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Abstract In this article, the interior layer for a second order nonlinear singularly per-

turbed differential-difference equation is considered. Using the methods of boundary func-

tion and fractional steps, we construct the formula of asymptotic expansion and point out

that the boundary layer at t = 0 has a great influence upon the interior layer at t = σ.

At the same time, on the basis of differential inequality techniques, the existence of the

smooth solution and the uniform validity of the asymptotic expansion are proved. Finally,

an example is given to demonstrate the effectiveness of our result. The result of this article

is new and it complements the previously known ones.
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1 Introduction

The boundary-value problems for singulary perturbed differential-difference equations are

often used as mathematical models describing processes in biomechanics and physics [1, 2]. In

recent years, more and more attention was paid to the study of singularly perturbed differential-

difference problems, especially for linear problems [3–11]. For nonlinear problems, now, we also

have a few results [12–15]. Most of these works are related to boundary layer, numerical solution,

or the existence of the solution, while few of them concern interior layer and the uniform

validity of the asymptotic expansion [16]. In this article, we will discuss the interior layer for

a nonlinear singularly perturbed differential-difference equation and construct its asymptotic
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expansion formula. Meanwhile, the existence of the smooth interior layer solution and the

uniform validity of the asymptotic expansion will be proved.

In articles [9, 10], a mathematical model about neural network was presented:

σ2

2
y′′(x) + (μ− x)y′(x) + λEy(x+ aE) + λIy(x− aI)− (λE − λI)y(x) = −1,

where the values x = x1 and x = x2 corresponds to the inhibitory reversal potential and

threshold value of membrane potential for action potential generation, respectively. σ and μ

are variance and drift parameters, respectively, y is the expected first-exit time and the first

order derivative term −xy′ corresponds to the exponential decay between synaptic inputs. The

undifferentiated terms corresponds to excitatory and inhibitory synaptic inputs, modeled as

Poisson process with mean rates λE and λI , respectively, and produce jumps in the membrane

potential of amounts aE and aI , which are small quantities and could depend on voltage.

Considering the complexity of the neural network and the small parameter in front of y′(x)

in this model, we propose the following weak-nonlinear differential-difference problem.

2 Statement of the Problem

We consider a boundary-value problem for a weak nonlinear singulary perturbed differential-

difference equation, which only contains negative shift,⎧⎨
⎩μ2y′′(t) = F (μy′(t), y(t), y(t− σ), t), 0 ≤ t ≤ T ;

y(t, μ) = α(t),−σ ≤ t ≤ 0, y(T, μ) = yT ,
(1)

where 0 < μ � 1 is a small parameter and σ is a delay argument. α(t) defined in [−σ, 0] is a

smooth function. T is a positive constant satisfying 4
3σ ≤ T ≤ 2σ. The restriction on T will

not influence the essence of the problem and it is only convenient for our discussion.

First of all, we use the transformation μy′ = z, which results in the system⎧⎨
⎩μy′(t) = z(t),

μz′(t) = F (z(t), y(t), y(t− σ), t);
(2)

y(t, μ) = α(t),−σ ≤ t ≤ 0, y(T, μ) = yT , 0 < μ� 1. (3)

This article is organized as follows. In Section 3, we construct the asymptotic expansion

in the interval [0, σ]. In Section 4, we construct the asymptotic expansion in the interval [σ, T ].

In Section 5, The existence of the smooth interior layer solution and the uniform validity of the

asymptotic expansion are obtained. Finally, an example is given to illustrate the effectiveness

of our results.

First, we impose two conditions on equation (2). When additional hypotheses are required,

they will be stated.

H1 Suppose that F (z, y, u, t) is sufficiently smooth with respect to each argument and,

for 0 ≤ t ≤ T , the reduced equation F (0, y(t), y(t − σ), t) = 0 has an isolate root y(t) = ϕ(t),

0 ≤ t ≤ σ, y(t) = ψ(t), σ ≤ t ≤ T (see Fig.1), where u = y(t− σ).
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H2 Suppose that Fy(0, y(t), y(t− σ), t) > 0, Fu(0, y(t), y(t− σ), t) ≤ 0, t ∈ [0, T ], where

u has the same definition as above.

3 Construction of the Asymptotic Expansion in [0, σ]

Letting x = (y, z)T and using the method of boundary function [17], we construct a series

formally satisfying (2),(3) in [0, σ]:

x(−)(t, μ) = x(t, μ) + Πx(τ0, μ) +Q(−)x(τ, μ), τ0 =
t

μ
, τ =

t− σ

μ
, (4)

where

x(t, μ) = x0(t) + μx1(t) + · · ·+ μkxk(t) + · · · (5)

is called the regular series of (4), while

Πx(τ0, μ) = Π0x(τ0) + μΠ1x(τ0) + · · ·+ μkΠkx(τ0) + · · · (6)

is called the boundary series for t = 0,

Q(−)x(τ, μ) = Q
(−)
0 x(τ) + μQ

(−)
1 x(τ) + · · ·+ μkQ

(−)
k x(τ) + · · · (7)

is called the left boundary series for t = σ. Πkx(τ0), Q
(−)
k x(τ) are called boundary functions,

and lim
τ0→+∞

Πkx(τ0) = 0, lim
τ→−∞

Q
(−)
k x(τ) = 0 hold.

