the sequence of zeros of ZU in [0, 2π), taken with multiplicity (notice that
the eigenvalues of U are eiθ1 , . . . , eiθN ), and where the principal branch of the logarithm
is taken in the right-hand side. We then have the following result, already stated, for
example, in [8]:

Proposition 2.2. Let 0 6 s < t < 2π, and let us assume that s and t are not zeros of ZU .
Then, the number of zeros of ZU in the interval (s, t) is given as follows:

N∑

k=1

11{θk∈(s,t)} =
N

2π
(t− s) +

1

π
(Im logZU(t)− Im logZU(s)) . (5)

Proof. It is sufficient to check that for all θ ∈ [0, 2π)\{s, t},

π11{θ∈(s,t)} =
t− s

2
+ Im log

(
1− ei(θ−t)

)
− Im log

(
1− ei(θ−s)

)
.

Now, for v ∈ (0, 2π),

1− eiv = eiv/2(e−iv/2 − eiv/2) = −2i sin(v/2) eiv/2 = 2 sin(v/2) ei(v−π)/2.

Now, sin(v/2) > 0 and (v − π)/2 ∈ (−π/2, π/2) and hence

Im log
(
1− eiv

)
=
v − π

2
,

since we take the principal branch of the logarithm. Now, for θ ∈ [0, 2π)\{s, t}, θ − s +
2π11{θ<s} and θ − t + 2π11{θ<t} are in (0, 2π), which implies

Im log
(
1− ei(θ−t)

)
− Im log

(
1− ei(θ−s)

)
=
θ − t− π + 2π11{θ<t}

2
− θ − s− π + 2π11{θ<s}

2

=
s− t

2
+ π

(
11{θ<t} − 11{θ<s}

)
,

and then Proposition 2.2. �

3. Proof of Theorem 1.1

3.1. Conventions. All the random matrices we will consider are defined, for some N > 1,
on the measurable space (MN(C),F), where F denotes the Borel σ-algebra of MN(C).
The canonical matrix, i.e the random variable from (MN(C),F) to MN(C) defined by
the identity function, is denoted X . Moreover, we denote by EU(N) the expectation under
PU(N), the Haar measure on U(N), and by ESU(N) the expectation under PSU(N), the Haar
measure on SU(N). For example, if F is a bounded, Borel function from MN(C) to R,

ESU(N)[F (X)] =

∫

MN (C)

F (M)dPSU(N)(M).
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3.2. An estimate in average of the logarithm of the characteristic polynomial.

Lemma 3.1. There exists a universal constant c1 > 0 such that for all N > 2, and A > 0,
∫ 2π

0

PSU(N)

(∣∣∣ logZX(θ)
∣∣∣ > A

√
logN

) dθ
2π

6 c1e
−A

2

(
A∧

√
logN
2

)

Proof. For all λ > 0,
∫ 2π

0

PSU(N)

(∣∣∣ logZX(θ)
∣∣∣ > A

√
logN

) dθ
2π

6 e−λA
√
logN

∫ 2π

0

ESU(N)

(
eλ|logZX(θ)|) dθ

2π

6 e−λA
√
logN

EU(N)

(
eλ|logZX(0)|) (by (2))

6 e−λA
√
logN

EU(N)

(
eλ(|Re logZX(0)|+|Im logZX(0)|))

Using the inequality e|a|+|b| 6 ea+b+ea−b+e−a+b+e−a−b, valid for all a, b ∈ R, and writing
the right-hand side of this inequality as 4E

(
eBa+B′b

)
for B and B′ being two independent

Bernoulli random variables independent of U such that P (B = 1) = 1−P (B =−1) = 1/2,
we have:

∫ 2π

0

PSU(N)

(∣∣∣ logZX(θ)
∣∣∣ > A

√
logN

) dθ
2π

6 4e−λA
√
logN

EU(N)

(
eλ(B Re logZX(0)+B′ Im logZX(0) )

)
.

We now use the fact ([13] and [7], p.16) that for s, t ∈ C such that Re(s + it) and
Re(s− it) are strictly larger than −1:

EU(N)

(
es Re logZX(0)+t Im logZX(0)

)
=
G
(
1 + s+it

2

)
G
(
1 + s−it

2

)
G (1 +N)G (1 +N + s)

G
(
1 +N + s+it

2

)
G
(
1 +N + s−it

2

)
G (1 + s)

(6)

where G is the Barnes G-function, defined for all z ∈ C, by

G(z + 1) := (2π)z/2e−[(1+γ)z2+z]/2
∞∏

n=1

(
1 +

z

n

)n
e−z+(z2/2n),

γ being the Euler constant. The function G also satisfies the functional equation G(z+1) =
Γ(z)G(z).

In other words, one has

EU(N)

(
es Re logZX(0)+t Im logZX(0)

)
=
G
(
1 + s+it

2

)
G
(
1 + s−it

2

)

G (1 + s)
N(s2+t2)/4GN,s,t,

where, by the classical estimates of the Barnes function,

GN,s,t := N−(s2+t2)/4 G (1 +N)G (1 +N + s)

G
(
1 +N + s+it

2

)
G
(
1 +N + s−it

2

)

tends to 1 when N goes to infinity, uniformly on s and t if these parameters are bounded.
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For any sequence (λN)N>1 such that λN ∈ [0, 1/2], one has (taking s = λNB and
t = λNB

′):

EU(N)

(
eλN (B Re logZX(0)+B′ Im logZX(0) )

)
=M(λN )N

λ2N
2 ,

where

M(λN ) := E

(
G
(
1 + λN

B+iB′

2

)
G
(
1 + λN

B−iB′

2

)

G(1 + λNB)
GN,λNB,λNB′

)
.

Since the function G is holomorphic, with no zero on the half-plane {Re > 0}, and since
GN,λB,λB′ tends to 1 when N goes to infinity, uniformly on λ ∈ [0, 1/2], the quantity M(λ)
is uniformly bounded by some universal constant c′ > 0, for λ ∈ [0, 1/2]. Hence,

EU(N)

(
eλN (B Re logZX(0)+B′ Im logZX(0) )

)
6 c′N

λ2N
2 ,

for N going to infinity, which implies:
∫ 2π

0

PSU(N)

(∣∣∣ logZX(θ)
∣∣∣ > A

√
logN

) dθ
2π

6 4c′e−λNA
√
logN+(λ2

N logN)/2.

Now, taking λN = (1/2) ∧ (A/
√
logN) gives

∫ 2π

0

PSU(N)

(∣∣∣ logZX(θ)
∣∣∣ > A

√
logN

) dθ
2π

6 4c′e−λN
√
logN [A−(λN

√
logN)/2]

6 4c′e−λN
√
logN [A−(A/

√
logN)(

√
logN)/2]

6 4c′e−λN
√
logN(A/2)

6 4c′e−[(
√
logN/2)∧A](A/2).

�

3.3. An estimate on the imaginary part of the log-characteristic polynomial.

From the previous result, we obtain the following estimate for the imaginary part of the
log-characteristic polynomial:

Lemma 3.2. There exists a universal constant c′1 > 0 such that for all N > 2, A > 0, and
θ ∈ R,

PSU(N)

(∣∣∣ Im logZX(θ)
∣∣∣ > A

√
logN

)
6 c′1e

−A
2

(
A∧

√
logN
2

)

Proof. We use here the probabilistic splitting established in [3] which shows that (see also
[4] for an infinite-dimensional point of view), for any U ∈ U(N), there exists, for 1 6 j 6 N ,
xj on the unit sphere of Cj, uniquely determined, such that

U = R(xN)

(
R(xN−1) 0

0 1

)(
R(xN−2) 0

0 I2

)
· · ·
(
R(x1) 0
0 IN−1

)
, (7)

where R(xj) denotes the unique unitary matrix in U(j) sending the last basis vector ej of
Cj to xj , and such that the image of Ij − R(xj) is the vector space generated by ej − xj .
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Moreover, the characteristic polynomial of U(N) is given by

ZU(0) =
N∏

j=1

(1− 〈xj , ej〉),

and then its logarithm is

logZU(0) =

N∑

j=1

log(1− 〈xj , ej〉), (8)

when 1 is not an eigenvalue of U , taking the principal branch of the logarithm on the right-
hand side. Notice that the determination of the logarithm given by this formula fits with
the definition involving the eigenangles (4). Indeed, the two formulas depend continuously
on the matrix U , on the connected set {U ∈ U(N), 1 /∈ Spec(U)}, and their exponentials
are equal, hence, it is sufficient to check that they coincide for one matrix U , for example
−IN (in this case, xj = −ej for all j and the two formulas give N log 2).