Specially, we assume that

y(σ, μ) = p(μ) = p0 + μp1 + μ2p2 + · · ·+ μkpk + · · · ,

where pk, k = 0, 1, · · · , are unknown constants and they are determined by the smooth connec-

tion at t = σ. By the boundary function method, we obtain⎧⎪⎪⎨
⎪⎪⎩
μ

dy

dt
= z(t, μ),

μ
dz

dt
= F (z(t, μ), y(t, μ), y(t− σ, μ), t);

(8)
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dΠy

dτ0
= Πz(τ0, μ),

dΠz

dτ0
= F (z(μτ0, μ) + Πz(τ0, μ), y(μτ0, μ) + Πy(τ0, μ), y(μτ0 − σ, μ), μτ0)

−F (z(μτ0, μ), y(μτ0, μ), y(μτ0 − σ, μ), μτ0);

(9)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dQ(−)y

dτ
= Q(−)z(τ, μ),

dQ(−)z

dτ
= F (z(σ + μτ, μ) +Q(−)z(τ, μ), y(σ + μτ, μ) +Q(−)y(τ, μ),

y(μτ, μ), σ + μτ) − F (z(σ + μτ, μ), y(σ + μτ, μ), y(μτ, μ), σ + μτ),

(10)

Substituting (5)–(7) into (8)–(10) and equating terms with same powers of μ for xk(t), we

obtain

z0(t) = 0, F (z0(t), y0(t), α(t − σ), t) = 0; (11)

dyk−1

dt
= zk(t),

dzk−1

dt
= F zzk(t) + F yyk(t) + hk(t); (12)

where F z, F y take their values at (0, y0(t), α(t−σ), t) and hk(t) are determined functions. (11)

coincides with the reduced equation of (2), so, we have y0(t) = ϕ(t), z0(t) = 0. By H2 and (12),

xk(t) (k ≥ 1) can be obtained completely.

For Π0x(τ0), we have

dΠ0y

dτ0
= Π0z,

dΠ0z

dτ0
= F (Π0z, ϕ(0) + Π0y, α(−σ), 0); (13)

Π0y(0) = α(0)− ϕ(0), Π0y(+∞) = 0. (14)

Let ϕ(0) + Π0y = ỹ, ỹ′ = z̃. Then, the problem (13)–(14) can be transformed into the problem

as follows:
dỹ

dτ0
= z̃,

dz̃

dτ0
= F (z̃, ỹ, α(−σ), 0); (15)

ỹ(0) = α(0), ỹ(+∞) = ϕ(0). (16)

Because the eigenvalues of (15) at the point (ϕ(0), 0) are

λ1,2 =
Fz̃ ±

√
F 2

z̃ + 4Fỹ

2

∣∣∣∣
(ϕ(0),0)

,

by H2, the equilibrium M1(ϕ(0), 0) is a saddle point on the phase plane (ỹ, z̃). Thus, passing

through M1, there exists a steady manifold Σ0 : z̃ = Φ0(ỹ).

H3 Suppose that the line ỹ(0) = α(0) intersects with the manifold Σ0 : z̃ = Φ0(ỹ).

Lemma 1 Under conditions H1 −H3, the following inequalities holds:

C10e
−k0τ0 ≤ Π0x(τ0) ≤ C20e

−k0τ0 , τ0 ≥ 0,

where C10 , C20 , k0, and k0 are all positive constants.

Proof By H3, in the neighborhood of the saddle point M1(ϕ(0), 0), there exists a mani-

fold z̃ = z̃(ỹ) passing throughM1(ϕ(0), 0). We expand it into Taylor series at the point ỹ = ϕ(0)
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(suppose that ỹ < ϕ(0)), z̃ = z̃(ϕ(0)) + dz̃
dỹ

(ϕ(0))(ỹ − ϕ(0)) + o(ỹ − ϕ(0)). In contrast, by (15),

(16), we obtain dz̃
dỹ

= F (z̃,ỹ,α(−σ),0)
z̃

. According to the L′Hospital rule, we obtain

dz̃

dỹ
(ϕ(0)) =

Fz̃ −
√
F 2

z̃ + 4Fỹ

2

∣∣∣∣
ỹ=ϕ(0)

= λ1 < 0.

Because z̃(ϕ(0)) = 0, we have z̃ = λ1(ỹ − ϕ(0)) + o(ỹ − ϕ(0)). Thus, there exists τ∗, positive

constants k0 and k0, such that, for τ0 large enough and τ0 > τ∗, the inequality −k0(ỹ−ϕ(0)) ≤

z̃ ≤ −k0(ỹ − ϕ(0)) hold. Integrating the above inequality with respect to τ0 from τ∗ to τ0, by

Gronwall inequality, we obtain

C10e
−k0τ0 ≤ Π0y(τ0) ≤ C20e

−k0τ0 , τ0 ≥ 0, (17)

where C10 = Π0y(τ
∗)ek0(τ

∗), C20 = Π0y(τ
∗)ek0(τ∗). The estimate of Π0z(τ0) can be obtained if

we differentiate (17) with respect to τ0. The proof of Lemma 1 is completed.