If U follows the uniform distribution on U(N), then the vectors (xj)16j6N are indepen-
dent and xj is uniform on the sphere of Cj . The determinant of U is equal to the product
of the determinants of R(xj) for 1 6 j 6 N , and since R(x1) is the multiplication by x1
on C, one has

det(U) = x1

N∏

j=2

Γj(xj),

where Γj is a function from Cj to the unit circle U. From this, let us deduce that under
the measure PSU(N),θ:

(1) The vectors (xj)26j6N are independent, xj being uniform on the unit sphere of Cj .
(2) The value of x1 ∈ U is uniquely determined by the determinant det(U) = eiNθ,

x1 = eiNθ
N∏

j=2

[Γj(xj)]
−1.

Indeed, let P′
SU(N),θ be the probability measure on the image of SU(N) by the multiplication

by eiθ, under which the law of (xj)16j6N is given by the two items above. This probability
measure can be constructed as the law of the random matrix U given by the formula (7),
where (xj)16j6N are random vectors whose joint distribution is given by the items (1) and
(2) just above. We now have to prove that PSU(N),θ = P′

SU(N),θ. Let us first notice that

the joint law of (xj)26j6N , under the probability measure P
′
SU(N),θ, does not depend on θ.

Hence, under the averaged measure
∫ 2π

0

P
′
SU(N),θ

dθ

2π
,

the vectors (xj)26j6N still have the same law, i.e. they are independent and xj is uniform

on the unit sphere of Cj. Moreover, conditionally on (xj)26j6N , x1 = eiNθ
∏N

j=2[Γj(xj)]
−1,
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where θ is uniform on [0, 2π). Hence, (xj)16j6N are independent, x1 is uniform on U, and
then xj in uniform on the unit sphere of Cj for all j ∈ {1, . . . , N}, which implies

∫ 2π

0

P
′
SU(N),θ

dθ

2π
= PU(N) =

∫ 2π

0

PSU(N),θ
dθ

2π
.

Now, PSU(N),2π/N is the image of PSU(N) by multiplication by ei2π/NIN , which is a ma-
trix in SU(N): the invariance property defining the Haar measure PSU(N) implies that
PSU(N),2π/N = PSU(N), and then θ 7→ PSU(N),θ is (2π/N)-periodic. It is the same for
θ 7→ P

′
SU(N),θ, since the values of x1, . . . xN involved in the definition of P′

SU(N),θ do not

change if we add a multiple of 2π/N to θ. Hence,

∫ 2π/N

0

P
′
SU(N),θ

Ndθ

2π
=

∫ 2π/N

0

PSU(N),θ
Ndθ

2π
.

Now, let F be a continuous, bounded function from U(N) to R. By applying the equality
above to the function U 7→ F (U)11{detU∈{eiNθ , θ∈I}}, for an interval I ⊂ [0, 2π/N), one

deduces with obvious notation that:
∫

I

E
′
SU(N),θ(F )

dθ

|I| =
∫

I

ESU(N),θ(F )
dθ

|I| ,

where |I| is the length of I. Now, by definition of PSU(N),θ and P′
SU(N),θ, the first measure

is the image of PSU(N) by multiplication by eiθ, and the second measure is the image

of P′
SU(N),0 by right multiplication by the matrix

(
eiNθ 0
0 IN−1

)
. Hence, by continuity

and boundedness of F , and by dominated convergence, ESU(N),θ(F ) and E
′
SU(N),θ(F ) are

continuous with respect to θ. By considering a sequence (Ir)r>1 of intervals containing a
given value of θ and whose length tends to zero, one deduces, by letting r → ∞,

E
′
SU(N),θ(F ) = ESU(N),θ(F ).

We now get the equality PSU(N),θ = P′
SU(N),θ, and then the law of (xj)16j6N under PSU(N),θ

described above.
Hence, the sequence (xj)26j6N has the same law under PSU(N),θ and PU(N). We now use

this fact to construct a coupling between these two probability measures on the unitary
group.

The general principle of coupling is the following: when we want to show that two
probability distributions P1 and P2 on a metric space have a similar behavior, a possible
strategy is to construct a couple (U, U ′) of random variables defined on the same probability
space endowed with a probability P, such that the law of U under P is P1, the law of U ′

under P is P2, and the distance between U and U ′ is small with high probability. In the
present situation, we take (x′j)16j6N independent, x′j uniform on the unit sphere of Cj for
all j ∈ {1, . . . , N}, and we construct, by using (7), a random matrix U ′ following PU(N).



12 Y. BARHOUMI, C.P. HUGHES, J. NAJNUDEL, AND A. NIKEGHBALI

Then, we do the coupling by taking xj := x′j for 2 6 j 6 N and

x1 := eiNθ
N∏

j=2

[Γj(xj)]
−1,

which gives a random matrix U following PSU(N),θ. From the fact that xj = x′j for j > 2
and the equation (8), we get the following:

logZU(0)− logZU ′(0) = log(1− x1)− log(1− x′1),

and in particular,

|Im logZU(0)− Im logZU ′(0)| 6 π.

Now, for B :=
(
A− π√

logN

)
+
, one gets:

PSU(N)

(∣∣∣ Im logZX(−θ)
∣∣∣ > A

√
logN

)
= PSU(N),θ

(∣∣∣ Im logZX(0)
∣∣∣ > A

√
logN

)

= P

(∣∣∣ Im logZU(0)
∣∣∣ > A

√
logN

)

6 P

(∣∣∣ Im logZU ′(0)
∣∣∣ > A

√
logN − π

)

= PU(N)

(∣∣∣ Im logZX(0)
∣∣∣ > B

√
logN

)

=

∫ 2π

0

PSU(N)

(∣∣∣ Im logZX(θ)
∣∣∣ > B

√
logN

) dθ
2π

6

∫ 2π

0

PSU(N)

(∣∣∣ logZX(θ)
∣∣∣ > B

√
logN

) dθ
2π

6 c1e
−B

2

(
B∧

√
logN
2

)

Now, if B 6
√
logN
2

,

A

2

(
A ∧

√
logN

2

)
6
A2

2
6

1

2

(
B +

π√
logN

)2

=
B2

2
+

Bπ√
logN

+
π2

2 logN

6
B2

2
+
π

2
+

π2

2 log 2

=
B

2

(
B ∧

√
logN

2

)
+
π

2
+

π2

2 log 2
.

If B >
√
logN
2

,

A

2

(
A ∧

√
logN

2

)
6
A
√
logN

4
6

√
logN

4

(
B +

π√
logN

)
=
B
√
logN

4
+
π

4

=
B

2

(
B ∧

√
logN

2

)
+
π

4
.
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Hence, we get Lemma 3.2, with

c′1 = c1e
π
2
+ π2

2 log 2 .

�

3.4. Bound on the concentration of the law of the log-characteristic polynomial.

Lemma 3.3. For N > 4, θ ∈ [0, 2π), x0 ∈ R and δ ∈ (0, 1/2), one has

PSU(N)[| log |ZX(θ)| − x0| 6 δ
√

logN ] 6 Cδ log(1/δ),

where C > 0 is a universal constant.

Proof. The proof of Lemma 3.3 needs several steps.

Sublemma 3.4. For j > 1 integer, s, t ∈ R, let us define

Q(j, s, t) :=

(
j + it−s

2

) (
j + it+s

2

)

j(j + it)
.