Here, the constants may be different from C10 , C20 , but they have no essential impact on

the problem. So, we still denote them by C10 , C20 . In the following, we will deal with the

constants which we meet in the same way.

For Πkx(τ0), we have

dΠky

dτ0
= Πkz,

dΠkz

dτ0
= F̃zΠkz + F̃yΠky +Gk(τ0); (18)

Πky(0) = −yk(0), Πky(+∞) = 0, (19)

where F̃z, F̃y take their values at the point (Π0z, ϕ(0) + Π0y, α(−σ), 0). Gk(τ) are functions

compound formed by xi(t) and Πix(τ0)(i = 0, 1, · · · , k − 1).

In fact, d2Πky

dτ2
0

= F̃z
dΠky
dτ0

+ F̃yΠky has a particular solution z̃(τ0) = dΠ0y
dτ0

. According to

Liouville formulas and constant-change method, we obtain

Πky =
z̃(τ0)

z̃(0)
(−yk(0)) + z̃(τ0)

∫ τ0

0

1

z̃2(η)p(η)

∫ η

+∞

z̃(s)p(s)Gk(s)dsdη. (20)

where p(τ0) = exp(−
∫ τ0

0 F̃zdτ0). Thus, Πkx(τ0) is completely determined. The exponential

decay of Πkx(τ0) can be obtained from (20).

Lemma 2 Under conditions H1 −H3, the following inequalities

C1k
e−kkτ0 ≤ Πkx(τ0) ≤ C2k

e−k
k
τ0 , τ0 ≥ 0,

are valid, where C1k
, C2k

, kk, and kk are all positive constants.

Q
(−)
0 x(τ) is determined by the following system:

dQ
(−)
0 y

dτ
= Q

(−)
0 z,

dQ
(−)
0 z

dτ
= F (Q

(−)
0 z, ϕ(σ) +Q

(−)
0 y, α(0), σ); (21)

Q
(−)
0 y(0) = p0 − ϕ(σ), Q

(−)
0 y(−∞) = 0. (22)

Let ϕ(σ) +Q
(−)
0 y(τ) = yl, Q

(−)
0 z(τ) = zl, then, (21) and (22) can be written as

dyl

dτ
= zl,

dzl

dτ
= F (zl, yl, α(0), σ); (23)
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yl(0) = p0, y
l(−∞) = ϕ(σ). (24)

By H2, the equilibrium (ϕ(σ), 0) is a saddle point on the phase plane (yl, zl), so when passing

through (ϕ(σ), 0), there exists a steady manifold Σl : zl = Φl(y
l).

H4 Suppose that the line ỹl(0) = p0 intersects with the manifold Σl.

Lemma 3 Under conditions H1, H2, and H4, the following inequalities hold,

C10e
k0τ ≤ Q

(−)
0 x(τ) ≤ C20e

k0τ , τ ≤ 0,

where C10 , C20 , k0, and k0 are all positive constants.

Q
(−)
k x(τ) is determined by the following system:

dQ
(−)
k y

dτ
= Q

(−)
k z,

dQ
(−)
k z

dτ
= F̃ (−)

z Q
(−)
k z + F̃ (−)

y Q
(−)
k y +H

(−)
k (τ); (25)

Q
(−)
k y(0) = Pk − yk(σ), Q

(−)
k y(−∞) = 0, (26)

where F̃
(−)
z , F̃

(−)
y take their values at (Q

(−)
0 z, ϕ(σ) +Q

(−)
0 y, α(0), σ). H

(−)
k (τ) is a known func-

tion.

In the following, we will seek the solution of equations (25)–(26). In fact, the homogeneous

system, corresponding to (25),

dQ
(−)
k y

dτ
= Q

(−)
k z,

dQ
(−)
k z

dτ
= F̃ (−)

z Q
(−)
k z + F̃ (−)

y Q
(−)
k y (27)

is the variational equation of (21). Thus, it has a steady manifold Q
(−)
k z = dΦl(y

l)
dyl Q

(−)
k y. Com-

bining this manifold with
dQ

(−)
k

y

dτ
= Q

(−)
k z, we obtain

dQ
(−)
k

y

dτ
= dΦl(y

l)
dyl Q

(−)
k y. Now, letting the

general solution of
dQ

(−)
k

y

dτ
= dΦl(y

l)
dyl Q

(−)
k y be Q

(−)
k y = CΦ1(τ), under the boundary condition

(26), we obtain a solution of (27):⎧⎪⎪⎨
⎪⎪⎩

(Q
(−)
k y(τ))G = (pk − yk(σ))Φ1(τ)Φ

−1
1 (0),

(Q
(−)
k z(τ))G =

dΦl(y
l)

dyl
(pk − yk(σ))Φ1(τ)Φ

−1
1 (0).

(28)

Next, Set Q
(−)
k y∗, Q

(−)
k z∗ be a particular solution of (25). Introducing a new transformation

Q
(−)
k y∗ = δ1, Q

(−)
k z∗ = dΦl(y

l)
∂yl Q

(−)
k y∗ + δ2 and substituting them into (25), we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dδ1
dτ

=
dΦl(y

l)

dyl
δ1 + δ2,

dδ2
dτ

=

(
F̃ (−)

z −
dΦl(y

l)

dyl

)
δ2 +H

(−)
k (τ).