Then,

(1) For s2 + t2 > 8j2, |Q(j, s, t)| > max
(
1,

√
s2+t2

8j

)
.

(2) For j2 6 s2 + t2 6 8j2, |Q(j, s, t)| 6 1.

(3) For s2 + t2 6 j2, |Q(j, s, t)| 6 e−(s2+t2)/10j2.

Proof. One has:

Q(j, s, t) =
1− s2+t2

4j2
+ it/j

1 + it/j
. (9)

If s2 + t2 6 8j2, it is immediate that the numerator has a smaller absolute value than the
denominator, i.e. |Q(j, s, t)| 6 1. Moreover,

|Q(j, s, t)|2 =
1− s2+t2

2j2
+ (s2+t2)2

16j4
+ t2

j2

1 + t2

j2

= 1−

(
s2+t2

2j2

)(
1− s2+t2

8j2

)

1 + t2

j2

and in the case where s2 + t2 6 j2, one deduces

|Q(j, s, t)|2 6 1− 7(s2 + t2)

32j2

and then

|Q(j, s, t)| 6 e−7(s2+t2)/64j2 6 e−(s2+t2)/10j2 .
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Now, if s2+t2 > 8j2, the numerator in (9) has a larger absolute value than the denominator,
and then |Q(j, s, t)| > 1. Moreover, since (s2 + t2)/8j2 > 1,

|Q(j, s, t)|2 =

(
s2+t2

4j2
− 1
)2

+ t2

j2

1 + t2

j2

>

(
s2+t2

8j2

)2
+ t2

j2

1 + t2

j2

>

(
s2+t2

8j2

)2
+ s2+t2

j2

1 + s2+t2

j2

>
1

64
.

(
s2+t2

j2

)2
+ s2+t2

j2

1 + s2+t2

j2

=
s2 + t2

64j2
,

which finishes the proof of the sublemma. �

Sublemma 3.5. Let j > 1 be an integer, let ρj and σj be the real and imaginary parts

of log(1−
√
β1,j−1e

iθ), where β1,j−1 is a beta random variable with β(1, j − 1) distribution
and θ is independent of β1,j−1, uniform on [0, 2π]. Then, for s, t ∈ R,

|E[ei(tρj+sσj)]| 6 e−(s2+t2)/30j

if s2 + t2 6 8j2, and

|E[ei(tρj+sσj)]| 6 8√
s2 + t2

if s2 + t2 > 8j2 and j > 2.

Proof. For t ∈ R and s ∈ C with real part strictly between −1 and 1,

E[ei(tρj+sσj)] =
Γ(j)Γ(j + it)

Γ
(
j + it−s

2

)
Γ
(
j + it+s

2

) (10)

(see [3]). Now, if t is fixed, the function

s 7→ E[ei(tρj+sσj)]

is holomorphic, since the imaginary part is uniformly bounded (by π/2), which implies
that (10) holds for all t ∈ R, s ∈ C, and in particular for all s, t ∈ R. Moreover,

Γ(k)Γ(k + it)

Γ
(
k + it−s

2

)
Γ
(
k + it+s

2

) −→
k→∞

1,

since Γ(k + z)/Γ(k) is equivalent to kz for all z ∈ C. Hence, by using the equation
Γ(z + 1) = zΓ(z), one deduces:

E[ei(tρj+sσj)] =
∞∏

k=j

(
k + it−s

2

) (
k + it+s

2

)

k(k + it)
=

∞∏

k=j

Q(k, s, t).

If s2 + t2 6 8j2, then |Q(k, s, t)| 6 1 for all k > j and |Q(k, s, t)| 6 e−(s2+t2)/10k2 for all
k > 3j. Hence

|E[ei(tρj+sσj)]| 6
∞∏

k=3j

e−(s2+t2)/10k2 6

∞∏

k=3j

e−(s2+t2)/10k(k+1) = e−(s2+t2)/30j .
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Now let us assume s2 + t2 > 8j2. One has:

E[ei(tρj+sσj)] =
Γ(1)Γ(1 + it)

Γ
(
1 + it−s

2

)
Γ
(
1 + it+s

2

)
j−1∏

k=1

1

Q(k, s, t)

where all the factors 1
Q(k,s,t)

have absolute value bounded by one. By considering the case

where j = 1, one deduces
∣∣∣∣∣

Γ(1)Γ(1 + it)

Γ
(
1 + it−s

2

)
Γ
(
1 + it+s

2

)
∣∣∣∣∣ 6 1,

and then, for j > 2,

|E[ei(tρj+sσj)]| 6 1

|Q(1, s, t)| 6
8√

s2 + t2
.

�

Sublemma 3.6. For N > 4 and θ ∈ [0, 2π), the distribution of log(ZX(θ)) under Haar
measure on U(N) has a density with respect to Lebesgue measure on C, which is continuous
and bounded by C0/ log(N), where C0 > 0 is a universal constant.

Proof. By the results in [3] and the previous sublemma, one checks that the characteristic
function Φ of log(ZX(θ)) ∈ C ∼ R2 is given by

Φ(s, t) =

N∏

j=1

E[ei(tρj+sσj)].

If s2 + t2 > 32N , one has s2 + t2 > 128 > 8j2 for j ∈ {2, 3, 4}. Hence,

|Φ(s, t)| 6 |E[ei(tρ2+sσ2)]||E[ei(tρ3+sσ3)]||E[ei(tρ4+sσ4)]| 6 512

(s2 + t2)3/2
.

If s2 + t2 6 32N , then s2 + t2 6 8j2 for all j > 2
√
N . Hence,

|Φ(s, t)| 6
∏

2
√
N6j6N

E[ei(tρj+sσj)] 6 exp


−(s2 + t2)

∑

2
√
N6j6N

1

30j


 .

Since e1/j > j+1
j
, one deduces

|Φ(s, t)| 6
∏

2
√
N6j6N

(
j

j + 1

)(s2+t2)/30

6

(
2
√
N + 1

N + 1

)(s2+t2)/30

6

(
3
√
N

N

)(s2+t2)/30

= e− log(N/9)(s2+t2)/60.
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Now, for N > 10,

∫

R2

|Φ(s, t)|dsdt 6
∫

R2

512

(s2 + t2)3/2
11{s2+t2>32N}dsdt+

∫

R2

e− log(N/9)(s2+t2)/60 11{s2+t2632N}dsdt

= π

(∫ 32N

0

e−u log(N/9)/60du+

∫ ∞

32N

512

u−3/2
du

)

6
60π

log(N/9)
+ 1024π(32N)−1/2 6

10000

logN
,

and for N ∈ {4, 5, 6, 7, 8, 9},
∫

R2

|Φ(s, t)|dsdt 6
∫

R2

512

(s2 + t2)3/2
11{s2+t2>32N}dsdt+

∫

R2

11{s2+t2632N}dsdt

= π

(∫ 32N

0

du+

∫ ∞

32N

512

u−3/2
du

)

6 32πN + 1024π(32N)−1/2 6 288π + 1024π(128)−1/2 6
10000

log 9
.