Let δ2 = CΨ1(τ) be the general solution of dδ2

dτ
= (F̃

(−)
z − dΦl(y

l)
dyl )δ2, then, we obtain a particular

solution δ2 =
∫ τ

−∞
Ψ1(τ)Ψ

−1
1 (s)H

(−)
k (s)ds of dδ2

dτ
= (F̃

(−)
z − dΦl(y

l)
dyl )δ2 +H

(−)
k (τ). Further more,

we have

δ1 =

∫ 0

τ

Φ1(τ)Φ
−1
1 (s)

[ ∫ s

−∞

Ψ1(s)Ψ
−1
1 (p)H

(−)
k (p)dp

]
ds.
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So, a particular solution of (25) is given in the following form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Q

(−)
k y∗(τ) =

∫ 0

τ

Φ1(τ)Φ
−1
1 (s)

[ ∫ s

−∞

Ψ1(s)Ψ
−1
1 (p)H

(−)
k (p)dp

]
ds,

Q
(−)
k z∗(τ) =

dΦl(y
l)

dyl
·Q

(−)
k y∗(τ) +

∫ τ

−∞

Ψ1(τ)Ψ
−1
1 (s)H

(−)
k (s)ds,

Thus, we obtain⎧⎪⎪⎨
⎪⎪⎩
Q

(−)
k y(τ) = (pk − yk(σ))Φ1(τ)Φ

−1
1 (0) +Q

(−)
k y∗(τ),

Q
(−)
k z(τ) =

dΦl(y
l)

dyl
(pk − yk(σ))Φ1(τ)Φ

−1
1 (0) +Q

(−)
k z∗(τ).

(29)

Now, Q
(−)
k x(τ) is completely determined, but it contains the unknown number pk. Obvi-

ously, Q
(−)
k x(τ) decays exponentially as τ → −∞.

Lemma 4 Under conditions H1, H2, and H4, the following inequalities hold,

C1k
ekkτ ≤ Q

(−)
k x(τ) ≤ C2k

ekkτ , τ ≤ 0,

where C1k
, C2k

, kk, kk are all positive constants.

4 Construction of the Asymptotic Expansion in [σ, T ]

Using the method of boundary function, we construct a series formally satisfying (2), (3)

in [σ, T ]:

x(+)(t, μ) = x(t, μ) +Q(+)x(τ, μ) +Rx(τT , μ), τ =
t− σ

μ
, τT =

t− T

μ
, (30)

where

x(t, μ) = x0(t) + μx1(t) + · · ·+ μkxk(t) + · · · (31)

is called the regular series of (30), while

Q(+)x(τ, μ) = Q
(+)
0 x(τ) + μ1Q

(+)
1 x(τ) + · · ·+ μkQ

(+)
k x(τ) + · · · (32)

is called the right boundary series for t = σ.

Rx(τT , μ) = R0x(τT ) + μR1x(τT ) + · · ·+ μkRkx(τT ) + · · · (33)

is called the boundary series for t = T . Rkx(τT ), Q
(+)
k x(τ) are called boundary functions, and

lim
τ→+∞

Q
(+)
k x(τ) = 0, lim

τT→−∞
Rkx(τT ) = 0 hold.

Substituting (30)–(33) into (2), (3), separating t, τ, τT and equating terms with same pow-

ers of μ, for x(t) , we obtain

z0(t) = 0, F (z0(t), y0(t), ϕ(t− σ), t) = 0; (34)

dyk−1

dt
= zk(t),

dzk−1

dt
= F zzk(t) + F yyk(t) + hk(t); (35)
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where F z, F y take their values at (0, y0(t), ϕ(t−σ), t) and hk(t) are determined functions. (34)

coincides with the reduced equation of (2), so, by H1, we have y0(t) = ψ(t), z0(t) = 0. By H2

and (35), xk(t) can be completely determined.

Due to the deviation of arguments, the equations determining Q
(+)
0 x(τ) will be relevant

to Π0y(τ0). Namely,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dQ
(+)
0 y

dτ
= Q

(+)
0 z,

dQ
(+)
0 z

dτ
= F (Q

(+)
0 z, ψ(σ) +Q

(+)
0 y, ϕ(0) + Π0y(τ), σ);

(36)

Q
(+)
0 y(0) = p0 − ψ(σ), Q

(+)
0 y(+∞) = 0. (37)

Let ψ(σ) +Q
(+)
0 y(τ) = yr, Q

(+)
0 z(τ) = zr, then, the above system can be written as

dyr

dτ
= zr,

dzr

dτ
= F (zr, yr, ϕ(0) + Π0y(τ), σ); (38)

yr(0) = p0, y
r(+∞) = ψ(σ). (39)

Combining (15),(16) with (38),(39), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dyr

dτ
= zr,

dzr

dτ
= F (zr, yr, ỹ, σ);

dỹ

dτ0
= z̃,

dz̃

dτ0
= F (z̃, ỹ, ϕ(−σ), 0);

(40)

ỹ(0) = α(0), ỹ(+∞) = ϕ(0), yr(0) = p0, y
r(+∞) = ψ(σ). (41)

Here, the phase space (yr, zr, ỹ, z̃) is the direct sum of (yr, zr) and (ỹ, z̃). The equilibrium