By applying Fourier inversion, we obtain Sublemma 3.6. �

Let us now go back to the proof of Lemma 3.3. For any X ∈ U(N) with eigenvalues
(eiθj )16j6N , one has, in the case where eiθ 6= eiθj for all j ∈ {1, . . . , N}, and modulo π,

I := Im(log(ZX(θ)) =
∑

16j6N

Im(log(1− ei(θj−θ)))

=
1

2

∑

16j6N

(θj − θ) +
∑

16j6N

Im(log(e−i(θj−θ)/2 − ei(θj−θ)/2))

=
1

2
Im(log det(X))− Nθ

2
+
∑

16j6N

Im (log (−2i sin (θj − θ)/2)))

=
J
2

− N(θ + π)

2
,

where J denotes the version of Im(log det(X)) lying on the interval (−π, π]. Hence, for any
ǫ ∈ (0, π), |J | 6 ǫ if and only if I is on an interval of the form

[
2kπ−ǫ−N(θ+π)

2
, 2kπ+ǫ−N(θ+π)

2

]

for some k ∈ Z. Now, for some A > 0 chosen later in function of δ, let Φ be a continuous
function from C to [0, 1] such that Φ(z) = 1 if |Re z−x0| 6 δ

√
logN and | Im z| 6 A

√
logN ,

and such that Φ(z) = 0 for |Re z − x0| > 2δ
√
logN or | Im z| > 2A

√
logN . For ǫ ∈ (0, π),
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and under the Haar measure PU(N) on U(N),

π

ǫ
EU(N)

[
Φ(log(ZX(θ)))11{|J |6ǫ}

]

=
π

ǫ

∑

k∈Z
EU(N)

[
Φ(log(ZX(θ)))11{ 2kπ−ǫ−N(θ+π)

2
6I6 2kπ+ǫ−N(θ+π)

2 }
]

=
π

ǫ

∑

k∈Z

∫ ∞

−∞
dx

∫ (2kπ+ǫ−N(θ+π))/2

(2kπ−ǫ−N(θ+π))/2

dyD(x+ iy)Φ(x+ iy)

= π
∑

k∈Z

∫ ∞

−∞
dx

∫ 1/2

−1/2

duD(x+ i[kπ −N(θ + π))/2 + uǫ])Φ(x+ i[kπ −N(θ + π))/2 + uǫ]),

whereD denotes the density of the law of log(ZX(θ)), with respect to the Lebesgue measure.
Now,

D(x+ i[kπ −N(θ + π))/2 + uǫ])Φ(x+ i[kπ −N(θ + π))/2 + uǫ])

is uniformly bounded by the overall maximum of D and vanishes as soon as |x − x0| >
2δ
√
logN or |k|π > N(|θ| + π)/2 + π/2 + 2A

√
logN . Since D and Φ are continuous

functions, one can apply dominated convergence and deduce that
π

ǫ
EU(N)

[
Φ(log(ZX(θ)))11{|J |6ǫ}

]

converges to

π
∑

k∈Z

∫ ∞

−∞
D(x+ i[kπ −N(θ + π))/2])Φ(x+ i[kπ −N(θ + π))/2])dx

when ǫ goes to zero. On the other hand, if the matrix X follows PSU(N) and if T is an

independent uniform variable on (−π, π], then XeiT/N follows PU(N) and its determinant
is eiT . One deduces:

π

ǫ
EU(N)

[
Φ(log(ZX(θ)))11{|J |6ǫ}

]
=
π

ǫ
ESU(N)

[
Φ(log(ZXeiT/N (θ)))11{|T |6ǫ}

]

=
1

2ǫ

∫ ǫ

−ǫ

ESU(N) [Φ(log(ZXeit/N (θ)))] dt

=

∫ 1/2

−1/2

ESU(N) [Φ(log(ZXe2ivǫ/N (θ)))] dv

Now, the function X 7→ Φ(log(ZX(θ))) is continuous from U(N) to [0, 1], since Φ is contin-
uous with compact support and X 7→ log(ZX(θ))) has discontinuities only at points where
its real part goes to −∞. One can then apply dominated convergence and obtain:

π

ǫ
EU(N)

[
Φ(log(ZX(θ)))11{|J |6ǫ}

]
−→
ǫ→0

ESU(N) [Φ(log(ZX(θ)))] .

By comparing to the convergence obtained just above, one deduces

ESU(N) [Φ(log(ZX(θ)))] = π
∑

k∈Z

∫ ∞

−∞
D(x+i[kπ−N(θ+π))/2])Φ(x+i[kπ−N(θ+π))/2])dx.
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Since D(z) 6 C0/ logN and

11{|x−x0|6δ
√
logN,|y|6A

√
logN} 6 Φ(x+ iy) 6 11{|x−x0|62δ

√
logN,|y|62A

√
logN}

for all x, y ∈ R, one deduces

PSU(N)[| log |ZX(θ)| − x0| 6 δ
√

logN, | Im logZX(θ)| 6 A
√

logN ] 6
πdLC0

logN
,

where d = 4δ
√
logN is the length of the interval [x0 − 2δ

√
logN, x0 + 2δ

√
logN ] and L is

the number of integers k such that |kπ − N(θ + π))/2| 6 2A
√
logN . Now, it is easy to

check that L 6 1 + 4A
√
logN
π

, and then

PSU(N)

[
| log |ZX(θ)| − x0| 6 δ

√
logN, | Im logZX(θ)| 6 A

√
logN

]
6 16C0Aδ +

4πδ C0√
logN

.

Using Lemma 3.2, one obtains

PSU(N)

[
| log |ZX(θ)| − x0| 6 δ

√
logN

]
6 16C0Aδ +

4πδ C0√
logN

+ c′1e
−A

2

(
A∧

√
logN
2

)

.

Let us now choose A := 1 + 5 log(1/δ). One gets

A ∧
√
logN

2
= [1 + 5 log(1/δ)] ∧

√
logN

2
>

√
log 2

2
and then

A

2

(
A ∧

√
logN

2

)
>

5
√
log 2 log(1/δ)

4
> log(1/δ).

Therefore,

PSU(N)

[
| log |ZX(θ)| − x0| 6 δ

√
logN

]
6 16C0 δ + 80C0 δ log(1/δ) +

4πδ C0√
logN

+ c′1δ.

Since δ < 1/2, one has δ 6 δ log(1/δ)/ log(2), which implies Lemma 3.3, for

C =
16C0

log 2
+ 80C0 +

4π C0

(log 2)3/2
+

c′1
log 2

.

�

3.5. Behaviour of the oscillation in short intervals of the log-characteristic poly-

nomial.

Lemma 3.7. There exists c2 > 0 such that for µ ∈ R and A > 0 and uniformly in

N >M > 2 ∨ |µ|
2π
,

PSU(N)

(∫ 2π

0

∣∣∣∣Re logZX

(
θ +

µ

N

)
− Re logZX(θ)

∣∣∣∣
dθ

2π
> A

√
logM

)
6

c2
A2
,

PSU(N)

(∫ 2π

0

∣∣∣∣ Im logZX

(
θ +

µ

N

)
− Im logZX(θ)

∣∣∣∣
dθ

2π
> A

√
logM

)
6

c2
A2
.
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Proof. By symmetry of the problem, we can assume µ > 0. Setting

Rθ := Re logZX

(
θ +

µ

N

)
− Re logZX(θ)

for fixed µ (or the same expression with the imaginary part), we get:

PSU(N)

(∫ 2π

0

|Rθ|
dθ

2π
> A

√
logM

)
6

1

A2 logM
ESU(N)

((∫ 2π

0

|Rθ|
dθ

2π

)2
)

6
1

A2 logM
ESU(N)

(∫ 2π

0

R2
θ

dθ

2π

)

=
1

A2 logM

∫ 2π

0

ESU(N)

(
R2

θ

) dθ
2π

=
1

A2 logM
EU(N)

(
R2

0

)
(by (2))

Now, under U(N), the canonical matrix X is almost surely unitary: let θ1, . . . , θN be
its eigenangles in [0, 2π). For j ∈ {1, . . . , N} and t ∈ [0, 2π)\{θj}, we can expand the
logarithm:

log(1− ei(θj−t)) = −
∑

k>1

eik(θj−t)

k

as a semi-convergent series. Hence, for t such that ZX(t) 6= 0,

logZX(t) = −
N∑

j=1

∑

k>1

eik(θj−t)

k
= −

∑

k>1

e−ikt

k
tr
(
Xk
)
.

Thus:

Re logZX(t) = −1

2

(
∑

k>1

1

k
e−ikt tr

(
Xk
)
+
∑

k>1

1

k
eikt tr

(
X−k

)
)

= −1

2

∑

k∈Z∗

1

|k|e
−ikt tr

(
Xk
)

Im logZX(t) = − 1

2i

(
∑

k>1

1

k
e−ikt tr

(
Xk
)
−
∑

k>1

1

k
eikt tr

(
X−k

)
)

= − 1

2i

∑

k∈Z∗

1

k
e−ikt tr

(
Xk
)
.