M(ψ(σ), 0, ϕ(0), 0) is a hyperbolic saddle point because the characteristic equation at M(ψ(σ),

0, ϕ(0), 0) is [λ(λ−Fzr )−Fyr ][λ(λ−Fz̃)−Fỹ] = 0 and its eigenvalues satisfy λ1λ2 = −Fyr < 0,

λ3λ4 = −Fỹ < 0. Thus, there exist a two-dimensional stable manifold W s(M) and a two-

dimensional unstable manifold Wu(M) of the system (40). Set W s(M) : Z = Φ(Y ), where

Y = (yr, ỹ)T , Z = (zr, z̃)T ,Φ = (Φ0,Φr)
T . Obviously, the projection of W s(M) on the phase

plane (ỹ, z̃) is Σ0. Namely, (W s(M))⊥(ỹ,z̃) = Σ0. Set (W s(M))⊥(yr,zr) = Σr, then,

zr = Φr(y
r, ỹ).

H5 Suppose that the plane yr(0) = p0 intersects with the steady manifold Σr in the

phase space.

Lemma 5 Under conditions H1, H2, and H5, the following inequalities hold,

C10e
−k0τ ≤ Q

(+)
0 x(τ) ≤ C20e

−k0τ , τ ≥ 0,

where C10 , C20 , k0, k0 are all positive constants.
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Q
(+)
k x(τ) satisfies the following boundary value problem:

dQ
(+)
k y

dτ
= Q

(+)
k z,

dQ
(+)
k z

dτ
= F̃ (+)

z Q
(+)
k z + F̃ (+)

y Q
(+)
k y +H

(+)
k (τ); (42)

Q
(+)
k y(0) = Pk − yk(σ), Q

(+)
k y(+∞) = 0, (43)

where F̃
(+)
z , F̃

(+)
y take their values at (Q

(+)
0 z, ψ(σ) + Q

(+)
0 y, ϕ(0) + Π0y(τ), σ). H

(+)
k (τ) are

determined functions.

In a similar manner for solving Q
(−)
k x(τ), we obtain

⎧⎪⎨
⎪⎩
Q

(+)
k y(τ) = (pk − yk(σ))Φ2(τ)Φ

−1
2 (0) +Q

(+)
k y∗(τ),

Q
(+)
k z(τ) =

dΦr(y
r)

dyr
(pk − yk(σ))Φ2(τ)Φ

−1
2 (0) +Q

(+)
k z∗(τ),

(44)

where

Q
(+)
k y∗(τ) =

∫ τ

0

Φ2(τ)Φ
−1
2 (s)

[ ∫ s

+∞

Ψ2(s)Ψ
−1
2 (p)H

(+)
k (p)dp

]
ds

and

Q
(+)
k z∗(τ) =

dΦr(y
r)

dyr
·Q

(+)
k y∗(τ) +

∫ τ

+∞

Ψ2(τ)Ψ
−1
2 (s)H

(+)
k (s)ds.

Thus, Q
(+)
k x(τ) can be completely determined.

In the same way, we have the following lemma.

Lemma 6 Under conditions H1, H2, and H5, the following inequalities hold,

C1k
e−kkτ ≤ Qkx(τ) ≤ C2k

e−kkτ , τ ≥ 0,

where C1k
, C2k

, kk, kk are all positive constants.

Now, Q
(±)
k x(τ) are all known, but they contain unknown numbers pk which are determined

by the smooth connection at t = σ:

dy(−)(σ, μ)

dt
=

dy(+)(σ, μ)

dt
.

Namely,
d

dτ
Q

(−)
0 y(0) =

d

dτ
Q

(+)
0 y(0),

ϕ′(σ) +
d

dτ
Q

(−)
1 y(0) = ψ′(σ) +

d

dτ
Q

(+)
1 y(0),

...

y′k−1(σ) +
d

dτ
Q

(−)
k y(0) = y

′

k−1(σ) +
d

dτ
Q

(+)
k y(0). (45)

First, we will seek the value of p0. By H4, H5, the solutions of systems (23), (24) and (38),

(39) exist. Let

H(p0) = zl(0, p0)− z
r(0, p0) = Φl(p0)− Φr(p0, ϕ(0)) = 0. (46)

H6 Suppose that (46) has a solution p0 = p0 and dH
dp0

∣∣
p0=p0

< 0.
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For pk, by virtue of (29), (44), and (45), we have(
dΦl(p0)

dp0
−

dΦr(p0)

dp0

)
pk = (y

′

k−1(σ)− y′k−1(σ)) −
dΦr(p0)

dp0
yk(σ) +

dΦl(p0)

dp0
yk(σ)

−

∫ 0

−∞

Ψ1(0)Ψ−1
1 (s)H

(−)
k (s)ds+

∫ 0

+∞

Ψ2(0)Ψ−1
2 (s)H

(+)
k (s)ds

By H6, the coefficient of pk is not equal to zero, so, pk are all determined. Thus, Q
(±)
k x(τ) are

all completely determined.

For boundary functions Rkx(τT )(k ≥ 0), they have no essential influence on the interior

layer, so, we will not discuss them in detail but only narrate their existing conditions.