Here, the series in k ∈ Z∗ are semi-convergent: more precisely, setting for K > 1,

S
(K)
t := −1

2

∑

k∈Z∗,|k|6K

1

|k|e
−ikt tr

(
Xk
)
,

and

St := Re logZX(t),

S
(K)
t tends almost surely to St when K goes to infinity.
Moreover, one has the following classical result ([6]): for all p, q ∈ Z,

EU(N)

(
tr (Xp)tr (Xq)

)
= 11{p=q} |p| ∧N. (11)
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Hence, for K,L > 1, t, u ∈ R,

EU(N)

(
S
(K)
t S(L)

u

)
= EU(N)


1

4

∑

p,q∈Z∗,|p|6K,|q|6L

e−i(pt+qu)

|pq| tr (Xp) tr (Xq)




=
1

4

∑

p,q∈Z∗,|p|6K,|q|6L

e−i(pt+qu)

|pq| EU(N)(tr (X
p) tr (Xq))

=
1

4

∑

p,q∈Z∗,|p|6K,|q|6L

e−i(pt+qu)

|pq| 11{p=−q} |q| ∧N (from (11) )

=
1

4

∑

k∈Z∗,|k|6K∧L

eik(u−t)

k2
|k| ∧N

=
1

2

∑

16k6K∧L

k ∧N
k2

(
eik(u−t) + e−ik(u−t)

2

)

=
1

2

∑

16k6K∧L

k ∧N
k2

cos (k(u− t)) .

One deduces that

EU(N)

(
(S

(K)
t − S

(L)
t )2

)
= EU(N)

(
(S

(K)
t )2

)
+ EU(N)

(
(S

(L)
t )2

)
− 2EU(N)

(
S
(K)
t S

(L)
t

)

=
1

2

∑

k>1

k ∧N
k2

cos (k(u− t))
(
11{k6K} + 11{k6L} − 211{k6K∧L}

)

=
1

2

∑

k>1

k ∧N
k2

cos (k(u− t)) 11{K∧L<k6K∨L}

6
1

2

∑

k>K∧L

k ∧N
k2

,

which tends to zero when K ∧L goes to infinity. Hence, S
(K)
t converges in L2 when K goes

to infinity, and the limit is necessarily St. Therefore,

EU(N)(StSu) = lim
K→∞

1

2

∑

16k6K∧L

k ∧N
k2

cos (k(u− t)) =
1

2

∑

k>1

k ∧N
k2

cos (k(u− t)) .

The same computation with S̃t := Im logZX(t) gives exactly the same equality:

EU(N)

(
S̃tS̃u

)
=

1

2

∑

k>1

k ∧N
k2

cos (k(u− t))

It is therefore enough to achieve the computations only with St. Using this last formula,
we can write, with α = µ

N
:
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EU(N)

(
R2

0

)
= EU(N)

(
(Sα − S0)

2) = 2EU

(
S2
0 − SαS0

)

=
∑

k>1

k ∧N
k2

(1− cos (kα))

We can then develop EU(N)(R
2
0):

EU(N)

(
R2

0

)
=
∑

k>1

k ∧N
k2

−
∑

k>1

k ∧N
k2

cos

(
kµ

N

)

But we also have
∑

k>1

k ∧N
k2

=
N∑

k=1

1

k
+N

∑

k>N

1

k2
= logN + γ +O(1/N) +N

(
1

N
+O

(
1

N2

))

Moreover we have the following result ([7], p.37), uniformly on θ ∈ [−π, π]:

∑

k>1

k ∧N
k2

cos(kθ) = − log

∣∣∣∣2 sin
(
θ

2

)∣∣∣∣+ Ci (N |θ|) + cos (Nθ)− π

2
N |θ|+Nθ Si (Nθ)

+O

(
1

N

)
(12)

where:

Si (z) :=

∫ z

0

sin x

x
dx =

π

2
− cos z

z
+

∫ +∞

z

cosx

x2
dx

Ci (z) := −
∫ +∞

z

cosx

x
dx = γ − log z +

∫ z

0

cosx− 1

x
dx

Recall also that
∫ +∞

0

sin x

x
dx =

π

2
.

Let us denote f (µ) := log µ + π
2
µ − cosµ − Ci (µ) − µSi (µ). We have, for N going to

infinity:

EU(N)

(
R2

0

)
= logN + 1 + γ + f(µ)− logµ+ log

∣∣∣∣2 sin
(
θ

2

) ∣∣∣∣+O(1/N) (with (12) )

= logN + 1 + γ + f(µ)− logµ+ log

(
2
µ

2N

(
1 +O

(( µ
N

)2)))
+O(1/N)

= 1 + γ + f(µ) +O

(( µ
N

)2)
+O(1/N).

Let us now study the behavior of the function f .
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f(µ) = log µ− cosµ+ µ
(π
2
− Si (µ)

)
− Ci (µ)

= log µ− cosµ+ µ

(
cosµ

µ
−
∫ +∞

µ

cos x

x2
dx

)
−
(
γ − log µ+

∫ µ

0

cosx− 1

x
dx

)

= −γ − µ

∫ +∞

µ

cosx

x2
dx+

∫ µ

0

cos x− 1

x
dx

One has:

f(µ) = −γ − µO

(∫ +∞

µ

1

x2
dx

)
+O

(∫ µ

0

(
1

x
∧ 1

)
dx

)

= −γ +O (1) +O (1 + log(µ ∨ 1)) = O
(
log
( µ
2π

∨ 2
))

,

which implies

EU(N)

(
R2

0

)
= O

(
log
( µ
2π

∨ 2
))

= O (logM) . (13)

�

3.6. Control in probability of the mean oscillation of the log-characteristic poly-

nomials.

Lemma 3.8. For a certain n ∈ N, let us consider an i.i.d. sequence (Uj)16j6n of random
matrices following the Haar measure on SU(N). Let us set:

Lj(θ) :=
log
∣∣ZUj

(θ)
∣∣

√
1
2
logN

For δ ∈ (0, 1/2), let us consider the random set:

Eδ :=

n⋃

i=1

(
{
θ ∈ [0, 2π] / |Li(θ)| > δ−1

}
∪
⋃

j 6=i

{θ ∈ [0, 2π] / |Lj(θ)− Li(θ)| 6 δ}
)

Then, there exists c3 > 0, depending only on n, such that for all N > 4:

E(λ2π(Eδ)) 6 c3δ log(1/δ),

where λ2π denotes the normalised Lebesgue measure on [0, 2π].



SUMS OF CHARACTERISTIC POLYNOMIALS OF UNITARY MATRICES 23

Proof. Using Markov’s inequality, one gets:

ESU(N)(λ2π(Eδ)) =

∫ 2π

0

dθ

2π
PSU(N) (θ ∈ Eδ)

6

n∑

i=1

∫ 2π

0

dθ

2π
PSU(N)

(
|Li(θ)| > δ−1

)
+

∑

16i 6=j6n

∫ 2π

0

dθ

2π
PSU(N) (|Lj(θ)− Li(θ)| 6 δ)

6 n

∫ 2π

0

dθ

2π
PSU(N)

(
|log |ZX(θ)|| > δ−1

√
1

2
logN

)

+ n(n− 1) sup
θ∈[0,2π],x∈R

PSU(N)

(
|log |ZX(θ)| − x| 6 δ

√
1

2
logN

)

6 nc1e
− δ−1

√
2

(
δ−1
√

2
∧

√
logN
2

)

+ n(n− 1)C(δ/
√
2) log(

√
2/δ)

Now,

e
− δ−1

√
2

(
δ−1
√

2
∧

√
logN
2

)

6 e
− δ−1

√
2

(
2√
2
∧

√
log 2
2

)

6 e−
δ−1

5 = O(δ log(1/δ))

and

δ log(
√
2/δ) 6 δ log(

√
δ−1/δ) =

3δ

2
log(1/δ),

which gives Lemma 3.8. �

3.7. Control in expectation of the oscillation of the log-characteristic polyno-

mials on a small period. In the sequel, we consider the dimension N > 4, an integer K
such that 2 6 K 6 N/2, defined as a function of N which is equivalent to N/(logN)3/64

when N goes to infinity. We denote

M := N/K > 2,

which is equivalent to (logN)3/64, and we also define a parameter δ ∈ (0, 1/4) as a function
of N , equivalent to (logN)−3/32 when N goes to infinity. For θ0 ∈ [0, 2π], we denote, for
0 6 k 6 K.

θk := θ0 +
2πk

K
= θ0 +

2πkM

N
,

and for 0 6 k 6 K − 1,

∆ := θk+1 − θk =
2π

K
=

2πM

N
.

The angle θ0 is chosen in such a way that the following technical condition is satisfied:

K−1∑

k=0

ESU(N)

(∣∣∣Im logZX(θk + (1−
√
δ)∆)− Im logZX(θk +

√
δ∆)

∣∣∣
)

6 KESU(N)

(∫ 2π

0

dθ

2π

∣∣∣Im logZX(θ + (1−
√
δ)∆)− Im logZX(θ +

√
δ∆)

∣∣∣
)
.
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This choice is always possible: indeed, if the converse (strict) inequality were true for all
θ0, then one would get a contradiction by integrating with respect to θ0 ∈ [0, 2π/K). We
then define the interval J := [θ0, θ0 + 2π) = [θ0, θK). Note that all the objects introduced

here can be defined only as a function of N . Moreover, by applying Lemma 3.7 to θ+
√
δ∆

and µ = N(1− 2
√
δ)∆ 6 2πM , we deduce that the assumption made on θ0 implies:

K−1∑

k=0

ESU(N)

(∣∣∣Im logZX(θk + (1−
√
δ)∆)− Im logZX(θk +

√
δ∆)

∣∣∣
)
= O

(
K
√

logM
)
.

(14)
We can then introduce the 2-oscillation of the real and imaginary parts of the log-

characteristic polynomial:

Definition 3.9. For θ ∈ J and µ ∈ [0, 2πM ], and for the canonical matrix X ∈ U(N), the
2-oscillations of Re logZX and Im logZX are defined by

∆µRθ :=
1√

log(M)

∣∣∣Re logZX

(
θ +

µ

N

)
− Re logZX(θ)

∣∣∣

∆µIθ :=
1√

log(M)

∣∣∣ Im logZX

(
θ +

µ

N

)
− Im logZX(θ)

∣∣∣

In case of several matrices (Xj)16j6n, we denote the corresponding 2-oscillations by

∆µR
(j)
θ and ∆µI

(j)
θ .

In the sequel, we need to introduce several random sets. The most important ones can
be informally described as follows:

(1) A set N1 of indices k such that the average of the 2-oscillations ∆µRθ and ∆µIθ of
the log characteristic polynomials for θ ∈ [θk, θk+1] and µ ∈ [0, 2πM ] is sufficiently
small.

(2) For k ∈ N1, a subset Gk of [θk, θk+1] for which the average of the 2-oscillations with
respect to µ ∈ [0, 2πM ] is small enough.

(3) A subset N2 of N1 of ”good” indices, such that there exists θ ∈ [θk, θk +
√
δ∆],

both in Gk and E c
δ . This last set, introduced in Lemma 3.8, corresponds to the fact

that the logarithms of the absolute values of the characterize polynomials are not
too large and not too close from each other: from this last condition, we can define
the ”carrier wave”.

(4) For k ∈ N2, and for some θ∗k ∈ [θk, θk +
√
δ∆] ∩ Gk ∩ E c

δ , a subset Yk of [0, 2πM ]
such that the 2-oscillations ∆µRθ∗k

and ∆µIθ∗k are sufficiently small. This condition
will ensure that the carrier wave index corresponding to θ = θ∗k + µ/N does not
depend on µ ∈ Yk.

(5) From this property, we deduce that, for each pair of consecutive gaps between zeros
of the carrier wave, which are sufficiently large to contain an angle of the form
θ∗k + µ/N for k ∈ N2 and µ ∈ Yk (”roomy gaps”), one can find, with the notation
of the introduction, a sign change of iNeiNθ/2FN (e

−iθ), and then a zero of FN .
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All these sets will be precisely defined in the sequel of the paper, in a way such that their
measure is ”large” with ”high” probability. The corresponding estimates will then be used
to prove our main result.

Lemma 3.10. Let P
(n)
SU(N) be the n-fold product of the Haar measure on SU(N), E

(n)
SU(N) the

corresponding expectation, and (Xj)16j6n the canonical sequence of n matrices in SU(N).
Then:

(1) There exists a random set N1 ⊂ J0, K − 1K such that E
(n)
SU(N)(|N1|) > (1− δ)K and

P
(n)
SU(N)-a.s., ∀ (j, k) ∈ J1, nK × N1,

∫ θk+1

θk

∫ 2πM

0

∆µR
(j)
θ

dµ

2πM

dθ

2π
= O

(
1

δK

)

and ∫ θk+1

θk

∫ 2πM

0

∆µI
(j)
θ

dµ

2πM

dθ

2π
= O

(
1

δK

)

(2) P
(n)
SU(N)-a.s., ∀ k ∈ N1, ∃Gk ⊂ [θk, θk+1) such that λ2π (Gk) > (1 − δ)/K and,

∀ θ ∈ Gk, j ∈ J1, nK,
∫ 2πM

0

∆µR
(j)
θ

dµ

2πM
= O

(
1

δ2

)
and

∫ 2πM

0

∆µI
(j)
θ

dµ

2πM
= O

(
1

δ2

)
(15)

Here, the implied constant in the O(·) symbols depends only on n.

Proof. By (13) and the similar estimate for the imaginary part, we have uniformly (with
a universal implied constant),

EU(N)

(
(∆µR0)

2)+ EU(N)

(
(∆µI0)

2) = O(1).

The Cauchy-Schwarz inequality ensures that

EU(N)(∆µR0) + EU(N)(∆µI0) = O(1),

i.e. ∫

J

ESU(N)(∆µRθ +∆µIθ)
dθ

2π
= O(1),

which implies ∫

J

∫ 2πM

0

ESU(N)(∆µRθ +∆µIθ)
dµ

2πM

dθ

2π
= O(1).

Splitting the interval J into K equal pieces and applying this estimate to n independent
matrices (Xj)16j6n following the Haar measure on SU(N), one gets

1

n

n∑

j=1

K−1∑

k=0

E
(n)
SU(N)

(∫ θk+1

θk

∫ 2πM

0

(∆µR
(j)
θ +∆µI

(j)
θ )

dµ

2πM

dθ

2π

)
= O(1). (16)

Applying Markov inequality, we deduce that there exists a universal constant κ > 0, such
that
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E
(n)
SU(N)

(
card

{
(j, k) ∈ J1, nK × J0, K − 1K

/∫ θk+1

θk

∫ 2πM

0

∆µR
(j)
θ

dµ

2πM

dθ

2π
>
κn

Kδ

})
6
δK

2

and

E
(n)
SU(N)

(
card

{
(j, k) ∈ J1, nK × J0, K − 1K

/∫ θk+1

θk

∫ 2πM

0

∆µI
(j)
θ

dµ

2πM

dθ

2π
>

κn

Kδ

})
6
δK

2
.

We thus set

N1 :=
n⋂

j=1

{
k ∈ J0, K − 1K

/ ∫ θk+1

θk

∫ 2πM

0

∆µR
(j)
θ

dµ

2πM

dθ

2π
6
κn

Kδ
,

∫ θk+1

θk

∫ 2πM

0

∆µI
(j)
θ

dµ

2πM

dθ

2π
6
κn

Kδ

}

and we get:

E
(n)
SU(N)(|N1|) > (1− δ)K. (17)

Now, for k ∈ N1, let us set:

Gk := [θk, θk+1) ∩
n⋂

j=1

{∫ 2πM

0

∆µR
(j)
.

dµ

2πM
6

2κn2

δ2
,

∫ 2πM

0

∆µI
(j)
.

dµ

2πM
6

2κn2

δ2

}

Applying again Markov inequality, we get that P
(n)
SU(N)-a.s.:

λ2π (Gk) > (1− δ)/K. (18)

�

We now define good indices.