H7 Suppose that that the line ˜̃y(T ) = yT intersects with ΣT , which is the steady manifold

of system

d˜̃y
dτ0

= ˜̃z, d˜̃z
dτ0

= F (˜̃z, ˜̃y, ψ(T − σ), T ).

˜̃y(T ) = yT , ỹ(−∞) = ψ(T ),

where ˜̃y = ψ(T ) + R0y(τT ). Thus, the boundary function Rkx(τT ), k ≥ 0, are all determined.

Similarly, Rkx(τT ), k ≥ 0, decay exponentially as τT → −∞. Now, the coefficients of (32), (33)

are all known, so, the asymptotic expansions are constructed.

5 The Main Result

Let

Xn(t, μ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
i=0

μi(xi(t) + Πix(τ0) +Q
(−)
i x(τ)), 0 ≤ t ≤ σ,

n∑
i=0

μi(xi(t) +Q
(+)
i x(τ) +Rix(τT )), σ ≤ t ≤ T,

Theorem Under conditions H1 −H7, there exist positive constants μ0 > 0, c > 0, such

that, for 0 < μ ≤ μ0, the solution x(t, μ) of the problem (2)–(3) exists in the interval [0, T ] and

satisfies the inequality

‖x(t, μ)−Xn(t, μ)‖ ≤ cμn+1. (47)

Omitting details of the general statement, we give the version needed in the forthcoming

considerations.

Lemma 7 Suppose that there exist two functions ω(t) and ω(t), such that the following

assertions are valid:

(1) ω(t) ≤ ω(t), −σ ≤ t ≤ T ;

(2)

μ2ω′′(t) ≥ F (μω′(t), ω(t), ω(t− σ), t), 0 ≤ t ≤ T ;

μ2ω′′(t) ≤ F (μω′(t), ω(t), ω(t− σ), t), 0 ≤ t ≤ T ;

(3) ω(t) ≤ α(t) ≤ ω(t), −σ ≤ t ≤ 0; ω(T ) ≤ yT ≤ ω(T )

(4) The inequalities

dω

dt
(−) ≥

dω

dt
(+),

dω

dt
(−) ≤

dω

dt
(+)
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hold and the function f(z, y, u, t) belongs to Nagumo function class [12], where the subscripts

+ and - on the normal derivative mean that they are evaluated to the right and the left,

respectively, at their discontinuous points. Then, there exists a solution y(x) of problem (1),

such that ω(t) ≤ y(t) ≤ ω(t), where ω(t) and ω(t) are referred to as a lower solution and an

upper solution of problem (1), respectively.

Next, we will proceed to the proof of the theorem.

Proof First, we express the upper solution as

ω(t) =

⎧⎪⎪⎨
⎪⎪⎩
α(t) + μ2, −σ ≤ t ≤ 0,

ϕ(t) + Π0y(τ0) +Q
(−)
0β y(τ) + μ(y1(t) + Π1βy(τ0) +Q

(−)
1β y(τ)) + μ2, 0 ≤ t ≤ σ,

ψ(t) +Q
(+)
0β y(τ) + R0y(τT ) + μ(y1(t) +Q

(+)
1β y(τ) +R1βy(τT )) + μ, σ ≤ t ≤ T,

and the lower solution as

ω(t) =

⎧⎪⎪⎨
⎪⎪⎩
α(t) − μ2, −σ ≤ t ≤ 0,

ϕ(t) + Π0y(τ0) +Q
(−)
0α y(τ) + μ(y1(t) + Π1αy(τ0) +Q

(−)
1α y(τ)) − μ2, 0 ≤ t ≤ σ,

ψ(t) +Q
(+)
0α y(τ) +R0y(τT ) + μ(y1(t) +Q

(+)
1α y(τ) +R1αy(τT ))− μ, σ ≤ t ≤ T.

The functions Q
(−)
0β y(τ), Q

(−)
1β y(τ) and Π1βy(τ0) can be found from the problem⎧⎪⎪⎨

⎪⎪⎩
d2Q

(−)
0β y

dτ2
= F

(
dQ

(−)
0β y

dτ
, ϕ(σ) +Q

(−)
0β y(τ), α(0), σ

)
,

Q
(−)
0β y(0) = (p0 + δ)− ϕ(σ), Q

(−)
0β y(−∞) = 0.⎧⎪⎪⎨

⎪⎪⎩
d2Q

(−)
1β y

dτ2
= F̃ (−)

z

dQ
(−)
1β y

dτ
+ F̃ (−)

y Q
(−)
1β y(τ) +H

(−)
1β (τ) + ωek1τ ,

Q
(−)
1β y(0) = p1 − y1(σ), Q

(−)
1β y(−∞) = 0.

and ⎧⎪⎨
⎪⎩
d2Π1βy

dτ2
0

= F̃z

dΠ1βy

dτ0
+ F̃yΠ1βy(τ0) +G1β(τ0) + ωe−k0τ0 ,

Π1βy(0) = −y1(0), Π1βy(+∞) = 0,

respectively, where δ, ω, k0, k1 are all positive constants. Q
(+)
0β y(τ), Q

(+)
1β y(τ) and R1βy(τT ) are

given by ⎧⎪⎪⎨
⎪⎪⎩
d2Q

(+)
0β y

dτ2
= F

(
dQ

(+)
0β y

dτ
, ψ(σ) +Q

(+)
0β y(τ), ϕ(0) + Π0βy(τ), σ

)
,

Q
(+)
0β y(0) = (p0 + δ)− ψ(σ), Q

(+)
0β y(+∞) = 0.⎧⎪⎪⎨

⎪⎪⎩
d2Q

(+)
1β y

dτ2
= F̃ (+)

z

dQ
(+)
1β y

dτ
+ F̃ (+)

y Q
(+)
1β y(τ) +H

(+)
1β (τ) + ωe−k1τ ,

Q
(+)
1β y(0) = p1 − y1(σ), Q

(+)
1β y(+∞) = 0.

and ⎧⎪⎪⎨
⎪⎪⎩
d2R

(−)
1β y

dτ2
T

=
˜̃
F z

dR1βy

dτT
+

˜̃
F yR1βy(τT ) +K1β(τT ) + ωek0τT ,

R1βy(0) = −y1(0), R1βy(−∞) = 0.
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Replace p0 + δ, β and ω by p0− δ, α and −ω, respectively, we can obtain all terms in ω(t).

Next, we will show that the functions ω(t) and ω(t) satisfy all items of Lemma 7. For

convenience, we divide [0, T ] into four parts, namely, [0, 2
3σ], [23σ, σ], [σ, 4

3σ], and [43σ, T ].

Obviously, the third item holds.

In the following, we will verify the first item: ω(t) ≥ ω(t).

In [0, 2
3σ], because Π1βy(0) = Π1αy(0) = −y1(0) and Π1αy(τ0) Π1βy(τ0) are both of expo-

nential decay for τ0 > 0, we have

ω(t)− ω(t) = μ(Π1βy(τ0)−Π1αy(τ0)) + 2μ2 > 0.

The fact ω(t) > ω(t) in [23σ, σ] and [43σ, T ] can be treated similarly.

In [σ, 4
3σ], Q

(+)
0β y(0) = p0 + δ−ψ(σ), Q

(+)
0α y(0) = p0 − δ−ψ(σ), Q

(+)
1β y(0)−Q

(+)
1α y(0) = 0

and Q
(+)
0β y(τ), Q

(+)
0α y(τ), Q

(+)
1β y(τ), Q

(+)
1α y(τ)) are all of exponential decay for τ > 0, so

ω(t)− ω(t) = Q
(+)
0β y(τ)−Q

(+)
0α y(τ) + μ(Q

(+)
1β y(τ) −Q

(+)
1α y(τ)) + 2μ > 0.

Thus, we finish the proof of the first item.

Next, we will verify the second item. Most results will be stated in terms of the upper

solution and obvious analogous results for lower solution will not be stated. In [0, 2
3σ], we have

Lω(t) = μ2ω′′(t)− F (μω′(t), ω(t), α(t− σ), t)

= μ2ϕ′′(t) + μ3y′′1(t) +
d2Π0y(τ0)

dτ2
0

+ μ
dΠ1βy(τ0)

dτ0

−

[
F (μϕ′(t) + μ2y1(t), ϕ(t) + μy1(t) + μ2, α(t− σ), t)

+(F (μϕ′(μτ0) +
dΠ0y

dτ0
+ μ2y′1(μτ0) + μ

dΠ1βy

dτ0
, ϕ(μτ0) + Π0y(τ0)

+μ(y1(μτ0) + Π1βy(τ0)) + μ2, α(μτ0 − σ), μτ0)

−F (μϕ′(μτ0) + μ2y1(μτ0), ϕ(μτ0) + μy1(μτ0) + μ2, α(μτ0 − σ), μτ0))

]
= −2μ2Fy(0, φ(t), α(t− σ), t) +EST < 0.

Similarly, in [23σ, σ] and [43σ, T ], we also have Lω(t) < 0. In [σ, 4
3σ],

Lω(t) = μ2ω′′(t)− F (μω′(t), ω(t), ω(t− σ), t)

= μ2ψ′′(t) + μ3y′′1(t) +
d2Q

(+)
0β y

dτ2
+ μ

dQ
(+)
1β y

dτ

−F (μψ′(t) + μ2y
′

1(t), ψ(t) + μy1(t) + μ, α(t− σ) + μy1(t− σ) + μ2, t)

−

[
F (μψ′(σ + μτ) +

dQ
(+)
0β y

dτ
+ μ2y

′

1(σ + μτ) + μ
dQ

(+)
1β y

dτ
,

ψ(σ + μτ) +Q
(+)
0β y(τ) + μ(y1(σ + μτ) +Q

(+)
1β y(τ)) + μ,

ϕ(μτ) + π0y(τ) + μ(y1(μτ) + π1βy(τ)) + μ2, σ + μτ)

−F (μψ′(σ + μτ) + μ2y
′

1(σ + μτ), ψ(σ + μτ) + μ(y1(σ + μτ)

+μ, ϕ(μτ) + π0y(τ) + μ(y1(μτ) + π1βy(τ)) + μ2, σ + μτ)

]
= −μFy(0, φ(t), α(t − σ), t) + EST < 0.
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Finally, we will prove the fourth item.