Definition 3.11 (Good indices). An index k ∈ J0, K − 1K is said to be good if :

(1) k ∈ N1,

(2) E c
δ ∩ Gk ∩ [θk, θk +

√
δ∆) 6= ∅

We denote by N2 the set of good indices :

N2 :=
{
k ∈ N1

/
E

c
δ ∩ Gk ∩ [θk, θk +

√
δ∆) 6= ∅

}
(19)

An index is said to be bad if it is not good.

We then get the following result:

Lemma 3.12. With the notation above, the set of good indices satisfies:

E
(n)
SU(N)(|N2|) = K

(
1−O

(√
δ log(1/δ)

))
,

where the implied constant in the O(·) symbol depends only on n.
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Proof. If k ∈ N
c

2 , either k ∈ N
c

1 , or k ∈ N1 and E
c
δ ∩ Gk ∩ [θk, θk +

√
δ∆) = ∅ , i.e.

N c
2 = N c

1 ∪ Ñ1 where:

Ñ1 :=
{
k ∈ N1

/
Gk ∩ [θk, θk +

√
δ∆) ⊂ Eδ

}
.

By (17), we have E
(n)
SU(N)(|N c

1 |) 6 δK.

For all k ∈ Ñ1, we have Eδ ⊃ Gk ∩ [θk, θk +
√
δ∆), i.e. Eδ ⊃

⋃
k∈Ñ1

Gk ∩ [θk, θk +
√
δ∆),

where the union is disjoint, and thus, λ2π (Eδ) >
∣∣∣Ñ1

∣∣∣mink λ2π

(
Gk ∩ [θk, θk +

√
δ∆)

)
.

P
(n)
SU(N)-a.s., we have:

λ2π

(
Gk ∩ [θk, θk +

√
δ∆)

)
> λ2π (Gk) + λ2π

(
[θk, θk +

√
δ∆)

)
− λ2π ([θk, θk +∆))

>
1

K

(
(1− δ) +

√
δ − 1

)
by (18)

Now, since δ < 1/4, we obtain P
(n)
SU(N)-a.s.:

λ2π

(
Gk ∩ [θk, θk +

√
δ∆)

)
>

√
δ

2K
(20)

This implies that P
(n)
SU(N)-a.s.:

∣∣∣Ñ1

∣∣∣ 6
2K√
δ
λ2π (Eδ)

Now, by Lemma (3.8), E
(n)
SU(N)

(∣∣∣Ñ1

∣∣∣
)
= O

(
K
√
δ log(1/δ)

)
and then:

E
(n)
SU(N)(|N c

2 |) 6 E
(n)
SU(N)(|N c

1 |) + E
(n)
SU(N)

(∣∣∣Ñ1

∣∣∣
)
6 δK +O

(
K
√
δ log(1/δ)

)
.

�

3.8. Speed of the good oscillation of the log-characteristic polynomials.

Lemma 3.13. With the notation above, and P
(n)
SU(N)-a.s., ∀ k ∈ N2, there exists a random

set Yk ⊂ [0, 2πM ], and θ∗k ∈ E c
δ ∩ Gk ∩ [θk, θk +

√
δ∆), such that

λ2πM (Yk) = 1− O
(
δ−2(logN)−1/4(logM)1/2

)
, (21)

where λM is 1/2πM times the Lebesgue measure, and for all j ∈ J1, nK, µ ∈ Yk,

∆µR
(j)
θ∗k

= O

(
(logN)1/4

(logM)1/2

)
and ∆µI

(j)
θ∗k

= O

(
(logN)1/4

(logM)1/2

)
(21)

Again, the implied constant in the O(·) symbol depends only on n.
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Proof. Let k ∈ N2 and θ∗k ∈ E
c
δ ∩ Gk ∩ [θk, θk +

√
δ∆). We set:

Yk :=
n⋂

j=1

{
∆.R

(j)
θ∗k

6 ε, ∆.I
(j)
θ∗k

6 ε
}

where

ε :=
(logN)1/4

(logM)1/2
.

Applying Markov inequality, we get:

λ2πM (Y c
k ) 6 λ2πM

(
n⋃

j=1

{
∆.R

(j)
θ∗k

> ε
})

+ λ2πM

(
n⋃

j=1

{
∆.I

(j)
θ∗k

> ε
})

6
2n

ε
max
16j6n

(∫ 2πM

0

∆µR
(j)
θ∗k

dµ

2πM
∨
∫ 2πM

0

∆µI
(j)
θ∗k

dµ

2πM

)
=

1

ε
O
(
δ−2
)
,

by (15) which gives the announced result.
�

3.9. The number of sign changes.

Let us go back to Theorem 1.1. We need to estimate the number of zeros of FN on the
unit circle, or equivalently, the number of values of θ ∈ J such that the following quantity
vanishes:

iNeiNθ/2FN (e
−iθ) = iNeiNθ/2

n∑

j=1

bjΦUN,j
(e−iθ) =

n∑

j=1

bji
NeiNθ/2ZUN,j

(θ). (22)

Using the fact that UN,j ∈ SU(N), one checks that iNeiNθ/2ZUN,j
(θ) is real, and then the

number of zeros of FN on the unit circle is bounded from below by the number of sign
changes, when θ increases from θ0 to θ0 + 2π, of the real quantity given by the right-hand
side of (22). Now, the order of magnitude of log |ZUN,j

(θ)| is √
logN and more precisely,

Lemma 3.8 informally means that for most values of θ, the values of log |ZUN,j
(θ)| for

1 6 j 6 n are pairwise separated by an interval of length of order
√
logN . Hence, one of

the terms in the sum at the right-hand side of (22) should dominate all the others. If j is
the corresponding index, one can expect that the sign changes of (22) can, at least locally,
be related to the corresponding sign changes of iNeiNθ/2ZUN,j

(θ), which are associated to
the zeros of the characteristic polynomial ZUN,j

. This should give a lower bound on the
number of sign changes of (22).

This informal discussion motivates the following definition.

Definition 3.14. With the notation of the previous subsections, for all k ∈ N2, we define
the carrier wave index by:

jk := Argmax
j

{
Re logZXj

(θ∗k)
}
,
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where θ∗k is the random angle introduced in Lemma 3.13. Moreover, we consider the
following interval:

Jk :=
[
θ∗k, θ

∗
k + (1−

√
δ)∆

]

As θ∗k ∈ E c
δ , we have ∀ j 6= jk, Re logZXj

(θ∗k) 6 Re logZXjk
(θ∗k)− δ√

2

√
logN . From (21),

we deduce that ∀ j 6= jk, ∀µ ∈ Yk :

Re logZXj

(
θ∗k +

µ

N

)
6 Re logZXjk

(
θ∗k +

µ

N

)
− δ√

2
(logN)1/2 +O

(
(logN)1/4

)
(23)

Now, since

1/δ = O((logN)1/10),

with a universal implied constant, we then get, for a universal c > 0,
∣∣ZXj

(
θ∗k +

µ
N

)∣∣
∣∣∣ZXjk

(
θ∗k +

µ
N

)∣∣∣
6 exp

(
−2c(logN)0.4 +O

(
(logN)1/4

))
6 exp

(
−c(logN)0.4

)
,

for N large enough, depending only on n. This implies:
∣∣∣∣∣
∑

j 6=jk

bjZXj

(
θ∗k +

µ

N

)∣∣∣∣∣ 6
∑

j |bj|
minj |bj|

∣∣∣bjkZXjk

(
θ∗k +

µ

N

)∣∣∣ exp
(
−c(logN)0.4

)

6
1

2

∣∣∣bjkZXjk

(
θ∗k +

µ

N

)∣∣∣

for N > N0, where N0 depends only on n, b1, . . . , bn. Hence, for k ∈ N2, µ ∈ Yk and
θ = θ∗k + µ/N , the quantity

G(θ) :=

n∑

j=1

bji
NeiNθ/2ZXj

(θ),

which is P
(n)
SU(N)-a.s. real, has the same sign as its term of index jk.