μ
dω

dt
(σ−)− μ

dω

dt
(σ+) =

[
μϕ′(σ−) + μ2y′1(σ−) +

dQ
(−)
0β y

dτ
(0−) + μ

dQ
(−)
1β y

dτ
(0−)

]

−

[
μψ′(σ+) + μ2y

′

1(σ+) +
dQ

(+)
0β y

dτ
(0+) + μ

dQ
(+)
1β y

dτ
(0+)

]

=
dQ

(−)
0β y

dτ
(0−)−

dQ
(+)
0β y

dτ
(0+) +O(μ)

= H(p+ δ) +O(μ) = H(p0) +H ′(p0)δ +O(μ)

= H ′(p0)δ +O(μ).

By H6, the above formula is negative.

In the same way, we obtain dω

dt
(σ−) ≤ dω

dt
(σ+). In accordance with Lemma 7, the solution

of (1) exists.

To obtain the asymptotic solution with O(μ), we should expand the upper solution and

lower solution to O(μ2), namely,

ω1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1∑
i=0

μi(yi(t) + Πiy(τ0) +Q
(−)
iβ y(τ)) + μ2(y2(t) + Π2βy(τ0) +Q

(−)
2β y(τ) + μ),

0 ≤ t ≤ σ,
1∑

i=0

μi(yi(t) +Q
(+)
iβ y(τ) +Riy(τT )) + μ2(y2(t) +Q

(+)
2β y(τ) +R2βy(τT ) + 1),

σ ≤ t ≤ T,

ω1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1∑
i=0

μi(yi(t) + Πiy(τ0) +Q
(−)
iα y(τ)) + μ2(y2(t) + Π2αy(τ0) +Q

(−)
2α y(τ)− μ),

0 ≤ t ≤ α,
1∑

i=0

μi(yi(t) +Q
(+)
iα y(τ) +Riy(τT )) + μ2(y2(t) +Q

(+)
2α y(τ) +R2αy(τT )− 1),

α ≤ t ≤ T.

In a similar manner, we can prove that ω1(t), ω1(t) also satisfy the items of Lemma 7.

Thus, according to Lemma 7, we can not only prove the existence of the solution of (1)

but also write out the asymptotic representation with accuracy O(μ), namely,

y(t, μ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ(t) + Π0y(τ0) +Q
(−)
0 y(τ) + μ(y1(t) + Π1y(τ0) +Q

(−)
1 y(τ)) +O(μ),

0 ≤ t ≤ σ,

ψ(t) +Q
(+)
0 y(τ) +R0y(τT ) + μ(y1(t) +Q

(+)
1 y(τ) +R1y(τT )) +O(μ),

σ ≤ t ≤ T.

In the same way, we can obtain the asymptotic expansion with O(μn). The proof of the

theorem is completed.
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6 Example

Let us consider the problem⎧⎨
⎩
μ2y′′ = y − y(t− 1);

y(t) = t, t ∈ [−1, 0], y(
3

2
) = 0.

(48)

For 0 ≤ t ≤ 3
2 , the degenerate equation of (48) has an isolate root:

y(t) =

⎧⎪⎨
⎪⎩
t− 1 t ∈ [0, 1];

t− 2, T ∈ [1,
3

2
].

Obviously, conditions H2, H3 hold. Π0y(τ0), R0y(τT ), Q
(−)
0 y(τ) and Q

(+)
0 y(τ) are given by the

following systems respectively,

d2Π0y

dτ2
0

= Π0y, Π0y(0) = 1, Π0y(+∞) = 0;

d2R0y

dτ2
T

= R0y(τT ), R0y(0) =
1

2
, R0y(−∞) = 0;

d2Q
(−)
0 y

dτ2
= Q

(−)
0 y(τ), Q

(−)
0 y(0) = p0, Q

(−)
0 y(−∞) = 0;⎧⎪⎨

⎪⎩
d2Q

(+)
0 y

dτ2
= Q

(+)
0 y(τ)−Π0y(τ),

Q
(+)
0 y(0) = p0 + 1, Q

(+)
0 y(−∞) = 0.

After simple manipulations, we obtain Π0y(τ0) = e−τ0, Q
(−)
0 y = p0e

τ , Q
(+)
0 y(τ) = (p0 +

1
2 )e−τ + τe−τ + 1

2e
−τ , R0y(τT ) = 1

2e
τT . By the smooth connection

dQ
(−)
0 y

dτ

∣∣
τ=0

=
dQ

(+)
0 y

dτ

∣∣
τ=0

,

we have H(p0) = p0 − (−p0 −
1
2 −

1
2 + 1) = 0. Obviously, p0 = 0 and dH(p0)

dp0

∣∣
p0=0

= 2 
= 0.

Thus, we obtain the zero order asymptotic solution of (48):

y(t, μ) =

⎧⎪⎨
⎪⎩
t− 1 + e−

t
μ , t ∈ [0, 1];

t− 2 +
t− σ

μ
e−

t−σ
μ + e

t−σ
μ +

1

2
e

t−T
μ , t ∈ [1,

3

2
].
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The following graphs are the degenerate solution (Fig.2) and the zero order asymptotic

solution (Fig.3) respectively.

From the above two figures, we can see that the zero order asymptotic solution is a good

approximation to the reduced solution.
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