Theorem 1.1 is proven if we show that the expectation of number of sign changes of G(θ)

for θ ∈ J , under P
(n)
SU(N), is bounded from below by N − o(N). Hence, it is sufficient to get:

E
(n)
SU(N)

(
∑

k∈N2

Sk

)
> N − o(N),

where Sk is the number of sign changes of bjk i
NeiNθ/2ZXjk

(θ), for θ ∈ Jk∩{θ∗k+ µ
N
, µ ∈ Yk}.

Now, for k ∈ N2, let αk,1 6 αk,2 6 · · · 6 αk,νk be the eigenangles, counted with
multiplicity, of Xjk in the interval Jk. The sign of bji

NeiNθ/2ZXjk
alternates between

the different intervals (αk,1, αk,2), (αk,2, αk,3), . . . , (αk,νk−1, αk,νk). Hence, for each pair of
consecutive intervals containing an angle θ = θ∗k +

µ
N
, µ ∈ Yk, we get a contribution of at

least 1 for the quantity Sk.
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Every element of Jk can be written as θ∗k +
µ
N
, for

0 6 µ 6 (1−
√
δ)N∆ 6 N∆ = 2πM.

The Lebesgue measure of the elements of Jk for which µ /∈ Yk is then bounded by

1

N
λ(Y c

k ) =
2πM

N
λ2πM(Y c

k ),

where λ denotes the standard Lebesgue measure. Hence, if an interval (αk,ν , αk,ν+1) has a
length strictly greater than this bound, it necessarily contains some θ = θ∗k +

µ
N

for which
µ ∈ Yk. For some c′ > 0 depending only on n, this condition is implied by

αk,ν+1 − αk,ν > c′
M

N
δ−2(logN)−1/4(logM)1/2.

We will say that (αk,ν, αk,ν+1) is a roomy gap if this inequality is satisfied, and a narrow

gap if

αk,ν+1 − αk,ν 6 c′
M

N
δ−2(logN)−1/4(logM)1/2.

By the previous discussion, Sk is at least the number of pairs of consecutive roomy gaps
among the intervals (αk,1, αk,2), (αk,2, αk,3), . . . , (αk,νk−1, αk,νk). If there is no narrow gap,
the number of such pairs is (νk−2)+ > νk−2. Moreover, if among the intervals, we replace
a roomy gap by a narrow gap, this removes at most two pairs of consecutive roomy gaps.
Hence, we deduce, for all k ∈ N2, that

Sk > νk − 2− 2ψk,

where νk is the number of zeros of ZXjk
in the interval Jk and ψk the number of narrow

gaps among these zeros. Hence, we get the lower bound:

E
(n)
SU(N)

(
∑

k∈N2

Sk

)
> E

(n)
SU(N)

(
∑

k∈N2

νk − 2K − 2ψ

)
,

where ψ is the total number of narrow gaps among the zeros in [0, 2π) of all the functions
(Zj)16j6n.

Now, P
(n)
SU(N)-a.s., for all k ∈ N2, we have:

νk =
∣∣∣{θ ∈

[
θ∗k, θ

∗
k + (1−

√
δ)∆

]
, Zjk(θ) = 0}

∣∣∣

>

∣∣∣{θ ∈
[
θk +

√
δ∆, θk + (1−

√
δ)∆

]
, Zjk(θ) = 0}

∣∣∣

=
N(1− 2

√
δ)∆

2π
+

1

π

(
Im logZXjk

(θk + (1−
√
δ)∆)− Im logZXjk

(θk +
√
δ∆)

)

>
N

K
(1− 2

√
δ)− 1

π

n∑

j=1

∣∣∣
(
Im logZXj

(θk + (1−
√
δ)∆)− Im logZXj

(θk +
√
δ∆)

)∣∣∣ .

the second equality coming from Proposition 2.2.
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Adding this inequality for all k ∈ N2, taking the expectation and using (14) yields the
estimates:

E
(n)
SU(N)

(
∑

k∈N2

νk

)
>
N

K
(1− 2

√
δ)E

(n)
SU(N)(|N2|)

−
n∑

j=1

K−1∑

k=0

E
(n)
SU(N)

[∣∣∣
(
Im logZXj

(θk + (1−
√
δ)∆)− Im logZXj

(θk +
√
δ∆)

)∣∣∣
]

>
N

K
(1− 2

√
δ)K(1− O(

√
δ log(1/δ)) +O(K

√
logM)

> N(1− O(
√
δ log(1/δ)) +O

(
N
√
logM

M

)
. (24)

Moreover,

2K = O(N/M). (25)

It remains to estimate

E
(n)
SU(N)[2ψ] = 2nESU(N)[χ] = 2nEU(N)[χ],

where χ denotes the number of narrow gaps between the eigenvalues of the canonical
unitary matrix X . The replacement of SU(N) by U(N) is possible since the notion of
narrow gap is invariant by rotation of the eigenvalues.

Now, the last expectation can be estimated by the following result:

Lemma 3.15. For N > 1 and ǫ > 0, let U be a uniform matrix on U(N) and let χε be
the number of pairs of eigenvalues of U whose argument differ by at most ε/N . Then,
E[χε] = O(Nε3).

Proof. For θ1, θ2 ∈ R, the two-point correlation density of the eigenvalues of U at eiθ1 and
eiθ2 , with respect to the uniform probability measure on the unitary group, is given by

ρ(eiθ1 , eiθ2) = N2

[
1−

(
sin[N(θ2 − θ1)/2]

N sin[(θ2 − θ1)/2]

)2
]
.

Now,

N | sin[(θ2 − θ1)/2]| 6 N |θ2 − θ1|/2
and then (

sin[N(θ2 − θ1)/2]

N sin[(θ2 − θ1)/2]

)2

>

(
sin x

x

)2

for x = N(θ2 − θ1)/2. Now, for all x ∈ R, | sin x| > sin |x| > |x| − |x|3/6, which implies
(
sin x

x

)2

>

(
1− x2

6

)2

> 1− x2

3
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and

ρ(eiθ1 , eiθ2) 6 N2

[
1−

(
sin x

x

)2
]
6
N2x2

3
=
N4(θ2 − θ1)

2

6
.

Integrating the correlation function for θ1 ∈ [0, 2π) and θ′ := θ2 − θ1 ∈ [−ε/N, ε/N ] gives:

E[χε] 6

∫ 2π

0

dθ

2π

∫ ε/N

−ε/N

dθ′

2π

N4(θ′)2

6
6 N4

∫ ε/N

−ε/N

(θ′)2dθ′ = O
(
N4(ε/N)3

)
.

�

From this result, applied for

ε = c′Mδ−2(logN)−1/4(logM)1/2

we get the estimate:

E
(n)
SU(N)[2ψ] = O(Nε3) = O

(
NM3δ−6(logN)−3/4(logM)3/2

)
. (26)

The estimates (24), (25) and (26) imply:

E
(n)
SU(N)

(
∑

k∈N2

Sk

)

> N

[
1− O

(√
δ log(1/δ) +

√
logM

M
+M3δ−6(logN)−3/4(logM)3/2

)]
.

From the values taken for δ and M , we get:
√
δ log(1/δ) = O

(
(logN)−3/64 log logN

)
,

√
logM

M
= O

(√
log logN(logN)−3/64

)

and

M3δ−6(logN)−3/4(logM)3/2 = O
(
(logN)9/64(logN)18/32(logN)−3/4(log logN)3/2

)

= O
(
(logN)−3/64(log logN)3/2

)
.

Finally, we get

E
(n)
SU(N)

(
∑

k∈N2

Sk

)
= N

(
1− O

(
(logN)−1/22

))
,

which completes the proof of Theorem 1.1.
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